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The excellent photo-response of ZnFe2O4 in the visible light region makes it a promising
catalyst, whereas some defects like serious particle agglomeration and easy
recombination of photo-generated electron-hole pairs hinder its application. In this
work, the ZnFe2O4/sepiolite (ZF-Sep) composites were synthesized using a co-
precipitation method. The obtained ZF-Sep composites were characterized by XRD,
SEM, TEM, FT-IR, XPS, BET, VSM and DRS. Moreover, the photocatalytic performance
was evaluated by the tetracycline hydrochloride removal efficiency under simulated visible
light illumination. The results displayed that the ZnFe2O4 with average sizes about 20 nm
were highly dispersed on sepiolite nanofibers. All the composites exhibited better
photocatalytic performance than pure ZnFe2O4 due to the synergistic effect of the
improvement on the agglomeration phenomenon of ZnFe2O4 and the reduction on the
recombination rate of photo-generated electrons and holes. The optimum removal
efficiency was that of the ZF-Sep-11 composite, which reached 93.6% within 3 h.
Besides, the composite exhibited an excellent stability and reusability. Therefore, ZF-
Sep composite is a promising catalyst for the treatment of wastewater contained
antibiotics.
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INTRODUCTION

With the rapid expansion of pharmaceutical industry and breeding industry, the pollution of
antibiotics and mycotoxins in the water environment has caused great concern. (Li et al., 2018; Das
et al., 2020; Sun L. et al., 2020; Wang J. et al., 2020; Zhang et al., 2020). Because it is difficult to be
metabolized by humans and animals, a large part of antibiotics are excreted in the form of urine and
feces (Song et al., 2019). Hence, large quantities of antibiotics have been found in the soil, surface
waters and even drinking water and will eventually threaten the health of humans and livestock
through the food chain (Agerstrand et al., 2015; Isari et al., 2020a; Dong et al., 2020). Therefore, the
removal of antibiotics from wastewater has been adopted, such as advanced oxidation processes
(AOPs), membrane separation, microbial degradation, adsorption and photocatalysis (Debnath
et al., 2020; Hayati et al., 2020; Khan et al., 2020; Wang Q. et al., 2020; Zhao R. et al., 2020; Zong et al.,
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2021). Among above techniques, photocatalytic degradation of
antibiotics on the surface of photocatalytic has been received a lot
of attention because of their simple operation, high efficiency,
energy saving, environmental protection and mild reaction
conditions (Isari et al., 2020b). Semiconductor-based
photocatalysis has attracted much attention due to their
effective photocatalytic performance and environmental
friendliness (Li et al., 2017; Li et al., 2020.). Traditional
semiconductor materials, such as TiO2, ZnO, ZrO2, Fe2O3 and
CdS are the most commonly used photocatalytic materials due to
their strong oxidizing ability, stable chemical properties, and high
photocatalytic activity (He et al., 2020; Jain et al., 2020; Reddy
et al., 2020; Hunge et al., 2021). However, the low adsorption
capacity, easy recombination of photo-generated electron-hole
pairs, insufficient visible-light absorption and difficulty of
recycling of these semiconductor materials hinders their
practical application (Sun Z. et al., 2020; Xiao et al., 2020).

Zinc ferrite (ZnFe2O4), a typical spinel material, which
possesses an AB2O4 structure with Zn2+ ions occupy
tetrahedral A and Fe3+ ions occupy octahedral B site in a face-
centered cubic unit cell (Lima et al., 2018). Zinc ferrite is a
promising semiconductor photocatalytic material due to its
excellent photo-response in the visible light region,
considerable chemical stability and easy recycling performance
(Casbeer et al., 2012; Tsay et al., 2019; Borade et al., 2020; Hu
et al., 2020). Mishra et al. used the co-precipitation method to
synthesize spinel zinc ferrite (SZFO) atomic sheets. With the aid
of microwave irradiation, it showed excellent degradation
performance for bright green, and the degradation efficiency
was greater than 99% within 5 min (Mishra et al., 2019). Sun
et al. used micro-nano bubbles and recyclable MFe2O4 (where M
�Mn, Zn, Cu, Ni and Co) synthesized by a hydrothermal method
to simultaneously remove SO2 and NOx from flue gas. The results
show that MFe2O4 can accelerate the oxidation absorption of
NOx by producing OH. The NOx removal efficiency increased
from 32.85 to 83.88% in the NOx-SO2-MFe2O4-micro-nano
bubble system, while the conversion rate of SO2 can reach
100% at room temperature (Sun and Li, 2020). Mesoporous
zinc ferrite, agglomeration of nanoparticles with size of
5–10 nm, was prepared by Su et al. In the presence of visible
light and hydrogen peroxide, the degradation efficiency of AOII
reaches almost 100% within 2 h (Su et al., 2012). However,
insufficient photo degradation activity was exhibited to use
ZnFe2O4 merely under visible light (Han et al., 2019; Nguyen
et al., 2019; Wu and Zhang, 2019). Nowadays, lots of works, such
as ion doping and forming the composites with other substances,
have been reported to improve the photo catalytic performance
(Ajithkumar et al., 2019; Peymani-Motlagh et al., 2019; Zhao Y.
et al., 2020). Different kinds of substances were used to combine
with ZnFe2O4 to form composites, which mainly included metal
oxides (ZnO, TiO2, Fe2O3, etc.) and carbon-based materials
(reduced-graphene oxide, g-C3N4 and carbon nanotube, etc.).
Moreover, the combination of ZnFe2O4 with more than one
material has also attracted much attention. Enormous researches
on the incorporation of ZnFe2O4 with mental oxides and carbon
materials, silver species and carbon materials and inorganic-
organic composite materials have been published recently. The

introduction of these substances greatly improves the physical
and chemical structure of ZnFe2O4, so that the optical, magnetic,
catalytic and other properties were optimized (Adnan et al., 2021;
Feng et al., 2021; Sun et al., 2017; Zia et al., 2020; Baynosa et al.,
2020; Wang and Nan, 2019; Qin et al., 2017.). Compared with
above mentioned substances, natural mineral materials have
many advantages such as large specific surface area, abundant
pore structure, strong adsorption capacity, large abundance and
low cost, thereby they have great potential as catalyst carrier
materials (Hu et al., 2019; Zhou et al., 2020).

Sepiolite, as a hydrous magnesium-rich silicate
[Si12Mg8O30(OH)4(OH2)4·8H2O], is a typical fibrous natural
clay mineral with a layered chain structure. Sepiolite is
composed of two silicon-oxygen tetrahedrons sandwiching a
magnesium-oxygen octahedron and the discontinuity of the
silicon-oxygen tetrahedron makes the sepiolite have a rich
internal tunnel structure. Benefit from the unique structure
and composition, sepiolite fibers possess large specific surface
area, high porosity and various functional groups, which provides
more reaction sites for supported catalysts (Ma and Zhang, 2016;
Wang et al., 2017; Zhang et al., 2017; Mishra et al., 2019; Cui et al.,
2020). In addition to its abundant storage, low cost and
environmental friendliness, sepiolite is an ideal candidate for
catalyst carrier (Xu et al., 2017). However, in order to increase
surface area and enlarge its pore structure as well as to increase
the number of active sites, an acid treatment is considered
necessary before the synthesis process on raw sepiolite
material. Therefore, the acid-treated sepiolite was often used to
the support material for metal oxides TiO2, ZnO, Fe3O4, Cu2O,
etc. (Xu et al., 2010; Zhu et al., 2012; Daneshkhah et al., 2017; Xu
et al., 2019; Wang S. et al., 2020). In our pervious study, we have
prepared CoAl2O4/sepiolite nanofibers composite and Co./
CoAl2O4/sepiolite nanocomposite via different methods
(Zhang et al., 2018; Wang F. et al., 2019; Hao et al., 2021;
Wang et al., 2021). Nevertheless, as far as we know, there
were few reports on sepiolite loaded ZnFe2O4 as a catalyst.

In this work, the ZnFe2O4 nanoparticles were grown on
sepiolite nanofibers to obtain ZnFe2O4/sepiolite (ZF-Sep)
composites by a co-precipitation method. Through different
characterization of the composite and its photocatalytic
performance for TCH, the influence of the structure of the
composite on its performance was explored. This study
provides a new idea for improving the performance of the
catalysts and an inspiring approach for cost-effective
preparation of highly efficient catalysts for wastewater
containing antibiotics.

EXPREIMENTAL SECTION

Materials
Raw sepiolite was purchased from Henan province, and the main
chemical compositions analyzed by XRF were 54.36% SiO2,
35.6% MgO, 5.67% CaO and 1.36% Fe2O3. Hydrochloric acid
(HCl), iron (III) nitrate nonahydrate [Fe(NO3)3·9H2O], zinc
chloride (ZnCl2), ammonia (NH3·H2O), ethanol
(CH3CH2OH), silver nitrate standard solution (AgNO3,
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0.1 mol/L), tetracycline hydrochloride (TCH), butyl alcohol
(TBA), P-benzoquinone (BQ) and ammonium oxalate (AO)
were analytical reagent and used without further purification.

Synthesis of ZnFe2O4 and ZF-Sep
Composites
1.3629 g of ZnCl2 and 8.08 g of Fe(NO3)3·9H2O were dissolved in
100 ml deionized water, and a certain amount of sepiolite which
were prepared by an acid treatment were added into the solution.
Next, the pH of suspension was adjusted to 11 by adding aqueous
ammonia dropwise. After aging for 12 h at room temperature, the
precursor slurry was washed with ethanol and deionized water
until the presence of chloride ions cannot be detected with silver
nitrate standard solution. Then the filter cake was calcined in a
muffle furnace for 3 h at 600°C. Finally, the ZnFe2O4/sepiolite
composite (ZF-Sep) was obtained, and the schematic diagram
was shown in Figure 1. On the other hand, pure ZnFe2O4 were
also prepared by the same process. Samples were prepared with
initial mass ratios of ZnFe2O4 to sepiolite nanofibers having
values of 1:3, 1:2, 1:1, 2:1, 3:1, and labeled as ZF-Sep-13, ZF-
Sep-12, ZF-Sep-11, ZF-Sep-21, ZF-Sep-31, respectively.

Characterization
Element analysis was carried out by ZSX Primusll X-ray
fluorescence spectrometer (XRF). X-ray diffraction (XRD)
patterns were employed to analyze the phase composition of
samples by an X’Pert MPD dilatometer with CuKα radiation
(40 Kv, 40 mA and λ � 1.54180 Å). The scanning was made in the
2θ range of 5–90° with a scanning speed of 12/min at room
temperature. Scanning electron microscopy (SEM, JSM 7610F)
and transmission electron microscopy (TEM, JEM-2010FEF,
JEOL) were employed to observe the morphologies of the
samples. Infrared radiation spectra of the as-prepared
composites were obtained by a Fourier transform-infrared
(FTIR) test spectrometer (Bruker VERTEX 80V) in the range
of 4,000–400 cm−1 using KBr pellets. The X-ray photoelectron
spectroscopy (XPS) measurements were performed on ESCALAB
250Xi (United States, Thermo Fisher Scientific) using a
monochrome Al Kα (150W, 20 eV pass energy, and 500 μm

beam spot size). The magnetic property of the samples was
measured by a vibrating sample magnetometer (VSM,
Lakeshore VSM 7407) at room temperature. The surface area
of the samples was tested by the physicochemical adsorption
analyzer (United States, autosorb iQ). Diffuse reflectance
ultraviolet-visible spectra (UV-vis DRS) were measured on a
Shimadzu UV-1800 spectrophotometer.

Photocatalytic Performance
The photocatalytic performance of the as-prepared samples was
evaluated by the removal efficiency of TCH under visible light
irradiation. 0.1 g of catalyst was dispersed into 100 ml of TCH
solution (20 mg/L). Before the suspension was subjected to
irradiation by a 300W Xe lamp (λ > 420 nm), stirring the
produced suspension in the dark for half an hour to reach the
adsorption/desorption equilibrium. Then, 3 ml of the suspension
were extracted every 30 min and passed through a 0.22 micron
filter membrane to remove the catalysts. The absorbance values at
357 nm of the filtrate were measured by a TU-1800 ultraviolet
visible spectrophotometer. The removal efficiency can be
calculated according to the following equation:

RE% � (C0 − Ct)
C0

× 100% (1)

Where RE% represents the removal efficiency of catalyst, C0

represents the TCH concentration at the beginning, and Ct

represents the TCH concentration at a certain time t.
To detect the active species generated in the degradation

process, the scavengers including butyl alcohol (TBA; 5 mmol/
L), p-benzoquinone (BQ; 5 mmol/L), and ammonium oxalate (AO;
5 mmol/L) were added into the solution of TCH, respectively. The
photocatalytic process was the same as that described above.

RESULTS AND DISCUSSION

Characterization of ZnFe2O4 and ZnFe2O4/
Sepiolite Composites
The phase composition of samples was examined by XRD
analysis. As shown in Figure 2, seven diffraction peaks (2θ) at

FIGURE 1 | Schematic for the fabrication of ZF-Sep composite.
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18.25°, 29.66°, 35.30°, 42.83°, 52.94°, 56.71° and 62.35° in curve of
ZnFe2O4 correspond to the planes (111), (220), (311), (400),
(422) (511) and (440) of ZnFe2O4, respectively. It confirms that
single phase ZnFe2O4 (JCPDS No. 22-1012) with cubic spinel
structure were synthesized successfully (Ma et al., 2019;
Madhukara Naik et al., 2019). The characteristic peaks of
sepiolite gradually decreased with the increase of the ZnFe2O4

content in the ZF-Sep composites, whereas the peaks intensity of
ZnFe2O4 strengthened gradually, indicating that the co-existence
of ZnFe2O4 and sepiolite in these composites. The decrease and
broadening of diffraction peaks of ZnFe2O4 was derived from its
dispersing in the surface of sepiolite. The decrease of sepiolite
peak intensity was attributed to its imperfect crystalloid by

disconnecting the fiber unit and the phase change of sepiolite
to talc at the sintering temperature of 600°C (Xu et al., 2010).

The micromorphology of the ZnFe2O4 and ZF-Sep-11
composite were characterized by SEM and TEM. In Figures
3A,C, the images show that ZnFe2O4 sample was consisted of
irregular nanoparticles with a size of about 20–200 nm. The
existence of relatively large particles was attributed to the high
specific surface energy of the nanoparticles causing serious
agglomeration. As seen in Figures 3B,D, lots of small and
irregular particles (about 20 nm) attached to the surface of
sepiolite fibers, and the high resolution image (Figure 3E)
displayed that the interface of ZnFe2O4 possessing obvious
lattice fringes [d (311) � 0.25 nm] closely connected with the

FIGURE 2 | XRD patterns of ZnFe2O4 and ZF-Sep composites with
different ZnFe2O4 loadings.

FIGURE 3 | SEM images of (A) ZnFe2O4 (B) ZF-Sep-11; TEM images of (C) ZnFe2O4 (D) ZF-Sep-11; HRTEM images of (E) ZF-Sep-11.

FIGURE 4 | FT-IR spectra of ZnFe2O4, Sepiolite and ZF-Sep-11.
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interface of sepiolite which shows no obvious lattice fringes due to
the low crystallinity. Consistent with the XRD results, SEM and
TEM analysis also confirmed the successful synthesis of the
composite, and the introduction of sepiolite fibers largely
alleviated the agglomeration of ZnFe2O4. Figure 4 shows the
FTIR spectra of the sepiolite, ZnFe2O4 and ZF-Sep-11 composite.
In the spectra of sepiolite, the bonds at 3,684–3,567 cm−1 and
664 cm−1 corresponded to the stretching and bending vibrations
of Mg-OH in the Mg-O octahedral sheet. The bonds at 1,020 and
462 cm−1 were attributed to the stretching vibrations of Si-O
bond in the Si-O-Si groups of the Si-O tetrahedral sheet (Zhang
et al., 2014; Zhu et al., 2012.). There were two obvious peaks at 535
and 450 cm−1 in the spectra of ZnFe2O4, which could be ascribed
to the stretching vibrations of the Zn-O bond and Fe-O bond in
the spinel structure (Li J. et al., 2019; Mohan et al., 2020; Wang P.
et al., 2019.). As shown in the spectra of ZF-Sep-11, the stretching
vibrations of Si-O bond at 1,020 cm−1 shifted to 1,026 cm−1 and
the stretching vibrations of Zn-O and Fe-O bands at 535 and
450 cm−1 shifted to 566 and 444 cm−1, which was possible
ascribed to the interaction between ZnFe2O4 and sepiolite
nanofibers (Wang W. et al., 2019; Xu et al., 2017.).

The XPS method was employed to the ZnFe2O4 and ZF-Sep-
11 composite sample to investigate its elemental composition and
chemical states. As illustrated in Figure 5A, the survey spectrum
of ZnFe2O4 shows the signal peaks of Fe 2p, Zn 2p, O 1s,
indicating that Zn, Fe and O elements in the samples.
Compared with ZnFe2O4, the appearance of Mg 1s and Si 2p
indicated the introduction of sepiolite (Figure 5D). It is worth
noting that the signal peaks of C 1s in the XPS survey spectrum
aremainly caused by the external C impurities of XPS instrument.
In Figure 5B, the O 1s spectrum of ZnFe2O4 could be divided into
two peaks at approximately 529.7 and 531.2 eV, corresponding to

the lattice oxygen and the oxygen absorbed on the surface,
respectively (Wang S. et al., 2020). As shown in Figure 5E,
the peak at 530.3 eV represented the lattice oxygen of
ZnFe2O4, and that at 531.8 and 532.4 were attributed to the O
atom of the -OH and Si-O-Si bond from sepiolite nanofibers. In
the Fe 2p spectrum of ZnFe2O4 (Figure 5C), the peaks at 724.2
and 710.6 eV represented the Fe3+, and 709.4 eV were attributable
to the Fe2+ (Li Y. et al., 2019;Wang S. et al., 2020). Compared with
ZnFe2O4, the peak positions of Fe3+ (725.8 and 712.2 eV) and
Fe2+ (724.2 and 710.6 eV) had a certain shift, and the ratio of Fe3+

to Fe2+ was reduced (Figure 5F), which could be ascribed to the
electron transfer and ion exchange between ZnFe2O4 and
sepiolite nanofibers. Therefore, the sepiolite nanofibers in the
composite might act as a good medium for the migration of
photogenerated carriers in the reaction process, thereby reducing
the recombination rate of photogenerated electrons and holes to
increase the photocatalytic efficiency (Liu et al., 2015).

The nitrogen adsorption-desorption isotherms of sepiolite,
ZnFe2O4 and ZF-Sep-11 composite were shown in Figure 6A,
and the isotherms were in the shape of type IV, which indicated
a typical of mesoporous materials. The result was further
confirmed by the corresponding pore size distribution in
Figure 6B. The specific surface area, total pore volume and
average pore size of ZnFe2O4 and ZF-Sep composites with
different loadings of ZnFe2O4 were summarized in Table 1.
With the increase of the ZnFe2O4 loadings, the specific surface
area of the composites showed a trend of first increasing and
then decreasing, but all the composites were larger than pure
ZnFe2O4. The optimal sample was ZF-Sep-11 composite, and
its specific surface area was 138.3 m2g−1. The nitrogen
adsorption-desorption isotherms also demonstrated that the
introduction of sepiolite nanofibers improved the

FIGURE 5 | XPS spectra of ZnFe2O4 (A) survey (B) O 1s spectrum (C) Fe 2p spectrum; and ZF-Sep-11 (D) survey (E) O 1s spectrum (F) Fe 2p spectrum.
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agglomeration of ZnFe2O4, which increased the contact area
with the target degradation product, thereby improved the
photocatalytic performance.

The optical properties of the as-prepared samples were
analyzed by UV-vis reflectance spectroscopy to evaluate the
light absorption ability. As shown in Figure 7A, ZnFe2O4 and
ZF-Sep composites presented significant absorbance in the
450–700 nm wavelength range. The band gap of ZF-Sep-11
composite could be estimated to be 1.52 eV, which was a little
smaller than that of ZnFe2O4 (1.86 eV) (Figure 7B). In
comparison with ZnFe2O4, ZF-Sep-11 composite showed the

narrower band gap and higher light absorption, which could
exhibit positive influence on the removal efficiency of target
antibiotic in the visible light range.

The magnetic properties of the ZnFe2O4 and ZF-Sep-11
composite were measured by a vibrating sample magnetometer
(VSM) with an applied magnetic field between −20,000 and
20,000 Oe at room temperature. Figure 8 shows the plot of
magnetization versus applied field with a small hysteresis loop
which indicates that the samples display typical ferromagnetic
(soft magnetic). The saturation magnetization (Ms) of ZnFe2O4

and ZF-Sep-11 composite were 51.693 and 34.780 emu/g,

FIGURE 6 | (A) The N2 adsorption-desorption isotherms, and (B) pore size distribution of sepiolite, ZnFe2O4 and ZF-Sep-11.

TABLE 1 | Textural parameters of ZnFe2O4, and the ZF-Sep composites with different contents of ZnFe2O4.

Sample Specific
surface area (m2g−1)

Total
pore volume (cm3g−1)

Average
pore diameter (nm)

ZnFe2O4 23.5 0.12 51.1
ZF-Sep-13 95.9 0.37 3.7
ZF-Sep-12 117.5 0.37 3.7
ZF-Sep-11 138.3 0.43 5.4
ZF-Sep-21 75.6 0.36 10.5
ZF-Sep-31 70.0 0.34 13.9

FIGURE 7 | (A) UV-vis spectra of ZnFe2O4 and ZF-Sep composites (B) Plots of (αhν) 2 vs hν of ZnFe2O4 and ZF-Sep-11.
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respectively. The decreasing of Ms mainly derives from the
addition of non-magnetic material sepiolite. Due to the typical
ferromagnetic, the catalyst could be efficiently removed from the
aqueous solution of reaction mixture by an external magnet.

Photocatalytic Performance
The photocatalytic performance of the as-synthesized samples
was evaluated by degrading TCH under visible light (λ ≥
420 nm). The measured removal efficiency of the samples
under different preparation conditions were depicted in
Figure 9. As can be seen in Figure 9A, the removal
efficiency of TCH solution was almost negligible when there
was no catalyst and single sepiolite. For ZnFe2O4 and the
composites, the decrease in the concentration of the TCH
solution in the first 30 min in the absence of light may be due to
the influence of the Fenton system formed by the addition of

H2O2. The removal efficiency of tetracycline hydrochloride
was 56.7% for ZnFe2O4 within 3 h. All of the composites
exhibited superior removal efficiency for TCH compared
with the single ZnFe2O4. Among these composites, ZF-Sep-
11 showed the optical performance, and the removal efficiency
of TCH reached 93.6% within 3 h. Figure 9B shows the
reaction kinetics of the as-synthesized samples, in which the
experimental data were in accordance with the pseudo first-
order kinetic equation:

ln(C0/C) � kt (3)

Where C0 is initial concentration of TCH solution, C is the
concentration of tetracycline hydrochloride at reaction time t,
and t is the reaction time and k is the fitted kinetic rate constant.
The values of kinetic rate constant of sepiolite, ZnFe2O4, ZF-Sep-
31, ZF-Sep-21, ZF-Sep-11, ZF-Sep-12 and ZF-Sep-13 were
0.000248, 0.00293, 0.01057, 0.00686, 0.01504, 0.01188 and
0.00771 min−1, respectively. ZF-Sep-11 showed the highest
kinetic rate constant, which is about five times higher than
that of signal ZnFe2O4.

Influence of Reaction Factors on Removal
Efficiency of TCH
Different amounts of ZF-Sep-11 composite were used in the
catalytic experiment to explore the effect of the catalyst content
on the removal efficiency of TCH. The dosage of catalyst is set to
0.5, 1.0 and 1.5 g/L (the ratio of catalyst to TCH solution). In
Figure 10A, when the dosage of catalyst was 0.5 and 1.5 g/L, the
removal efficiency was 66.8 and 86.2% at 3 h, respectively, which
were lower than the removal efficiency of 1.0 g/L (92.3%). The
result means that too little catalyst dosage will cause the reduction
of removal efficiency, because a small amount of active free
radicals were generated. However, when an excessive amount
of the catalyst was dispersed in the TCH solution, a small amount
of light can reach their surface due to the influence of turbidity
and scattering effect. The less exposed area under light may result
in a decrease in overall catalytic efficiency.

FIGURE 8 | Magnetization curves of ZnFe2O4 and ZF-Sep-11, inset
show zoomed in version and the situation with an external magnetic field.

FIGURE 9 | (A) Removal of TCH under different systems, and (B) ln (C0/C) versus reaction time for TCH under different conditions. Reaction conditions (TCH) �
20 mg/L (catalysts) � 1.0 g/L (H2O2) � 1 mM.
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Figure 10B showed the removal efficiency at different initial
concentrations of TCH solution. The removal efficiency was 94.7,
92.2, 87.9, 82.4 and 75.9% in 3 h for 10, 20, 30, 50 and 80 mg/L of
TCH solution, respectively. As the concentration increases, the
removal efficiency of TCH gradually decreases. It could be
attributed to the fact that the active sites on the surface of the
catalyst are blocked in a high-concentration tetracycline solution.

In order to improve the ability to remove TCH, the amount of
H2O2 added has been optimized. In Figure 10C, compared with
the addition of 1 mM, when the addition of H2O2 was 0.5 and
1.5 mM, the removal efficiency were slightly reduced. Low H2O2

addition produces little free radicals. However, the excess H2O2

molecules will act as a quencher of OH to generate perhydroxyl
(·OOH) radicals and compete with OOH to generate H2O and O2

(Su et al., 2012).

·OH +H2O2 →H2O + ·OOH (4)

·OH + ·OOH→H2O + O2 (5)

Reactive Species of TCH Removal
In order to determine the main active species in the removal
of TCH for ZF-Sep composite, free radical trapping
experiments were implemented. BQ, IPA and AO were
added as scavengers for O2

−, ·OH and h+, respectively. As
depicted in Figure 11, the removal efficiency of TCH was
93.2% without any scavengers. After adding AO, there was no
obviously decline in the removal efficiency of TCH (81.4%).
However, the addition of TBA and BQ decreased the removal
efficiency of TCH to 34.8 and 61.9%, respectively. The above
results indicate that O2

− and OH were the main active species
in the removal process.

Possible Degradation Pathway
The liquid chromatography-mass spectroscopy (LC-MS) was
used to analyze the possible intermediates that produced
during the TCH degradation process to reveal the possible
TCH degradation pathway. The LC-MS spectra displayed the

FIGURE 10 | Effect of (A) catalyst dosage (B) initial concentration, and (C) amount of H2O2 on the removal of TCH for ZF-Sep-11. Reaction conditions (TCH) �
20 mg/L (catalysts) � 1.0 g/L (H2O2) � 1 mM.

FIGURE 11 | Active species trapping experiment of ZF-Sep-11.
Reaction conditions (TCH) � 20 mg/L [catalysts] � 1.0 g/L (H2O2) � 1 mM
(TBA) � 5 mmM (BQ) � 5 mmM (AO) � 5 mmM.

FIGURE 12 | Intermediates and reaction pathways of TCH
photodegradation under visible light illumination over ZF-Sep-11.
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formation of intermediate products with m/z values of 445,
419, 365, 353, 279, 218, 173, and 140 under visible light
irradiation. According to the above results, the possible TCH
degradation paths were proposed as shown in Figure 12.
Firstly, TCH dissociates into tetracycline (TC) corresponding
to m/z 445 in the aqueous solution (Lu et al., 2021). Due to the
produced active species easily attack the amine group,
hydroxyl group and methyl group in TC, the mass spectra
corresponding to m/z 419 and m/z 353 were identified as the
products formed from detachment of these groups of TC
molecule. Secondly, the ring-opening products (m/z 365, m/z
281 and m/z 218) were assigned as the further oxidation
products. Carboxyl group was detached from the ring-
opening product (m/z 270) and then the intermediate
product (m/z 140) was formed from the demethylation
reaction (Pang et al., 2018; Li Z. et al., 2019.). Finally,
these intermediate products were mineralized into CO2

and H2O via ring-opening reactions (Wu et al., 2021.).

Possible Mechanism
On the basis of the above analysis, a possible mechanism was
shown in Figure 13. The loading of ZnFe2O4 on sepiolite
nanofibers significantly improves its agglomeration
phenomenon, which made more active sites in the surface of
ZnFe2O4 were exposed, thereby improving its catalytic activity.
Under visible light, the catalyst was activated to generate
electron-hole pairs (Eq. 6). The sepiolite nanofibers might
act as a good medium for the migration of photogenerated
carriers to reduce the recombination rate of photogenerated
electrons and holes. The holes were captured by OH− or H2O to
generate OH, and O2

− radicals were generated by trapping
electrons for O2 (Eqs. 7–9). In the presence of H2O2, it was
more likely to trapping electrons to generate OH than O2 (Eq.
10). Meanwhile, Fe3+ active sites were reduced by electrons to
produce Fe2+ active sites which will activate H2O2 to produce
regenerated Fe and new OH (Eqs. 11–12). Moreover, the
generated Fe3+ reacted with OH− to formed Fe2+ and OH
(Eq. 13). Finally, TCH was degraded by the generated OH,

·O2
− and a small amount of h+ (Eq. 14) (Li J. et al., 2019).

Therefore, the synergistic effect of photochemical and catalytic
reaction exists in the system of Vis-light/ZnFe2O4/sepiolite/
H2O2.

catalyst + hν → catalyst(e− + h+) (6)

h+ +H2O→ ·OH +H+ (7)

h+ +OH− → ·OH (8)

e− +O2 → · O−
2 (9)

e− +H2O2 → ·OH +OH− (10)

e− + Fe3+ → Fe2+ (11)

Fe2+ +H2O2 → Fe3+ + ·OH + OH− (12)

Fe3+ +H2O2 → Fe2+ + ·OOH +H+ (13)

h+, ·OH, · O−
2 + TCH→CO2 +H2O (14)

FIGURE 13 | Schematic diagram of possible mechanism.

FIGURE 14 | The reusability test results of ZF-Sep-11.
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Stability of Catalyst
In order to explore the reusability and stability of the catalyst, four
cycles of experiments were carried out. The degradation plots are
shown in Figure 14, removal efficiency for the first cycle is 84.5%,
second cycle is 81.2%, third cycle is 80.5%, and for the fourth cycle
is 79.5%. It observed that there is no significant reduction in the
removal efficiency. The above results show that the prepared
catalyst has good recyclability and stability.

CONCLUSION

In summary, we have successfully prepared the ZF/Sep
composites via a co-precipitation method. The introduction of
sepiolite nanofibers significantly improved the agglomeration of
ZnFe2O4 and reduced the recombination rate of photogenerated
electrons and holes, so all the ZF-Sep composites presented better
removal efficiency for TCH than pure ZnFe2O4. The most
suitable removal efficiency of TCH (20 mg/L) appeared at
1.0 g/L ZF-Sep-11 catalyst dosage, and 1 mM H2O2 for 3 h.
Besides, 79.5% of TCH removal efficiency could be still
retained after four cycles, and the catalyst had soft magnetic
properties and could be easily recovered when a magnetic field
was applied. Thus, ZF/Sep composite display a promising

photocatalysis performance in treating wastewater contained
antibiotics.
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