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Consumption of fossil fuels, especially in transport and energy-dependent sectors, has led
to large greenhouse gas production. Hydrogen is an exciting energy source that can serve
our energy purposes and decrease toxic waste production. Decomposition of methane
yields hydrogen devoid of COx components, thereby aiding as an eco-friendly approach
towards large-scale hydrogen production. This review article is focused on hydrogen
production through thermocatalytic methane decomposition (TMD) for hydrogen
production. The thermodynamics of this approach has been highlighted. Various
methods of hydrogen production from fossil fuels and renewable resources were
discussed. Methods including steam methane reforming, partial oxidation of methane,
auto thermal reforming, direct biomass gasification, thermal water splitting, methane
pyrolysis, aqueous reforming, and coal gasification have been reported in this article. A
detailed overview of the different types of catalysts available, the reasons behind their
deactivation, and their possible regeneration methods were discussed. Finally, we
presented the challenges and future perspectives for hydrogen production via TMD.
This review concluded that among all catalysts, nickel, ruthenium and platinum-based
catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen
products during the TMD process. However, their rapid deactivation at high temperatures
still needs the attention of the scientific community.
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INTRODUCTION

Hydrogen (H2) is one of the fundamental energy storage elements
that are found in most chemical compounds including water and
hydrocarbons. The future of world energy is dependent on
hydrogen and therefore, the term “hydrogen economy” was
coined that points out that highly pure hydrogen will have to
be produced to sustain the hydrogen economy (Bockris, 2013;
Eljack and Kazi, 2021). The worldwide production of hydrogen is
∼70 million tons per year and is majorly produced from coal and
gas. According to Energy Information Administration, about 7% of
natural gas is responsible for hydrogen production (Hydrogen
Council, 2017). However, a very minute amount (∼6%) of the
hydrogen produced satiates the demand of pure hydrogen
(Bockris, 2013; Eljack and Kazi, 2021). Hydrogen being a
cleaner source of energy will replace the traditional fuel sources
and help conserve the environment better. For hydrogen
production, fossil fuels are the primary source owing to their
inexpensive availability, easy access, and simple apparatus
requirements (El-Shafie et al., 2019). However, their ability to
cause environmental pollution is a major concern. Various
methods have been explored for the production of hydrogen
however, the steam reforming and coal gasification (Srilatha
et al., 2017) methods have exhibited the dominance because of
their exciting results. Depending upon the feedstock used, different
pathways are adopted to produce concentrated hydrogen (Ghavam
et al., 2021). Hydrogen is also derived from renewable sources like
the naturally available wind and sun (Carroquino et al., 2019).

Hydrogen is also produced using elements like uranium among
others (Chen et al., 2019a). Thus the different methods used in
hydrogen production give varying amounts of hydrogen and in
turn varying amounts of byproducts. For instance, hydrogen
produced via fossil fuels accounts for 830 million tons of
annual carbon dioxide that is about ∼2% of carbon dioxide
emission worldwide (Baharuddin et al., 2021; Singla et al.,
2021). As per the International Energy Agency, over 0.36
million tons of hydrogen produced was of low carbon in 2019
(Karaca and Dincer, 2020). This means that clean hydrogen
production is about 0.52% of hydrogen produced worldwide
and at this rate, 7.92 million tons of low carbon hydrogen will
be produced yearly by 2030 (Karaca and Dincer, 2020). In order to
decarbonize transport sector, Japan has formulated a hydrogen
plan in 2014. This is to reduce the dependence on fossil fuels and
decrease the resultant greenhouse emissions (Bockris, 2013; Eljack
and Kazi, 2021) as shown in Figure 1.

Even pathways like hydrogen production via splitting of water
using electricity have gained a widespread attraction among the
scientific community (Figure 2) (Wang et al., 2021a). Renewable
resources or non-renewable resources are used as feedstock
during the electricity driven water splitting (Rozzi et al., 2020).
During this reaction, there are two major half-cell reactions
taking place: one in which reduction of water occurs at the
cathode end to give hydrogen and at the other end oxygen
evolution reaction occurs that gives oxygen as the product
(Wang et al., 2021a). This reaction occurs in the presence of
catalysts like metal based or non-metal based electrocatalysts

FIGURE 1 |Concept of CO2 free hydrogen chains for Japan. Reproduced with permission from references Bockris (2013), Eljack and Kazi (2021), copyright@2021
(Frontiers).
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(Wang et al., 2021a). However, when carbon-based catalysts are
used during the reaction, carbon-based byproducts are
sometimes formed during this process. The thermocatalytic
methane decomposition (TMD) is a promising alternative to
the existing methods for carbon dioxide free hydrogen
production (Harun et al., 2020). Since the process does not
include carbon-based products, steps involved in the
elimination of carbon oxides are not required. Furthermore,
because of the formation of carbon-free products, there is a
significant lowering of greenhouse gas production in contrast
to the traditional methods (Ashok et al., 2008a). It has also been
reported that hydrogen production through this method reduces
COx emission by about 27% and can also reduce the global
climatic effects (Weger et al., 2017; Wang et al., 2021a). The
decomposition of methane requires a large amount of energy,
almost equivalent to its formation. Being functional at very high
temperatures, exceeding 1,300°C, and therefore, the usage of
catalysts becomes a necessity to reduce the temperature at
which decomposition of methane can easily occur. The present
studies have been focused on the development of catalysts that
can provide maximum conversion of methane to hydrogen,
enhanced activity and stability, and also exhibit low catalytic
deactivation (Bockris, 2013; Eljack and Kazi, 2021).

Some of themost commonly usedmetal catalysts includeNi, Fe,
Cu, Co, Pt, Pd, among others. These catalysts are often used
alongside a support structure like silica, Mg, Zr, Ti and carbon
structures to increase the overall surface area of the catalyst. This is
important to provide a larger area to function as catalytic active
sites during the reaction (Bockris, 2013; Eljack and Kazi, 2021).
Among these catalysts, Ni has gained widespread attention for
TMD for hydrogen production, because this element can produce
more yield of hydrogen per unit mass of the substrate (Bockris,
2013; Eljack and Kazi, 2021). Moreover, Ni catalysts help form
filamentous carbon structures as byproducts that have applications
in the nanotechnology field and material sciences (Srilatha et al.,

2017). Yet, metal catalysts are highly susceptible to sulfur poisoning
and carbidization and therefore are easily deactivated. Dufour and
colleagues have performed several studies on TMD and its
applications in hydrogen production (Dufour et al., 2009;
Dufour et al., 2012). Through their studies, the authors showed
that TMD is a better approach towards hydrogen production
because of its eco-friendly nature and could occasionally allow
for an autocatalytic activity for a limited time (Serrano et al., 2013;
Wang et al., 2021a). TMD has been suggested as a solution for the
increasing demand for hydrogen in industries and its use in
electricity production (Parkinson et al., 2018). Its economic
reliability is dependent on the carbon by-product’s value in the
market (Keipi et al., 2016). Several kinds of TMD reactors have
been explored for the TMD process like the plasma-assisted
reactor, molten metal reactor. Besides, many heating points
have to be considered to carry out the complete TMD process
(Heidenreich et al., 2016; Keipi et al., 2016).

Herein, we provided a detailed overview of hydrogen
production via the TMD process. We have discussed
thermodynamics and the different methods of hydrogen
production. These include, but are not limited to steam
methane reforming, partial oxidation of methane, and
autothermal reforming. We further discussed the production
of hydrogen from renewable sources. These included direct
biomass gasification, thermochemical water splitting, methane
pyrolysis, aqueous phase reforming, and coal gasification. We
have also discussed catalytic deactivation and catalyst
regeneration in this review. We finally concluded this article
by discussing the future perspectives of the TMD process.

THERMODYNAMICS

During the TMD reaction, methane molecules are decomposed to
give hydrogen (gas) and carbon (solid). That is,

FIGURE 2 | (A) An illustration of the evolution of fuels in terms of hydrogen to carbon ratio. (B) Illustrations of a dual cell functioning as an electrolysis water-splitting
cell for hydrogen production from solar energy and a fuel cell for the conversion of hydrogen to electricity, highlighting the sustainable power package of the future and the
role of catalysis. Adapted from reference Wang et al. (2021a) Copyright @ 2021 (Springer).
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CH4 → 2H2 + C ΔHo � 74.52 kJ/mole

This reaction is that of TMD via methane pyrolysis and can
take place without the requirements of any catalysts (Timmerberg
et al., 2020). However, the energy required by the reaction in
terms of heat, will be very high (more than 1500 K) (Xiao and
Varma, 2018). This data implies that the existence of other
catalysts that can influence TMD. Therefore, for TMD
reactions at lower temperatures, the requirement of catalysts
becomes an utmost need (Gmehling et al., 2019). Researchers
have reported that gaseous carbon produced is adsorbed on the
catalyst and is diffused into it. This occurs due to diffusion driving
force (Baker et al., 1972), which is dependent on concentration or
temperature changes. The equilibrium constant of the reaction,
Keq, is dependent on the kind of catalyst used can be written as
(Ibrahim et al., 2015),

Keq � (PH2
2)eqC

s

(PCH4)eq
Here, Cs is the solubility of carbon in its active phase, while P

represents the partial pressures of H2 and CH4. Also, Keq signifies
the equilibrium of the gaseous phase of a carbon mixture having a
metal component. The dissolution of filamentous carbon depends
on the Keq of carbon, which influences the gaseous phase of the
threshold while coking (Ibrahim et al., 2015). That is,

Keq � PH2
2

PCH4

The Gibbs energy of TMD also changes with temperature
(Villacampa et al., 2003) accordingly:

ΔGo(J/mole) � 89658.88 − 102.27 T − 0.00428 T2

− 2499358.99 T−1

Here, T is the temperature in Kelvin. The above expressions
give an estimated value and not precise values because of the
involvement of graphite formation. Moreover, the temperature
required for the reaction has to be more than 819 K. In a study by
Rostrup-Nielsen and colleagues, it was shown that Gibbs energy
of TMD (ΔGcd) is derived by removing the expression of TMD
where graphite formation occurs from the original Gibbs free
energy (ΔGa) of methane coking (Rostrup-Nielsen, 1972). That is,

ΔGcd � ΔGa − ΔGo

Zhang and Smith suggested the threshold constant (Kmf) for
carbon during TMD (Zhang and Smith, 2004; Inaba et al., 2019).
This constant defines Kc, the value at which the rate of
deactivation of catalyst nears zero because of carbon synthesis.
Hence, stable activity and carbon synthesis in TMD using nickel
and cobalt as catalysts is affirmed by considering Km so that,

Kmf < Kc < Km

Ni and Fe catalysts have been rampantly used during the
process. Ni based catalysts have shown to have highest activity of
600°C. Morphologies of spent Ni/wood char catalyst at different
magnification scales However, methane conversion is found to be

thermodynamically limited at this high temperature and
therefore large amount of hydrogen cannot be produced in
concentrated amounts (Abbas and Wan Daud, 2010). Also, Fe
based, though highly stable at higher temperatures, get
deactivated easily, and hence have shorter lifetime. So,
Chesnokov and colleagues modified the catalysts that included
75%Ni–12%Cu/Al2O3 with Fe. This showed high functionality at
700–750°C (Chesnokov and Chichkan, 2009) and produced
hydrogen products at a high concentration of up to 70 mol%.
Similarly Ni-Cu/Al2O3 catalysts have shown to have considerable
advantages over Ni/Al2O3 catalysts (Abbas and Wan Daud,
2010). At 600–675°C, these catalysts have also shown to
possess high metal loading capacity and shows high methane
conversions. Likewise, in another study by Wang and coworkers,
it was observed that Ni–Cu–MgO catalyst also showed high
activity and remained active for longer periods of time at
temperature ranged between 665 and 725°C. The authors also
noted that this catalysts could produce large amounts of
concentrated hydrogen that is devoid of carbon products
(Wang and Baker, 2004).

METHODS OF HYDROGEN PRODUCTION

Currently, hydrogen production surpasses one billion m3/day. Of
this, 48% of this amount is derived via natural gas, oil contributes
to 18%, and over 4% comes from water-splitting electrolysis
(Nikolaidis and Poullikkas, 2017; Hallenbeck et al., 2019). As
discussed previously, hydrogen is produced via several
methodologies like TMD, catalytic oxidation, and steam
gasification (El-Shafie et al., 2019; Harun et al., 2020)
(Figure 3). TMD use many catalysts that may range from
metal-based catalysts, noble-metal based catalysts, non-
supported catalysts, among others. During the process, a fixed
bed reactor is often used (Harun et al., 2020) that contains
operating systems for monitoring temperature within the
system and the flow rates of the feedstock used.

Hydrogen Production From Fossil Fuels
Because of the dominance of fossil fuels, hydrogen is derived mostly
from them (Kayfeci et al., 2019). The main processes involved in
hydrogen production include catalytic steam reforming of light
hydrocarbons, partial oxidation of heavy hydrocarbons, coal
gasification, and methane decarburization. The most common
method used worldwide is the steam reforming of natural gas
(Kim et al., 2018). As shown in the Figure 4, the set up required
during steam reforming reaction is quite simple and contains a
furnace, a temperature modulator, membrane module, flow and gas
meters (Kim et al., 2018). This method is far more environment-
friendly and highly efficient (∼70–80%) (Grigoriev et al., 2006; Shiva
Kumar and Himabindu, 2019) than other methods that produce
hydrogen through fossil fuels (Abe et al., 2019).

Steam Methane Reforming
Steam methane reforming (SMR) is usually used for industrial
purposes to produce hydrogen from methane sources, like from
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fossil fuels (coal, natural gas, etc.). The process is carried out at a
very high temperature of 700–1,000°C, and pressure ranged
between 3 and 25 bar (Chen et al., 2019b; Chen et al., 2020a)
(Figure 5). When this reaction is carried out along with the
water-gas shift (WGS) reaction, a further reaction occurs between
CO and steam to create additional H2 and CO2 (Ertl et al., 2008).

During the methane steam reforming reaction, hydrogen is
formed, further utilized to produce ammonia, methanol, and

other hydrocarbons. Two reactions occur during the SMR
process.

CH4 + H2O# CO + 3H2 ΔH0
298 � 205.8 kJmol−1

CO + H2O# CO2 + H2 ΔH0
298� −41 kJmol−1

The mechanism of the reaction determines the activity of the
catalyst during the reaction. When the deposition of carbon

FIGURE 3 | Schematic of experimental set-up for methane decomposition. (A)Nitrogen gas cylinder, (B) hydrogen gas cylinder, (C)methane gas cylinder, (D) fixed
bed reactor, (E) electric heater, (F) heat exchanger, (G) chiller, (H)micro-GC. Adapted from reference Harun et al. (2020) Copyright @ 2020 (Royal Society of Chemistry).

FIGURE 4 | Schematic of themembrane reactor and test setup for steammethane reforming. Adapted from reference Kim et al. (2018) Copyright @ 2018 (Elsevier).
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occurs during the dehydrogenation step, it is a competitive
reaction and is the rate-determining step. Many studies
indicate that, during the reaction, CO adsorbs on the active
sites of the catalysts, forming CO2 (Kramer et al., 2018; Niu
et al., 2020). Moreover, there is a considerable increase in the
temperature of the reaction during the deposition of carbon and
also a formation of a surplus amount of steam during the reaction
process.

Partial Oxidation of Methane
POM is an exothermic reaction that usually gives rise to syngas
and other oxygenated compounds like formaldehyde, ethylene,
and many hydrocarbons (Chao et al., 2008). Of all the catalysts,

Ni is the most popularly used in this reaction because it is cheaply
available (Daneshmand-Jahromi et al., 2017; Ha et al., 2020). The
morphologies of the spent nickel/wood char catalyst is shown in
Figure 6.

POM reaction is a far more efficient hydrogen production
technique because of the lack of big reactors and mega
superheated steam. This is because of the exothermic nature of
the reaction (Ghoneim et al., 2016). Moreover, the hydrogen to
CO ratio in this reaction allows for methanol usage and Fischer
Tropsch synthesis without any further changes. The
stoichiometry of the reaction is as follows:

CH4 + 1/2O2$CO + 2H2

FIGURE 5 |Contour plots of temperature, methane concentration, conversion, and fluid velocity for the reactor. The velocity of the combustible fluid inlet flow is
3.0 m/s. The velocity of the process fluid inlet flow is 2.0 m/s. The steam-to-carbon ratio is 3.0, and the equivalence ratio of the combustible mixture at the inlets is
0.8. The thermal conductivity of the material of the dividing wall is 200 W/(m·K). Adapted from reference Chen et al. (2019b) Copyright @ 2019 (American Chemical
Society).

FIGURE 6 | Morphologies of spent Ni/wood char catalyst at different magnification scales. Adapted with permission from reference Hasnan et al. (2020b),
copyright@2020 (Springer).
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However, this reaction poses a few challenges, such as the
inability to control the reaction’s selectivity during complete
combustion.

Autothermal Reforming
In the autothermal reforming method (also called the oxidative
steam reforming method), oxygen and carbon dioxide react with
methane to produce hydrogen. Owing to the oxidation steps in
this reaction, it is exothermic. In contrast to the steam methane
reforming method, this reaction involves the usage of oxygen.
Figure 7 shows this contrast between the two reactions. This
main advantage of this method is that, the hydrogen and CO ratio
can be monitored (Patil et al., 2007; Carapellucci and Giordano,
2020). This is useful because this process can produce biofuels
that need an equal proportion of hydrogen and CO.

The efficiency of ATR depends on hydrogen production. Owing
to thermodynamic restriction, low amounts of hydrogen production
may potentially hinder the reaction progression. Another limitation
of the process is the involvement of air. If air is involved in the
reaction, then additional steps are required to separate the products.
This, in turn, leads to a higher cost of production (Pinton et al.,
2017). The general reaction during autothermal reforming is:

CxHyOz + [2x − (z + 1)]H2O + 1/2 O2 → xCO2

+ 2[2x − (z + 1)]
2

+ yH2

For instance, during ATR of ethanol, combinational reaction is
carried out simultaneously (Chen et al., 2009). These include
partial oxidation follow by steam reforming. The following
reactions occur:

C2H5OH + 1/2 O2 → 2CO + 3H2

C2H5OH + 1/2 O2 + 2H2O → 2CO2 + 5H2

These reactions occur in between 500 and 800°C (Chen et al.,
2009).

Hydrogen Production From Renewable
Sources
Despite the rampant production of hydrogen from fossil fuels,
those methodologies pose serious concerns, especially
environment-related issues and higher production costs. Being a
greenhouse gas, it poses a lot of concern towards environmental
sustainability. Hence, hydrogen production’s better alternative is
from renewable resources like geothermal sources, biomass, wind
energy, etc., (Avcıoğlu et al., 2019). There are methods available
that permit the chemical conversion of renewable resources to give
rise to hydrogen. Such strategies include biomass gasification,
steam reforming, among others. The hydrogen produced is used
in metallurgical purposes, electronics development, and various
other chemical applications (Srilatha et al., 2017).

Direct Biomass Gasification
The main reactions in DBG are endothermic in nature and
involves partial oxidation processes (Kumar et al., 2017; Salam

et al., 2018). The energy for the reaction is provided by the
oxidation of biomass via autothermal reaction. There are four
main steps involved in this process: oxidation, drying, pyrolysis,
and reduction. The general stoichiometry of the main reaction
(Molino et al., 2016) that occurs during the gasification process is:

nCO + 2nH2 → CnH2n + OH + (n − 1)H2O

A flow diagram depicting the hydrogen production via biomass
gasification is shown in Figure 8 (Salam et al., 2018). The set up
requires limited air or steam that functions as gasifying agents.
Scrubbers like RME and water scrubbers are used to clean and dry
during the process. To remove any carbon based products formed
during the process, a special membrane separation unit is present.
Then a pressure swing adsorption (PSA) channel is present that
gives concentrated hydrogen products.

Thermochemical Water Splitting
The TWS process involves a direct transformation of thermal
energy to hydrogen. Hydrogen is produced in abundance and
hence serves as an energy carrier in various techniques (Safari and
Dincer, 2020). The reaction is carried out at very high
temperatures – above a thousand degrees. The reaction occurs
by simultaneously carrying two chemical reactions. First, elevated
temperature endothermic process and lowered temperature
exothermic process. This reaction’s net result is a
thermochemical water-splitting process that gives an
abundance of free energy post-reaction (Budama et al., 2021).
In the thermo catalytic reaction (Figure 9), the metal catalyst
(usually metal oxide) undergoes reduction during the first
endothermic step. This step is also called the activation step.
In this step, oxygen is given out, further reacting with water in the
hydrolytic step. The second step is an exothermic reaction to
finally give out hydrogen and oxide –which is then recycled in the
previous step (Safari and Dincer, 2020).

The splitting of hydrogen and oxygen is an uphill reaction. A
significant positive change in Gibbs free energy is observed during

FIGURE 7 |Contrast betweenautothermal reformingandsyngasproduction.
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this reaction. This means ΔG⁰ � 237 kJ/mol is produced during
the reaction. Hence, because of the high energy of the reaction, it
is also called artificial photosynthesis.

H2O (l) → H2(g)+ 1/2 O2(g)

The energy for the reaction is made available for splitting
H-O-H bonds is provided by electrical, electromagnetic, or
thermal sources. The process is carried out by transferring
electrical current into the water. Here, the chemical energy is
produced from electrical energy (Landman et al., 2017). At the
anode, water disintegrates into five oxygen and protons. While at
the cathode, hydrogen is produced.

Methane Pyrolysis
When hydrogen is produced by decomposing methane, the
reaction method is referred to as pyrolysis or MP, or methane
cracking. In this process, methane gets split into its component
elements that are H2 and solid C. The combustion of carbon does
not occur within this process. In this method, hydrogen is
produced inexpensively when compared to steam methane
reforming. Moreover, CO2 capture and storage (CCS) also
occur during this process (Timmerberg et al., 2020; Leal Pérez
et al., 2021). The reason for the cheap reaction process could be the
production of solid carbon. This solid carbon is precious and hence
compensates for the costs of the entire process. The process of
methane pyrolysis undergoes the chemical splitting of methane.
The resultant compounds include hydrogen and hydrocarbons,
along with solid carbon molecules (Timmerberg et al., 2020).

CH4(g)→C(s)+2H2(g) ΔH298K � 74.52 kJ/mol

The process is endothermic and derives energy from various
sources. Since oxygen is not involved in the reaction, no carbon
dioxide or its derivatives are produced. Hence there are no further
separation processes required during the reaction and, therefore,

are less complicated. However, sometimes the hydrogen
produced may need to undergo further processing to remove
any mixture’s impurities. When only hydrogen is expected to be
the sole product, then the reaction’s total efficiency remains 59%,
and the rest gets trapped in the solid carbon produced.

Aqueous Phase Reforming
APR also synthesizes hydrogen from biomass, including sugar,
glycerol, and oxygenated compounds. This reforming is carried
out in a liquid state of the reactants. The major plus point of this
reaction is that hydrogen is produced without the evaporation of
water. This, therefore, saves a lot of energy during the process.

APR was first developed by Davda and colleagues (Davda
et al., 2005). In the first step, water is added to the reactant

FIGURE 8 | Process flow diagram of biomass to hydrogen. Adapted from reference Salam et al. (2018) Copyright @ 2018 (Elsevier).

FIGURE 9 | Thermocatalytic water splitting reaction that produces
hydrogen molecules.
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biomass. This gets separated into aqueous and organic phases.
The aqueous phase is then transported to another hydrogenation
area where hydrogenation of the aqueous phase occurs. In the
hydrogenation step, hydrogen is synthesized via APR (Vispute
and Huber, 2009). Glucose is also used as a reactant during the
APR reaction for hydrogenation. Glucose is an ideal candidate
because of the reduction in the number of reaction steps (Fasolini
et al., 2019): glucose is synthesized during the aqueous stream.
APR of glucose can be shown as:

C6H12O6 + 6H2O→ 12H2 + 6CO2

In general, the reaction can be expressed as:

CnH2yOn → nCO + yH2

This reaction, however, is oversimplified and is not a direct
reaction. There are several intermediates formed during the reaction.
Hydrogenation of CO/CO2 results in the formation of alkanes. On
the other hand, dehydration gives ketones and aldehydes.

Coal Gasification
This technology of CG is a recent development. This process has
many advantages, for instance, high solubility, transfer of mass,
and quick heating of coal (Stiegel and Ramezan, 2006). Moreover,
low carbon deposition on the catalysts occurs, and the gasification
process is highly efficient. Coal is changed to abundant hydrogen
gas at lower temperatures in contrast to the conventional
gasification processes. Furthermore, compounds having an
abundance of nitrogen and sulfur are wholly converted in the
aqueous phase (Williams et al., 2018). This, therefore, reduces the
overall pollution of the reaction.

During coal gasification, coal undergoes a reaction with steam
and air (containing oxygen). During the reaction, organic
material reacts in the presence of a catalyst(s) to give carbon-
monoxide, hydrogen, methane, and small concentrations of other
gases containing nitrogen and sulfur. Ash (char) is also produced
as a product (Widjaya et al., 2018). During volatilization, the
general stoichiometry of the reaction is:

4CnHm →mCH4 + (4n − m)C
During the char gasification step, the following reaction

occurs:

C + H2O → CO + H2

C + CO2 → 2CO

C + 2H2 →CH4

The gas-phase reactions include:

CO + _O2 → CO2

H2 + _O2 → H2O

H2O + CO→ H2 + CO2

CO + 3H2 →CH4 + H2O

The rates at which the complexes are formed and removed;
and the number of active sites occupied on the catalyst’s surface
determine every individual step’s rate and order.

CATALYSTS

Catalysts are most commonly synthesized by the process of
impregnation owing to its simplicity at laboratory and
industrial levels. The process involves impregnation of porous
support substances in the presence of metal oxide solutions (Van
Dillen et al., 2003). Then the solvent is evaporated giving the
desired catalyst. However, there is a limited reaction between the
metal precursor and support, and also the solvent evaporates over
the support particles causing a capillary flow of the solution. Thus
the formation of egg shell catalysts occurs that do not possess
good active phase dispersion. In the ground breaking work done
by Kotter and Riekert, it was discovered that with an increase in
viscosity of impregnating solution, the outward flow of the
solution reduces that causes a better activity on supporting
elements (Van Dillen et al., 2003). Other processes involved in
catalyst synthesis show either extremely high or extremely low
drying rates with moderate quality type of products (Jackson,
1995).

Metal Catalysts
Metal catalysts like Ni/Al2O3 are better preferred during SMR
reactions because of their inexpensive nature (Siew et al., 2014).
The most extensively studied metal catalysts for this process are
from the VIII group of the periodic table. Their properties, like
the size effect (Vogt et al., 2020), support effect (Wang et al.,
2018), promoter effects (Cao et al., 2020), and coordination states
(Rogers et al., 2016), have also been well researched. Even the
external conditions of methane reforming like the temperature,
pressure, and kind of reactor used, are considered while using the
metal catalysts.

Transitions metals like Fe and Ni that have semi-filled
d-orbitals are also used in SMR reactions because of their
enhanced stability and activity (Syed Muhammad et al., 2018;
Inaba et al., 2019). Ni catalysts are far more convenient for TMD
via SMR reactions when carried out at 500–600°C. However, this
temperature range is lower than the conditions needed to achieve
an equilibrium state because Ni deactivates at higher temperature
conditions. On the contrary, Fe functions efficiently at increased
temperatures and is comparatively less expensive (Frontera et al.,
2017). The most commonly used metal catalysts are the transition
metal catalysts like Ni, Co, and Fe. Because of the enhanced
turnover rates and being cheaply available, Ni catalysts are better
preferred. Studies have also shown that, in the presence of
elements like rhodium, Ni gets easily reduced, which increases
the methane conversion, thereby increasing the total hydrogen
production (Kim et al., 2015). Table 1 shows the data related to a
few recent reports about hydrogen production via POM method
using Ni-based catalysts supported on various catalysts.

Like the other processes, the most widely used metal catalyst is
based on the transition element, Ni (Farsi and Mansouri, 2016),
because of its cheap availability and reaction efficiency. The Ni
available in the catalyst system usually remains below 20% due to
its highest activity observed at that concentration (Haynes and
Shekhawat, 2011; Scapinello et al., 2017). This could occur
because of a decrease in Ni dispersion with increasing Ni
amount. Studies have reported that catalysts prepared via
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microwave assistance impregnation methods show enhanced
activity (Hosseini et al., 2017). Moreover, microwave
radiations enhance the rate at which Ni gets deposited on the
catalyst’s surface during their preparation. The efficiency of such
a catalyst and their influence in methane reforming reactions was
observed in the studies carried out by Roh and colleagues (HS
et al., 2002). The authors explained this behavior by the catalysts
due to the high interaction with the catalysts’ active phase.
Table 2 shows the data related to a few recent reports about
hydrogen production via autothermal reforming reactions.

Many catalysts like the ones based on nickel, zeolites, alumina,
platinum, ruthenium, and others based on alkali metals have been
studied (Okolie et al., 2019). Ni-based catalysts have shown high-
end results during the gasification process because of their ability
to allow reforming reactions (Nikolaidis and Poullikkas, 2017).
Studies have revealed that alumina silicate-based catalysts are far
more effective than Ni-based catalysts during the gasification
process (Arregi et al., 2018). Nickel-based catalysts are often used
when hydrogen is the only product needed. Its activity is
dependent on the presence or absence of the support material
and other additives (Kannaiyan et al., 2016). Table 3 shows the
data related to a few recent reports about hydrogen production
via direct biomass gasification method using Ni-based catalysts
supported on various catalysts.

Metal catalysts show enhanced activity and high chemical and
mechanical efficiency and stability during the water-splitting
reaction. Metals like Ni, Co, Pt, and others are very commonly
used during the reaction (Konsolakis et al., 2016). Among these,

Ni catalysts have shown the highest effectiveness for hydrogen
production because of the resultant large yield during the reaction
(Saikia et al., 2020;Wang et al., 2021b). However, metal poisoning
by sulfur and carbon deposition on their actives sites results in
metal deactivation. Hence, even carbon-based catalysts are used
to overcome the shortcomings of metal-based catalysts (Dufour
et al., 2010; Harun et al., 2020).

Most metal catalysts that are used in this reaction get
deactivated on carbon deactivation on their surface. The
separation of the coke deposited on the surface can be a
cumbersome process. We have discussed catalyst reactivation
in the following sections. Because of the additional reactivation
process for catalysts, sometimes no catalysts are preferred.
Moreover, metal-based catalysts are also promising entities for
the process because they still show better stability and efficiency
than carbon-based catalysts.

Among the commonly used metal catalysts, nickel has shown
high conversion rates even at 500°C temperatures. While,
without a catalyst, the reaction proceeds at a higher
temperature of 700°C (Brandon and Kurban, 2017). Apart
from Ni, even Fe-based catalysts have shown to be
inexpensive and widely used for the industrial production of
hydrogen via methane pyrolysis (Qian et al., 2020). APR
reactions that produce hydrogen have been studied for
various catalysts, including iron, nickel, palladium, rhodium,
iridium, etc. These elements have been noted to show high
activity as catalysts during aqueous phase reforming for
hydrogen production. Among these, platinum, palladium,

TABLE 1 | Various Ni-based metal catalysts used for hydrogen production via POM method.

Metal Support Methane conversion (%) Catalyst preparation method H2/CO References

Rh-Ni Al2O3 ∼90 Wet impregnation and solid-state reaction ∼2 Alvarez-Galvan et al. (2019)
Rh-Ni CeO2 ∼80 Wet impregnation and solid-state reaction ∼2 Alvarez-Galvan et al. (2019)
Rh-Ni La2O3 ∼50 Wet impregnation and solid-state reaction ∼2 Alvarez-Galvan et al. (2019)
Rh-Ni MgO ∼50 Wet impregnation and solid-state reaction ∼2 Alvarez-Galvan et al. (2019)
Rh-Ni ZrO2 ∼50 Wet impregnation and solid-state reaction ∼2 Alvarez-Galvan et al. (2019)
Ni Al2O3 and ZrO2 90 Wet-impregnation method 2 Fakeeha et al. (2020)

TABLE 2 | Various Ni-based metal catalysts used for hydrogen production via autothermal reforming of methane.

Metal Support Methane conversion (%) H2/CH4 References

Ni SiO2Al2O3 ∼100% 1 Ali et al. (2016)
Ni MgAl2O4 ∼75% 5 Katheria et al. (2016)
Ni Ni2Al2O5 82% 2.4 Rogers et al. (2016)
Ni ZnLaAlO4 ∼72% 3 Khani et al. (2016)
Pt ZnLaAlO4 ∼88% 3 Khani et al. (2016)
Ru ZnLaAlO4 ∼72% 3 Khani et al. (2016)
Ni γ-Al2O3 ∼98% 3 Khani et al. (2016)

TABLE 3 | Various Ni-based metal catalysts used for hydrogen production via methane reforming reactions.

Metal Support Methane conversion (%) H2/CO References

Ni Al2O3 86.17 1.49 Peng et al. (2017)
Ni CeO2/Al2O3 93.65 1.84 Peng et al. (2017)
Ni Ru/γ-Al2O3 80 1.5 Calzada Hernandez et al. (2020)
Ni MCM-41 ∼100 3.85 Akubo et al. (2020)
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and nickel-tin alloys have displayed enhanced activity from
hydrogen production. It has been noted that when and if the
supports demonstrate basic or neutral nature, then the
selectivity during hydrogen production and its selectivity
increases. Table 4 shows the data related to a few recent
reports about hydrogen production via APR method using
Pt-based catalysts supported on various catalysts.

As in the previously discussed methodologies for hydrogen
production, Ni-based catalysts have the maximum catalytic
activity and efficiency. It helps in adjusting the ratio of COx

and hydrogen during the conversion of methane. The highest
activity of this catalyst is observed at 780°C (Widjaya et al., 2018).
However, as discussed previously, the Ni catalysts get deactivated
due to carbon deposits. On the contrary, Ni is relatively cheap and
readily available; hence, it is an ideal catalyst and shows optimal
activity.

Metal Supported Catalysts
Metal supported catalysts like catalysts supported by Ni are also
preferred in SMR reactions. They are relatively cheaper and
available with ease. Moreover, they show enhanced activity.
This was observed in the study carried out by Karaismailoglu
and colleagues (Karaismailoglu et al., 2019). They used Ni-
based catalysts attached to yttria. The authors developed a
catalyst via the sol-gel method. They noticed its activity
between 390 and 845°C and observed that the maximum
amount of coke was formed when the temperature was
elevated. Few studies indicate that methane decomposition
can occur without the reduction of catalysts (Musamali and
Isa, 2018). Such methods are relatively more inexpensive.
Moreover, it has been noted that hydrogen production
reduces this way. Table 5 shows the data related to a few
recent researches about hydrogen production via SMR
method using Ni-based catalysts supported on various catalysts.

The most commonly used metal-supported catalysts during
the direct biomass gasification process include Ni-based catalysts
having K2CO3 support. Even fundamental catalysts like MgO and
CaO are also used during the reaction (Anis and Zainal, 2011).
However, these metal-supported catalysts make use of sorbents
that are eco-friendly to enhance the catalyst’s overall sensitivity.
Limitations also persist in the noble metal-supported catalysts
that the ones supported by rhodium (Asadullah et al., 2004).
Among the metal catalysts like nickel, cobalt, palladium, iron, and
others, none of these shows a very high efficiency on their own
during the thermo catalytic water splitting reactions. Hence
elements like silica, alumina, magnesia, carbon are used
simultaneously along with the core catalysts. These metal
support catalysts enhance the total available surface area on
the catalyst so that more active sites can be made available to
enhance the reaction process (Srilatha et al., 2017).

The second metal support is introduced in a catalyst to
increase the life of the catalyst. For instance, when the second
metal support is introduced in Ni-based catalysts, the activity and
its stability have shown to be exponentially increased (Sánchez-
Bastardo et al., 2020). The most popularly used metal-supported
catalysts include the ones supported by palladium and copper.
Because of the larger surface area, the catalyst deactivation does
not occur immediately, and hence the catalysts remain stable for
longer durations. The support available for the catalysts allows for
equilibrium between the methane dissociation and carbon
diffusion rates. Certain metals like palladium and copper
enhance the reduction process. Moreover, weak bonds between
metals and their supports also improve metals’ reducing capacity;
when there are strong bonds between metal and the support in a
catalyst, the catalyst’s dispersion and stability increases.

Tao and colleagues studied the effect of nickel-iron-cobalt
alloy in APR reaction (Tao et al., 2020). The authors observed that
the nickel-iron allowed for better catalytic activity during the

TABLE 4 | Various Pt-based metal catalysts used for hydrogen production via APR method.

Metal Support Hydrogen yield Conversion (%) References

Pt CMK-3 57.5% 79.4 Kim et al. (2012a)
Pt CMK-9 94.2% 89.2 Kim et al. (2012a)
Pt CMK-3-MCN-R 71.7% 84.7 Jeong et al. (2014)
Pt CMK-5-MCN-R 8.6% 88 Jeong et al. (2014)
Pt-Re CMK-3 19.9 cm3/(gcat·min) 44.2 Kim et al. (2012b)
Pt-Ni γ-Al2O3 — 80 De Vlieger et al. (2012)
Pt-Fe γ-Al2O3 48.1 cm3/(gcat·min) 48.1 Huber et al. (2006)
Pt-Re CMK-3 36.6 cm3/(gcat·min) 89.3 Kim et al. (2012b)

TABLE 5 | Various Ni-based metal catalysts used for hydrogen production via methane reforming reactions.

Metal Support Methane conversion (%) H2/CO Ref

Ni-Co Al2O3–MgO 79.17 1 Abd Ghani et al. (2018)
Ni Nd-mesoporous silica 53 0.75 Li et al. (2017)
Magnesium-NiO Mesoporous zirconia 82 0.94 Al-Fatesh et al. (2020)
Ni MSC-1 85 ∼1 Zhang et al. (2019b)
NiO MgO–Al2O3 91 ∼1 Chai et al. (2017)
Ni La@KCC-1 ∼96 ∼1 Abdulrasheed et al. (2020)
Ni Ce-ZnAl2O4 82 1 Movasati et al. (2017)
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reaction than the lone nickel and iron catalysts. Moreover, when
cobalt is added to the catalyst, the catalyst’s overall activity was
shown to increase. A higher conversion rate of the reactants was
observed in aqueous phase reforming, and more hydrogen
production was recorded. Moreover, the selectivity of
hydrogen was also shown to increase tremendously. This
catalyst was shown to undergo reduction at even low
temperatures of 300°C. However, the activity was recorded to
increase with increasing temperature. Maximum activity was
observed at ∼660°C.

Earth metal catalysts have been shown to play a useful role
during hydrogen production during coal gasification. Dolomite
(CaCO3.MgCO3) has very high efficiency and does not need to
undergo any regeneration after the catalytic process (Widjaya
et al., 2018). Other than those, nickel-aluminum catalysts and
nickel-olivine catalysts have also shown practical usage during
coal gasification of methane for hydrogen production (Mei Wu
et al., 2014). Ni-based catalysts, in general, are involved in
removing tars and excess methane.

Non-Supported Catalysts
Studies also indicate that the performance of a given catalyst for
TMD depends on the material of carbon used as the support
(Yang et al., 2015). Among these, graphene has better activity
when compared to unsupported catalysts (Hasnan et al., 2020a).
This was seen in the work of Lua and Wang (2013). They studied
non supported Ni-based catalysts in TMD and discovered that
CH4 must be inserted in the reaction mixture at a reduced
temperature for an efficient reaction process. Unsupported
catalysts like NiCuAl (Suelves et al., 2006) and NiCuMg
(Moliner et al., 2008) exhibit high activity and stability. They
provide an opportunity to develop metal crystals that allow for
the reaction to proceed for prolonged durations. Hence, non-
supported catalysts also play a vital role in hydrogen production.
Despite being cheaply available, transition metal catalysts like the
ones based on Ni are easily deactivated when on stream. This may
occur because of frittage, deposition of carbon on the surface, or
further reactions with the substrates (Pantaleo et al., 2016). The
activity of these catalysts depends on their active forms and the
support used during the reaction. The size of the metal particles is
an essential feature that determines their intrinsic activity and
their deactivation rate. These features are found to be inversely
proportional to the size of the metal particles (Kosinov et al.,
2019).

When another metal is attached to these metal-based catalysts
like Ni-based catalysts, the resultant catalyst’s stability
dramatically increases. Metals like rhodium, platinum,
palladium, iridium have been used in metal catalysts to
improve their overall strength. This has been seen in many
studies (Alvarez-Galvan et al., 2019). Of all the metals used to
support other metal catalysts, rhodium is the most promising of
all (Tanaka et al., 2010). This is because it aids in the non-noble
metal to remain a metal by disallowing the excess transfer of
hydrogen atoms from noble metal to non-noble metal catalysts
(Arandiyan and Li, 2012). As discussed above, Ni catalysts serve
as the most popular option for catalysts during hydrogen
production. Apart from this, palladium, copper, and other

metals are also used as catalysts. However, these metals alone
sometimes lead to the deactivation of the catalysts. This happens
because of the carbon deposition at the catalysts’ surface.

This deactivation can be prevented by adding metals like iron,
platinum, gold, etc., along with the primary metal catalyst to
improve the catalysts’ overall activity and efficiency. This was
shown in a study done by Dantas and colleagues (Dantas et al.,
2010). The scientists reported that the catalyst supported on silver
allowed for the increased conversion of methane and accounted
for the stability of the catalyst function and activity. In another
study, Kaori Yoshida and coworkers discovered that Ni catalysts
supported on palladium give the most promising results during
hydrogen production (Yoshida et al., 2009). Such metal-
supported catalysts have shown to provide more hydrogen/CO
ratio when compared to unsupported catalysts. The supported
catalysts support enhanced catalytic activity, enhanced stability,
and larger active surface area for the catalyst to function. Any
support gives porosity that gives increased contact with reactants.
Moreover, the nature of contact between the support element
and the catalyst, and the bond between them determines the
reaction rate during hydrogen production. Studies have shown
that the addition of Mg, Co, Zn elements increases Ni-based
catalysts (Zhu et al., 2011). Also, ZrO2 is an unbound or non-
supported catalyst that leads to increased efficiency for
hydrogen production via an autothermal oxidation reaction
(Jeong et al., 2006). In addition to these catalysts, bifunctional
catalysts can also be used to help improve the reaction rate of
hydrogen production to increase the hydrogen yield. The
proposed structure of such bifunctional catalysts has been
shown in Figure 10.

Of all the catalysts studied for the gasification process, alkali
metals were the first to be researched (Francke et al., 2018).
Unsupported catalysts based on natural minerals, noble gas, and
synthetically available triggers have also been studied and
developed for hydrogen production via direct biomass
gasification (Al-Rahbi and Williams, 2017; Yang et al., 2019).
These catalysts can undergo rapid action, decrease the amount of
tar production, and increase total hydrogen gas. Sometimes even
microorganisms are used that are chemically active. Such microbes
tend to generate electricity by producing electrons. When these
organisms are used as “catalysts,” the process becomes very
economical and highly efficient. Electrochemically active
microbes are used in a cell with protons, electrons, and other
chemical substances to ease the reaction. Because of the coupling of
such components, direct production of hydrogen occurs (Kim
et al., 2017; Ma et al., 2021). The dissolved organic components get
oxidized, and the protons are reduced to give hydrogen.

Metals like nickel, iron, and cobalt have also been used in
methane pyrolysis reactions without the need for a supporting
structure (Srilatha et al., 2017). This is because of their enhanced
activity, temperature conditions, and ability to produce solid
carbon as the byproduct. These metal catalysts also allow
solubility and diffusion of carbons through catalysts’ surface.
Of all the catalysts mentioned above, Ni has the highest activity
and least toxicity for this reaction (Ouyang et al., 2019). However,
these elements undergo deactivation at very high temperatures
(>600°C). In the case of unsupported catalysts, the catalytic
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activity during aqueous phase reforming was noted to be (He
et al., 2013):

Platinum � nickel > ruthenium > rhodium

� palladium > iridium

Of all the catalysts, Ni has shown to display the lowest
reformation of the reactants and allows for efficient hydrogen
production. Alkali metals derived from acids have also shown
efficiency during the catalytic process – like the alkali metal salts
derived from weak acids. These include potassium carbonate,
potassium sulfide, sodium carbonate, and sodium sulfide. During
these reactions, lower temperatures are better preferred, that is,
between 700 and 925°C (Mei Wu et al., 2014). These catalysts are
added to the gasifier present on coal or char. These catalysts,
however, are not quickly recovered after the gasification process.
Moreover, elements present in the catalyst, like sulfur, can
sometimes poison the catalysts during the reaction.

Metal Oxide Supported Catalysts
Various transition metals supported on oxides are also used as
catalysts in TMD reactions (Shen and Lua, 2015a). These include
metals like Ni, Fe, and Co, and others. Various studies (Khan
et al., 2016; Abdullah et al., 2017; Chen et al., 2020b; Baig et al.,
2021) have shown the effects of different metal oxide supported
catalysts like La2O3, ZiO2, Al2O3, SiO2, and TiO2 involved in
producing hydrogen (Kim et al., 2011; El Hakim et al., 2021). In a
study by Ibrahim et al., it was found that Fe over La2O3 showed
promising results for TMD at temperatures ranged between 500
and 700°C. Another study by Shen and colleagues on Ni
supported on TiO2 revealed that this catalyst showed higher
stability and expressed a high hydrogen production rate as
compared to a catalyst unsupported by Ni (Shen and Lua,
2015b). Of all studies on metal oxides supported on carbon
substances, silica-based materials serve as better catalysts
because of their increased surface area. They also possess
enhanced thermal stability, changeable pore size, and increased
diffusion ability (Di Michele et al., 2019). This makes them an
ideal candidate to be used in metal oxide supported catalysts for
hydrogen production.

The behavior of metal oxide supported catalysts has shown to
be far more convenient and useful in POM reactions. Ni-based
oxide supported catalysts like the ones kept on Al2O3, La2O3,
ZrO2, CeO2, etc. are developed through solid-state reaction and
wet impregnation. These catalysts, however, are easily deactivated
because of the rapid deposition of carbon. Moreover,
contamination because of Ni nanoparticles may also result in
their deactivation. However, the metal catalysts that are
supported on ceria and alumina have shown to be very
promising. This is because of the large surface area of the Ni
nanoparticles on the alumina surface and the available spots in
ceria structures that allows for the direct adsorption on those sites
(Singha et al., 2017).

On the contrary, catalysts attached toMg-based structures that
rapidly undergo deactivation due to the creation of NiO/MgO
irreducible complexes in the solution. Metal oxides like La2O3

allow for decreased carbon formation because of the high
scattering of Ni nanoparticles (Kumar et al., 2019). Moreover,
these structures also cause lanthanum oxycarbonate development
that causes further gasification of carbon structures. ZrO2 also
plays an essential role in serving as the support structure for metal
catalysts. However, these oxides reduce the oxygen presence that
is essential in POM reaction (Hongloi et al., 2019).

Among the metal oxide supported catalysts that are well
studied, Ni/Al2O3 has gained wide popularity because of its
cheap availability and high stability (Alvarez-Galvan et al.,
2019). Other metal oxide supports include MgO, SiO2, TiO2,
CeO2 etc. Furthermore, Al2O3 disallows catalyst frittage and
increases the overall mechanical stability of the catalysts.
Beyond 973K, the sensitivity of the Al2O3 based metal oxide
catalysts also increases. Hence, any changes in Al2O3 support
create catalysts that directly affect the catalysts (Koh et al., 2007).
In some instances, transition metal oxides like CeO2, ZrO2, and
Cr2O3 are used along with alumina components (Silva et al.,
2012). However, oxygenates rapidly undergo dehydration and
give ethylene, resulting in carbon deposition and catalyst
deactivation (Ali et al., 2016; Rogers et al., 2016). Studies
have shown that CeO2 support increases the stability and
activity of Ni-based catalysts (Arora and Prasad, 2016).
Moreover, the addition of Ce to ZrO2 results in strong
interaction between the individual substances present on the

FIGURE 10 | Proposed structures of bifunctional catalysts. Adapted with permission from reference Ye et al. (2019), copyright@2019 (Nature).
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catalyst. Also, Ce causes enhanced storage capacity of oxygen
and allows for the synthesis of transferrable oxygen during the
reaction process. Hyun Seog Toh and colleagues studied
multiple metal oxide supported catalysts (like MgO, Ce-ZrO2,
MgAl2O4) however, Ni catalysts supported on MgAl2O3 showed
the maximum efficiency and stability (Roh et al., 2001; Shang
et al., 2017).

Metal oxides of alkaline earth metals are favorable for
gasification reaction because they permit reformation reactions
(Nikolaidis and Poullikkas, 2017). When metal catalysts like Cu
catalysts are introduced into the reaction, additional elements like
promoters are also used. This is to decrease the amount of non-
required products (like the soot and tar) and increase the total
hydrogen produced. The metal oxides, including the oxides of
transition metals, are alkali earth metals are often introduced as
the promoters during the reaction (Gupta et al., 2011; Qu et al.,
2020).

The ZnO/Zn redox pairs have shown to have better superiority
among other metal oxide supported catalysts during hydrogen
production via this reaction (Steinfeld, 2002). However, this metal
oxide pair is not feasible for the large-scale production of
hydrogen. Moreover, efficient separation of the products poses
a challenge (Koepf et al., 2016). Hence, because of the
shortcomings, CeO2 is a better candidate for water splitting
reaction and hydrogen production (Gokon et al., 2013).
However, these catalysts function at high temperatures of
1700–3000 K. Other metal oxide supported catalysts include
the redox pairs of Mn2O3/MnO, SnO2/SnO, Fe2O4/Fe, etc. The
enhanced surface area of platinum supported on Al2O3 and ZrO2

also shows very high activity. However, these catalysts exhibit
rapid deactivation too. Platinum catalyst supported on TiO2 also
show very high stability. However, they too get deactivated when
used for prolonged durations.

Fe catalysts supported on other metal oxides like Al2O3 based
catalysts have been studied for this reaction and have shown
promising results (Zhou et al., 2016). When such catalysts are
used, they offer in situ catalysis during methane pyrolysis. This
was seen in the work put forward by Yeheskel and coworkers
(Yeheskel and Epstein, 2011). The authors discussed when
Fe(CO)5 and Fe(C2H5)2 are decomposed. Fe clusters are
produced during the pyrolysis reaction. Besides, various other
gases are also produced as by-products. These gases produced,
however, undergo further decontamination steps.

Metal oxide supports like Al2O3 and Fe3O4 have shown to be
very efficient in hydrogen synthesis via aqueous steam reforming
(Gumina et al., 2019). Valenzuela and colleagues were the first
teams who developed this process for hydrogen production
(Valenzuela et al., 2006). They employed Pt catalysts
supported on Al2O3. High activity of the catalyst structure and
large hydrogen production was noted during the reaction. In
another study, the catalytic activity of CeO2-ZrO2 and CeO2-TiO2

was studied (Chen et al., 2017a). It was noted that both sets of
catalysts showed high activity and efficiency. Moreover, these
catalysts, including Pt-Al2O3, were observed to show high
catalytic activity and were recyclable.

Among the metal oxide supported catalysts, K2CO3 has shown
high catalytic activity during the gasification reaction compared

to Ni catalysts supported on metal oxides. It has been observed
that hydrogen production is increased two times when K2CO3 is
used as a catalyst (Li et al., 2010). This could be because of the
high and uniform solubility of the catalyst in the reactionmixture.
Other catalysts like SiO2, KAlSiO4, NiO, and KAlSi3O8 have been
shown to undergo rapid deactivation owing to large carbon
deposits on their surface. Other metal oxide-supported
catalysts like ZnO were shown to exhibit quick activity in
contrast to SnO2 catalysts; the hydrogen yield was also enhanced.

Noble Metal-Based Catalysts
Noble metal catalysts like ruthenium and rhodium used in the
SMR process exhibit increased activity and high stability (Chen
et al., 2017b). Other noble metals like platinum and iridium show
enhanced electrocatalytic activity and can be attached to other
elements to give better catalytic activity (Swain et al., 2018).
However, there are a few drawbacks to these catalysts including
their high cost of production and instability (Digraskar et al.,
2019). These can be overcome by reducing the size of the noble
metals attached to porous carbon structure. This increases the
overall efficiency of catalysts. Furthermore, they can be attached
to other transition metals to enhance the catalyst’s activity (Li
et al., 2019). These steps can be incorporated at an industrial level
to reduce their overall cost of production.

Noble metals like palladium, rhodium, platinum, iridium also
serve as noble metal-based catalysts in POM reaction (Figen and
Baykara, 2018; Ma et al., 2019). Studies have shown the reducing
nature of noble metals like ruthenium that results in lanthanide
oxide-supported ruthenium structures that are used catalysts in
POM (Lian et al., 2018). Owing to the enhanced performance of
noble metal catalysts, these catalysts have gained a great deal of
attention from the scientific community. In a study by Alvarez-
Galvan and colleagues, it was discovered that rhodium, when
used as the supporting material of metals like Ni, promotes the
further reduction of the catalyst, thereby improving the overall
catalytic activity during POM (Alvarez-Galvan et al., 2019). It has
been noted that the catalytic activity of ruthenium-based catalysts
is significantly greater at greater flow rates than Ni-based catalysts
(Wysocka et al., 2019). However, the method used to prepare the
catalyst and the supporting structure also determines their
activity (Horn and Schlögl, 2015).

Noble metal-based catalysts show a better and bigger ratio of
hydrogen and CO than metal oxide supported catalysts. For
instance, when present in the Ni-based catalyst, palladium
disallows the oxidation of catalyst and maintains its reduced
state. The bigger the noble metal clusters of the catalyst, the
stronger the interaction and, hence, the more stable the catalyst’s
overall structure (Mosinska et al., 2020). This was seen in the
study by Keiichi Tomishige and coworkers. The authors reported
that Ni and Pt catalysts restrict the formation of carbon structures
on the catalysts. In another study, Antonio Vita and coworkers
studied CeO2 based catalysts attached to metals like rhodium,
platinum, nickel used in autothermal reforming reactions (Vita
et al., 2015). Of all the catalysts studied by the authors, catalysts
based on CeO2 showed the least stability, while catalysts based on
Ru showed very high methane conversion rates and high
hydrogen yields.
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Rhodium based catalysts are the most popularly used noble
metal-based catalysts for the gasification process. This is because
of the enhanced selectivity and cost ineffectiveness. However,
these are relatively quite expensive. Regardless, noble metal-based
catalysts, including rhodium, palladium, and platinum, among
others, have been found to have enhanced activity, stability, and
increased resistance to deposition of carbon on the catalysts’
surface (Hakouk et al., 2018). Among the noble metal-based
catalysts, platinum has shown the maximum efficiency for the
water-splitting reaction. These elements act as electron magnets
and decrease the potential for hydrogen production (Wang et al.,
2015). When supported on TiO2, electron transfers occur from
TiO2 to platinum. On the contrary, noble metals like rhodium do
not show very efficiency during this reaction, and hence the
amount of hydrogen production is lowered (Jana et al., 2010).

Like the metal-based catalysts, the noble metal-based catalysts
show better activity and stability than metal catalysts without
supporting materials. This was seen in the work put forward by
Pudukudy and colleagues (Pudukudy et al., 2018). They
developed techniques that could synthesize hydrogen devoid of
carbon-based co-products. They used ceria along with platinum-
based nickel catalysts. The authors noted that there were no
separate peaks in regards to platinum observed. This meant that
the addition of the noble metal platinum permitted good
dispersion on the catalyst surface. Moreover, the overall
activity was noted to be highly efficient in the addition of
platinum. Hence, such noble metal-based catalysts are also
considered to increase the catalyst’s overall activity. Various
kinds of catalysts that are used in hydrogen production by
methane pyrolysis are shown in Table 6.

A few years after the first APR activity for hydrogen
production was recorded, Erbatur and colleagues then
investigated APR using various catalysts. They noted that
platinum displayed the best catalytic efficiency and activity
during the reaction (Meryemoglu et al., 2010). After platinum,
ruthenium, and palladium recorded the highest activity and
catalytic efficiency. This could be because of the availability of
strong minerals that are essential for hydrolytic activity.
Moreover, the mineral acids result in the drainage of the noble
metals into the solution. This thus limits the recycling of the
catalysts. However, their high expense is the sole disadvantage of
using noble metal-based catalysts.

Ruthenium based catalysts have shown five to ten times better
activity than other noble metal-based catalysts (Molino et al., 2018).
The only drawback is the high rate of deactivation of ruthenium-based
catalysts because of the carbon supporting material often used along
with this catalyst. During the reaction, carbon is also shown to be
utilized, which reduces ruthenium activity. Other elements, like

platinum and palladium, have also shown promising catalytic
activity. They can overcome the drawbacks posed by nickel-based
catalysts. Their only drawback is their expensive availability.
Tomishige and coworkers discovered that the order of catalyst
activity to be (Tomishige et al., 2004):

rhodium > palladium > platinum > nickel � ruthenium

Therefore, among most catalysts, noble metal-based catalysts
show the maximum activity during coal gasification reaction.
Many studies have carried out to understand the catalytic process
of the various techniques. Various kinds of catalysts have been
used for hydrogen production via the TMD process. Some of
these are comprehensively discussed below in Table 7.

CATALYTIC DEACTIVATION

We have discussed a number of catalysts above. Though the metal
catalysts and metal-based catalysts show an enhanced conversion
during the TMD reaction, its rates of deactivation is also high.
The biggest challenge that causes deactivation is the development
of metal carbide structures over the catalysts surface. Also, sulfur
content also poses a significant concern during the process. These
sulfur components also cause poisoning of the catalysts. Unlike
the carbon-based catalysts, metal-based catalysts cannot absorb
these sulfur components from the feedstock. This limited life of
the catalyst upon deactivation couple with lowered hydrogen to
carbon ratio slows the industrial applicability of such catalysts.
This therefore causes the development of low quality fuels that
possess low heating value when compared to fossil fuels (Chew
and Bhatia, 2009; Alaba et al., 2016).

Catalyst regeneration, in turn, would be done by burning off
carbon deposited that affects the entire life of the catalysts (Cao
and Yu, 2016). When carbon-based catalysts are used in the
reaction, there are many advantages like more flexibility in the
reaction, and lack of poisoning due to other elements. Moreover,
these catalysts display lower resistance to temperature changes.
Figure 11 displays the general pathway followed for catalyst
selection during TMD process.

The main reason behind any catalyst’s deactivation is the
deposition of solid carbon/coke on the catalyst’s surface. This
carbon lowers the activity function and hence hampers the
functionality of the catalyst. Studies have suggested the Ni-
based catalysts show high efficiency during TMD. The reaction
is carried out at temperatures ranged between 500 and 600°C.
This temperature range is not as high as required to attain
equilibrium. However, at increased temperature ranges, Ni
catalysts undergo rapid deactivation. Hence, sometimes Fe is
used instead of Ni. This is because Fe unlike Ni can stand through
high temperatures without undergoing deactivation. Moreover Fe
is cheaper than Ni (Qian et al., 2020).

For TMD to proceed efficiently and for the catalysts to remain
active for prolonged durations, better alternatives for catalysts
have to be studied. Another challenge during TMD is the
poisoning of the catalysts because of sulfur compounds. These
poisons also deactivate the catalysts and hinder the reaction

TABLE 6 | Various catalysts used in hydrogen production by methane pyrolysis.

Catalyst type Examples

Metal catalyst Ni, Fe, Co
Metal supported catalysts NPs, MOFs, Carbon NMs
Non supported catalysts Cellulose, ionic liquids
Metal oxide supported catalysts La2O3, ZiO2, Al2O3, SiO2

Noble metal supported catalysts Pt, Ir, Pd, Rh, Ce
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progression. Furthermore, the metal-support made available to
the catalyst also plays a significant role in catalytic deactivation. If
the support and metal bond are not strong, the metal
counterpart’s detachment can also cause the catalyst’s
deactivation. When the metals get detached, they tend to get
localized in nanotubes. This causes the deactivation of the catalyst
over a while. When the bonds between metal and support are
more robust, the catalyst deactivation is slowed; however, catalyst
deactivation follows despite the prevailing circumstances.

CATALYST REGENERATION

A catalyst cannot maintain its functionality and selectivity
for prolonged durations. Their activity reduces with time,
which results in its deactivation. This deactivation may

sometimes occur rapidly and sometimes may take months
(like sulfur poisoning cases). Sometimes, catalytic
deactivation can also take years, like in ethylene
hydrogenation and ammonia production. Catalytic
poisoning, coking, and restructuring of the catalyst are
responsible for the catalytic deactivation. After catalyst
deactivation, catalysts can be regenerated using oxygen
(Saad and Williams, 2016; Gao et al., 2019; Vasiliades et al.,
2020). The significant methods employed for catalyst
regeneration include combustion and gasification. Oxygen is
considered during regeneration via combustion, while steam is
used during regeneration via steam. The following two
stoichiometric reactions highlight the regeneration of
catalysts (Srilatha et al., 2017):

C + O2 → CO2 ΔH1073 � − 394.7 kJ/mol

TABLE 7 | Catalysts used for hydrogen production via TMD process.

Catalyst Catalyst type Methane
conversion

(%)

Hydrogen
yield

Temp (°C) Methane flow rate References

NiO/Al2O3–SiO2 Metal oxide catalyst ∼40 1,730 (mol H2/mol Ni) 550 30 cc/min Ashok et al. (2008a)
Activated carbons Non supported catalyst — — 900 20 ml/min Ashok et al. (2008c)
Fe Non supported metal catalyst ∼80 — 800 27.5 N cm3/min Cunha et al. (2008)
Co Non supported metal catalyst ∼80 — 800 27.5 N cm3/min Cunha et al. (2008)
Ni Non supported metal catalyst ∼80 — 800 27.5 N cm3/min Cunha et al. (2008)
FeMo/MgO Metal oxide supported catalyst 87 — 900 50 ml/min Pinilla et al. (2011)
Ni/SiO2 Metal oxide supported catalyst 35 3.4 (mol H2/mol CH4) 550 — Zhang and Amiridis, (1998)
Ni/SiO2–Al2O3 Metal oxide supported catalyst ∼80 — 700 20 cm3/min Suelves et al. (2005)
Ni/MgO Metal oxide supported catalyst 35–40 — 550 60 N cm3/min Bonura et al. (2006)
Ni/SiO2 Non supported catalyst 35–40 — 550 60 N cm3/min Bonura et al. (2006)
Ni/Cu–Nb2O5 Metal supported catalyst ∼45 7,274 mol H2/mol Ni 600 40 cm3/min Li et al. (2004)
Ni/Cu–alumina Metal supported catalyst 70 — 750 68 cm3/min Li et al. (2000)
Ni/Cu–Si Metal supported catalyst ∼80 — 700 20 cm3/min Lázaro et al. (2007)
Ni/Cu–MgO Metal oxide supported catalyst 45 — 700 60 cm3/min Wang and Baker, (2004)
Ni/Cu–Al Metal supported catalyst 65 — 700 20 cm3/min Suelves et al. (2006)
Ni/Cu–Mg Metal supported catalyst ∼67 — 700 20 cm3/min Moliner et al. (2008)
Fe/MgO Metal oxide supported catalyst ∼87 — 800 50 ml/min Pinilla et al. (2011)
NiCuAl Metal supported catalyst 31.2 — 700 150 N cm3 min−1 Suelves et al. (2009)
Co/Al2O3 Noble metal supported catalyst ∼22 — 700 35 cm3/min Nuernberg et al. (2008)
Fe/Al2O3 Metal oxide supported catalyst 7.9 — 625 — Avdeeva et al. (2002)
NiO-CuO Non supported catalyst 85 — 750 25 ml/min Lua and Wang, (2013)
Ni/SiO2 Non supported catalyst 88 ∼89% 750 30 ml/min Saraswat and Pant, (2013)
Ni–Mo/Al2O3 Metal oxide supported catalyst ∼80 ∼88% 750 — Awadallah et al. (2013)
Al2O3–TiO2 Metal oxide supported catalyst ∼70 59% 700 50 sccm Awadallah et al. (2014)
Ni-Co/Al2O3-MgO Metal oxide supported catalyst ∼80 — 800 500 ml/min Karaismailoglu et al. (2019)
Ni Non supported catalyst 53 — 700 70 ml/min Li et al. (2017)
Magnesium-NiO Metal oxide supported catalyst 82 1.8% 800 30 sccm Al-Fatesh et al. (2020)
Ni3Si2O5(OH)4 Non supported catalyst 85 — 800 — Zhang et al. (2019b)
NiO-MgO-Al2O3 Metal oxide supported catalyst 91 — 800 — Chai et al. (2017)
Ni-La@KCC-1 Metal supported catalyst 96 — 750 100 ml/min Abdulrasheed et al. (2020)
Ni/Ce-ZnAl2O4 Noble metal supported catalyst 82 92% 800 10°C/min Movasati et al. (2017)
Ni/alumina-
zirconia

Metal supported catalyst 90 72% 800 32.5 ml/min Fakeeha et al. (2020)

Ni/SiO2Al2O3 Metal oxide supported catalyst 100 — 900 25 ml/min Ali et al. (2016)
Ni/MgAl2O4 Metal oxide supported catalyst 75 — 850 — Katheria et al. (2016)
Ni/Ni2Al2O5 Metal oxide supported catalyst 82 ∼20% ∼650 — Rogers et al. (2016)
Ru/ZnLaAlO4 Noble metal supported catalyst 72 99.8% 800 50 N ml/min Khani et al. (2016)
Ni/CeO2/Al2O3 Noble metal supported catalyst ∼94 42.52% ∼900 — Peng et al. (2017)
Ni/Ru/γ-Al2O3 Noble metal supported catalyst 80 — ∼650 — Calzada Hernandez et al. (2020)
Ni/Pt- γ-Al2O3 Noble metal supported catalyst 80 — ∼700 — De Vlieger et al. (2012)
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C + H2O → CO + H2 ΔH1073 � 135.9 kJ/mol

C + CO2 → 2CO ΔH1073 � 174.5 kJ/mol

Catalytic activation is done by removing the carbon
deposition from the catalyst’s matrix sites, which increases
the total surface area of the catalysts for further reactions.
However, during catalyst regeneration, purification steps
became indispensable to get pure hydrogen as the end
product. This is because regeneration steps result in the
production of COx, which makes the purification step
necessary. Some catalysts, however, do not require
regeneration steps and consideration activity. Examples of
such catalysts include nickel supported on ZrO2 and Al2O3

(Shang et al., 2017). Over time, these catalysts have physically
blocked the reactor and cause a drop in pressure throughout
the catalyst bed. Hence, catalyst regeneration becomes a
necessary step to avoid inefficiency in the catalytic activity
during the thermal decomposition of methane for hydrogen
production.

Catalytic regeneration has been observed in the works put
forward by Amin and colleagues (Amin et al., 2012). They
introduced three different Ni-based catalysts in a fluidized
bed reactor at a temperature above 500°C. They used oxygen as
the activating agent for the reaction to proceed. The authors
noted that carbon was removed entirely on all the catalysts
studied. In another similar study, Amjed and coworkers
studied activated carbon during TMD above 900°C (Al-
Hassani et al., 2014). The authors developed models to
understand the functional surface area in the catalyst and
the volume of pores. This kinetics was designed to
understand the process of catalytic deactivation better.
Moreover, it was also observed that rapid deterioration of
the catalysts occurred at very high temperatures due to catalyst
frittage or weakening.

CONCLUSION AND FUTURE
PERSPECTIVE

Production of hydrogen devoid of COx components is
particularly challenging; however, it’s essential for eco-
friendly measures. In this review, we have discussed the
various kinds of catalysts available (including metal-based
catalysts, noble-metal-based catalysts, non-supported
catalysts, metal-oxide-based catalysts) and the mechanism
of different processes available for hydrogen production.
Though the thermocatalytic decomposition of methane and
the catalysts involved have been thoroughly studied, factors
like optimization of the catalysts, cost of the process, and the
necessity of regeneration of catalysts still require in-depth
exploration and analysis. Moreover, despite alternative
options being available, the dependence on fossil fuels
and their derivatives will continue even in the future.
These options, however, do not limit emissions of
greenhouse gases. Hence additional steps can be added in
the process such that carbon black is produced. These
compounds are valuable in the market; therefore, the
overall expense of the process gets reduced. Other
external factors, like supporting conditions and the kind
of catalysts used, also influence the cost and carbon type
formed as a by-product.

Studies show that thermocatalytic decomposition of
methane for hydrogen production is also affected by the
temperature at which reactions proceed and even the type
of catalysts used. For instance, Fe-based catalysts showed
high activity at high-temperature conditions. Nickel-copper
alloy catalysts show that supported catalysts have better
functions as compared to unsupported catalysts. However,
their rapid deactivation because of carbon deposition on the
catalysts’ surface serves as a limiting factor of the process.

FIGURE 11 | Catalytic decomposition pathway during TMD process. Adapted with permission from reference Hasnan et al. (2020b), copyright@2020 (Springer).
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Works of literature have also shown that carbon-based
catalysts show enhanced activity because of their cheap
availability, stability at high temperatures, and resistance
to sulfur poisoning. More research needs to be carried out
to study other existing materials that can serve as better
catalysts and resist catalytic deactivation during hydrogen
production processes. Besides, better-supporting structures
will have to be researched so that the resulting catalysts have
the higher surface area and increased porosity during catalysis.
Promoters can be used to increase the stability of the catalyst. For
instance, promoters like CeO2 can improve the stability of active
sites and improve the catalysts’ functionality. Other structures like
mesostructured silica nanoparticles can also be used as a
supporting structure because of their vast surface area and
changeable pore size. Moreover, they exhibit high resistance to
heat and show increased mechanical stability.

So far, Ni and Fe are popular options among the available
catalysts owing to their inexpensive availability and
high activity. More importantly, Ni-based catalysts were
found to more reliable than others. However, these
catalysts show limitations because of strict temperature

requirements. Hence these catalysts are linked to other
elements like Cu or Fe to enhance the stability and overall
activity.
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