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Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining
modern society. Since the early 20th Century, NH3 has been synthesized via the
Haber–Bosch process, running at conditions of around 350–500°C and
100–200 times atmospheric pressure (15–20 MPa). Industrial ammonia production is
currently the most energy-demanding chemical process worldwide and contributes up to
3% to the global carbon dioxide emissions. Therefore, the development of more energy-
efficient pathways for ammonia production is an attractive proposition. Over the past
20 years, scientists have imagined the possibility of developing a milder synthesis of
ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at
ambient temperatures and pressures to feed leguminous plants. To do this, we propose
the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our
proposal is an informed design of the polyoxometalate after exploring the catabolic
pathways that cyanobacteria use to fix N2 in nature, which are a different route than
the one followed by the Haber–Bosch process. Meanwhile, the industrial process is a
“brute force” system towards breaking the triple bond N-N, needing high pressure and
high temperature to increase the rate of reaction, nature first links the protons to the N2 to
later easier breaking of the triple bond at environmental temperature and pressure.
Computational chemistry data on the stability of different polyoxometalates will guide
us to decide the best design for a catalyst. Testing different functionalized molecular metal
oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor
design of small-scale production.
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INTRODUCTION

Multicellular organisms are unable to metabolize atmospheric N2 because of its high bond enthalpy
and zero dipole moment. Instead, they source nitrogen from fixed resources such as nitrate and
ammonia (Sadeghi et al., 2015). The process known as biological nitrogen fixation in which N2 is
converted into assimilable forms is carried out by a specialized group of microorganisms that possess
nitrogenases which are enzymes able to reduce atmospheric nitrogen into ammonia (NH3). At the
start of the last century the only solid natural forms of nitrogen to enrich the soil were Peruvian
guano and Chilean nitrate but in 1913, the Haber–Bosch process changed the course of the 20th

Century allowing mass production of ammonia. In fact, ammonia production is the base of
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agriculture supporting between a third and a half of human food
intake. Despite technical improvements for industrial NH3

production, it still requires both high temperature (350–500°C)
and high pressure (15–20 MPa) consuming more than 1% of
world-wide energy production and being one of the main world-
wide producers of carbon dioxide and nitrous oxide emissions,
both tagged as green-house gases (Foster et al., 2018). We can
reduce travelling to mitigate climate change, but definitely, we
cannot stop eating (Erisman et al., 2008), and massive industrial
ammonia production of NH3 is fundamental in sustaining the
human population (50% of the nitrogen found in human tissues
originates from the Haber–Bosch process). However, the abuse of
ammonia fertilizers, of which only about 50% are efficiently
absorbed in soils, has led to an accumulation of nitrogen in
natural waterbodies with negative consequences (such as
limitation of natural diversity and proliferation of toxic algae)
(Fields, 2004). Therefore, sustainable nitrogen fixation has
remained as a critical area of research at the frontiers of
inorganic, organometallic, coordination chemistry, and
biochemistry for decades. Finding efficient alternatives to the
Haber–Bosch process is a challenge because of the extraordinarily
complicated characteristics of the reaction. In fact, ammonia
synthesis is currently the most well-characterized
heterogeneous catalytic reaction.

The overall reaction of ammonia synthesis from N2 is
accessible thermodynamically at standard conditions (ΔG° �
−16.4 kJ mol−1) (Lide, 2005), which indicates that this reaction
could occur without external energy input at low temperatures.
However, it does not take place spontaneously (Jia and Quadrelli,
2014). Kinetics, and endergonic production of intermediates,
dictate operation at ca 350–500°C and elevated pressures are
needed to achieve acceptable process yields at an industrial level
(Hargreaves et al., 2020). The detailed thermodynamic analysis
presented in (Jia and Quadrelli, 2014) also shows that although
the overall reaction of fixing N2 is exergonic, the kinetic routes
that lead to them demand high amounts of energy. Indeed,
diazene and hydrazine are intermediates of the overall reaction
with very high enthalpies of formation (Van Der Ham et al.,
2014).

Given its global impact, the fundamentals of the Haber–Bosch
process have hardly changed at all over the past 100 years. It still
relies on an iron catalyst with potassium oxide and alumina acting
as electronic and structural promoters, respectively (Galloway
et al., 2013). In the early 1900s, AlwinMittasch conducted a large-
scale screening experiment to find a substitute for Haber’s
osmium- and uranium-based catalysts (Hargreaves, 2014).
Approximately 3,000 catalyst compositions were evaluated in
over 20,000 small-scale tests. He developed a Fe-based catalyst,
which is still used today, but in the 1970s ruthenium (Ru) was
acknowledged as the best elemental metal catalyst for industrial
ammonia production.

In recent years, there has been a large amount of research on
reducing the temperature and pressure of the Haber-Bosch
process using a variety of advanced catalysts such as
promoted-iron, supported-ruthenium, and metal nitrides
(Humphreys et al., 2021). Today we know that Ru has much
higher activity than Fe, at least near thermodynamic equilibrium.

However, due to the higher cost of Ru and its shorter catalytic
lifetime, promoted Ru catalysts have only recently begun to
challenge iron-based catalysts (Ross, 2019). Also, it has been
long accepted that d-block metals can bind the abundant
dinitrogen molecule, however, only a few are able to catalyze
the conversion of dinitrogen to ammonia. Indeed, the main
impediment to N2 fixation is primarily of kinetic nature (Jia
and Quadrelli, 2014). After carefully analyzing existing
thermodynamic experimental data, Borden provided an
insightful explanation to the energetics of bonding H2 to N2

(Borden, 2017). The study showed how the difficulty associated to
N2 fixation, is only partly due to the strength of one of the
three N−N π bond that is broken in this reaction. In fact, the
relative weakness of the intermediate sp2 N−H σ bonds in
E-HN � NH obtained in this reaction plays a slightly larger
role which allows us to conclude that reactivity of the
intermediates rely on a delicate balance between the bonds
that are formed and broken towards the yielding of the final
product (Nicolaides and Borden, 1991).

Under the current global scenario of environmental
emergency, it is urgent to find sustainable solutions to fulfil
the ammonia demands of the human population. Novel design
of catalysts is required to efficiently produce NH3 at low
temperatures and with less energy requirements. Ideally, these
catalyzers could drive N2 fixation at small scale, tailoring the
operation for specific demands and contributing to the reduction
of synthetic NH3 accumulation in the environment. But in
developing these alternative solutions, it is necessary to design
new catalysts which can follow alternative pathways that
substitute the endergonic dissociative mechanism used in the
Haber–Bosch process, and reduce the industrial energy spilt
accounted for NH3 synthetic production.

NITROGENASES

Nature, contrary to chemists, has found a way to use the abundant
N2 gas effectively at room temperature and neutral pH by using
natural catalysts, enzymes, called nitrogenases. The nitrogenase
can channel electrons and energy from different sources in
anaerobic and aerobic conditions to form bioavailable NH3

breaking the triple bond of the (almost inert) molecules of N2

gas. Three homologous nitrogenases have been reported,
distinguished by their metal-centred catalytic cofactors:
molybdenum (MoFe), iron (FeFe) and vanadium (VFe) (Hu
and Ribbe, 2015). Although the three homologous enzymes
have been associated with specific activities, our understanding
of the nitrogenase metal cofactors and their role is still incomplete
(Rutledge and Tezcan, 2020).

The more ancient, abundant, efficient, and studied nitrogenase
is the molybdenum containing system (Curatti et al., 2006). This
nitrogenase is composed of two proteins, an homodimeric iron
(FeP) protein (∼66 kDa) and the α2β2 heterotetrameric
molybdenum-iron (MoFe) protein (∼240 kDa, with two
complex metalloclusters). The FeP protein contains an ATP-
binding site within each subunit interface of the protein, and it
oversees the shuttle of eight electrons towards the reduction of
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1 mole of N2. Concomitantly, 1 mole of H2 is produced per mole
of N2 fixed. The explanation for this H2 reduction and apparent
waste of equivalent power remains elusive but considering that
H2 reduction by nitrogenase occurs only in the presence of N2, it
has been proposed that production of H2 activates the FeMo-
protein. Together, the oxidation of the low-potential [4Fe-4S]1+

cluster requires activation, and this happens when the hydrolysis
of ATP takes place (Barsukova-Stuckart et al., 2012). Commonly,
the ATP requirement of nitrogenase is evaluated as 2 moles of
ATP are hydrolyzed into ADP and inorganic phosphate (Pi) per
mole of electrons transferred, although more efficient ratios
(down to 1 mole of ATP consumed per mole of electron)
have been reported (Tan et al., 2016; Poudel et al., 2018).
With this, the overall stoichiometry of natural N2 fixation
remains as presented in Eq. 1.

N2+8 H+ + 8 e�+ nATP↔2NH3+H2+nADP + nPi (1)

The detailed explanation for the necessary loss of a cell’s
energy currency (ATP) associated with nitrogenase activity
remains elusive (Rabo and Schoonover, 2001; Milton et al.,
2017) but it is assumed to be essential to reduce the activation
barriers associated to the catalysis of the intermediates that lead to
the overall reaction (Van Der Ham et al., 2014) and to activate the
transfer of electrons (Rutledge and Tezcan, 2020). Also, the
electron transfer to the substrate in nitrogenase seems to
follow the description drawn in 1978 by Thorneley and
colleagues (Thorneley et al., 1978), but the delicate and precise
donation of electrons, protons and energy is not fully deciphered
yet. Meanwhile, this optimized coordinated mechanism plays a
fundamental role in maintaining the high efficiency of the non-
selective nitrogenase enzyme (Kang et al., 2021).

After the donation of electrons, the [4Fe-4S]1+ cluster must be
reduced again. This can happen by subsequent reduction by
flavodoxin in aerobic or facultative anaerobic organisms, or by
ferredoxin (more sensitive to O2 presence) in anaerobic ones.
Phylogenetic analyses suggested the use of flavodoxin as strategy
for diversification of nitrogenases in aerobic environments (Boyd
et al., 2015). The electrons that feed flavodoxin and/or ferredoxin
come directly from pyruvate or H2 oxidation (mostly in anaerobic
organisms) or NAD(P)H electron carriers (aerobic, facultative
anaerobes, and anoxygenic phototrophs) (Poudel et al., 2018).
Indeed, the reduction of flavodoxin or ferredoxin starts the cycle
towards N2 fixation again.

Although some research efforts have been trying to take
advantage of the high efficiency of nitrogenase using the two-
protein mechanism to directly catalyse N2 fixation (Harris et al.,
2018), the high efficiency of electrons donated per mole of N2

fixated by nitrogen-fixing bacteria (8 electrons per mole of NH3

produced), has not been achieved by any in vitro system using the
MoFe protein, the nitrogenase enzyme or any inorganic catalysts
(Table 1). Engineering of nitrogenase in eukaryotic cells is
another promising avenue but still requires overcoming
fundamental challenges (Yang et al., 2014; Vicente and Dean,
2017). Therefore, other efforts have been directed towards the
generation of enzymatic fuel cells, which has been approached
using methyl viologen as solely electron mediator between a
cathodic surface and a nitrogenase (Milton et al., 2017). This
is a rather difficult catalysis as it requires an ATP regenerating
system to activate the FeP protein, and anaerobic conditions, with
remarkably low efficiencies reported. To remove the necessity of
an ATP regeneration, bioelectrocatalysis of N2 fixation has been
explored using only the MoFe protein of the nitrogenase and

TABLE 1 | Efficiencies of selected novel catalysts for N2 fixation under ambient temperatures and pressures. RHE � Reversible Hydrogen Electrode / SCE � Standard
Calomel Electrode.

Catalyst Efficiency (mol NH3 e−1) Ammonia rate (μgNH3 mgcat.
−1 h−1) Electronic promotor Ref

Electrocatalysts

Ru SAs/N–C 0.0493 120.90 −0.20 V vs RHE Geng et al. (2018)
Pd/C 0.0137 4.50 0.10 V vs RHE Wang et al. (2018)
MoO3 nanosheets 0.0032 29.43 −0.50 V vs RHE Han et al. (2018)
Bi4V2O11/CeO2 0.0169 23.21 −0.20 V vs RHE Lv et al. (2018)
Mo2N nanorod 0.0075 78.40 −0.30 V vs RHE Ren et al. (2018)
Au/TiO2 0.0135 21.40 −0.20 V vs RHE Shi et al. (2017)
CN-C500 0.0280 2.90 −0.30 V vs RHE Peng et al. (2020)

Photocatalysts

Bi2MoO6 0.0012 22.14 Xe lamp (λ � 500 nm) Hao et al. (2016)

Synthetic electron donor

[Co(N2)(
tBuPNP) 0.0442 47.22 KC8 Kuriyama et al. (2016)

MOF-Polyoxometalate Catalysts PMo12@MIL-100 (Fe) precursor

FeMo-based material 0.0912 105.30 −0.40 V vs RHE Wang et al. (2020)

Enzymatic Fuel Cells

MoFe / Cobaltocene 0.0583 12.72 −1.25 V vs SCE Milton et al. (2016)
MoFe / Methyl viologen 0.0440 2.44 −0.85 V vs SCE Milton et al. (2017)
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cobaltocene as electron mediator (Milton et al., 2016). However,
production of NH3 was only reported with the reduction of N3

−

or NO2
−.

Few electrochemical systems that produce convincing
amounts of NH3 have been reported with the most successful
so far being the molybdenum based ones (see, Table 1). However,
the poor Faradaic efficiency of these systems due to their low
selectivity competing with H2 production, makes them, in many
cases more energy demanding than Haber–Bosh process (Van
Der Ham et al., 2014). These inefficiencies can only be surpassed
by the design of other catalysts able to follow a more feasible
reaction pathway at room temperature. The reliability of
experimental electrochemical nitrogen reduction reaction
(ENRR) experiments was questioned in a recent publication
by Choi et al. detailing the complexity that arises from the
potential intrusion of airborne contaminants. The reduction of
nitrogen oxides (NO, NO2, etc.,) are more thermodynamically
favorable than direct ENRR (Choi et al., 2020). Failure to control
this has led to contentious Faradaic efficiencies and ammonia
yields.

The design of novel bio-inspired catalysts, containing
multiple active sites, has the potential to bypass the obvious
limitations associated with exploitation of the complex
nitrogenase enzyme, although competitive CO2 and H2

selectivity must be overcome with concomitant effectiveness
in N2 adsorption and mechanistic delivery of electrons and
protons (Bagger et al., 2021). Other authors, have reported that
the use of a bio-inspired catalysts operating via an associative
mechanism, like the one described for nitrogenases, are able to
fix N2, CO2 and CH4 simultaneously at room temperature
(Revilla-López et al., 2020). This can open the avenue for the
development of new industrial processes able to combine N2

fixation with carbon homologation.

MOLECULAR METAL OXIDES OR
POLYOXOMETALATES

Molecular metal oxides, or polyoxometalates (POMs) offer a
route to design efficient ENRR using Earth abundant
transition metals. POMs are primarily comprised of early-
transition-metal (d-block) elements in their highest oxidation
states. A great majority of these structures are anionic and
consequently salts with charge balancing cations. In fact,
POMs are an archetypal family of self-assembled molecular
clusters that display a vast range of physical properties,
structural features and sizes (Vilà-Nadal and Cronin, 2017).
POMs are mainly formed by Mo6+ and W6+ combined with a
main group oxyanion (phosphate, silicate, etc.,). Simply speaking,
the synthesis of POM clusters in a “one-pot” solution involves
dissolving the [MO4]

n− (M � W, Mo) salt in aqueous solution
followed by acidification, addition of electrophiles, buffer,
additional cations and in some cases a reducing agent (Proust
et al., 2012). The solution can then be processed by normal,
microwave or hydrothermal heating followed by controlled
precipitation to yield the cluster in crystalline form so that the
structure of the cluster can be elucidated by single crystal X-ray

diffraction (Long et al., 2004).This route has been used in 99% of
all cases in POM chemistry and is very convenient to yield
complex structures from “one-pot” but suffers a great deal
from dependence on initial reaction conditions,
reproducibility, and the ability to systematically investigate
parameter space to design new cluster architectures. In this
respect, during the last decade the field of POMs has been
transformed by trapping reactive building blocks and
generating an accessible building block library as a function of
pH, template, linker heteroatoms, and cation type (Miras et al.,
2020). The key aspect here is that the heteroatom mediated
assembly of the anionic metal-oxo units to building blocks
which then link to clusters, can be used to form new types of
materials with novel and unprecedented architectures (Zheng
et al., 2018). In fact, POM structures and functionalities make
them ideal candidates as model systems for metal-oxide-
anchored single atom catalysts (POM-SAC) (Liu and Streb,
2021). POMs are polynuclear metal oxide anions that are
molecular analogues of solid-state metal oxides. Diverse fields
such as, water oxidation catalysts (Blasco-Ahicart et al., 2018),
photocatalysis (Costa-Coquelard et al., 2010), molecular
electronics (Busche et al., 2014), quantum computation (Gaita-
Ariño et al., 2019), biology (Gumerova and Rompel, 2021) and
medicinal science (Lu et al., 2021) have all been impacted by POM
chemistry. Current findings demonstrate the feasibility of
hydrogen-production using silicotungstic acid, H6[SiW12O4],
by coupling low-pressure oxygen production via water
oxidation linked to non-electrolyzer catalytic hydrogen
production (Rausch et al., 2014). Given their structural
diversity and versatility of POM cluster applications, they are
ideal candidates to provide further insight into the heterogeneous
Haber–Bosch catalyst or the low-energy nitrogenase enzymes
that directly make ammonia.

DISCUSSION

Ammonia is a viable hydrogen energy vector, and its pre-existing
industry, which produces, stores, and trades millions of tons of
ammonia annually, means that the infrastructure necessary to
jump-start the hydrogen economy already exists. The
United Kingdom has developed detailed plans for the next
decade to use “green” ammonia as an energy storage material
for renewable electricity (The Royal Society, 2020).

The global cycling of nitrogen through the biosphere depends
upon a heavy element: molybdenum and requires bacteria in the
fixation of nitrogen (Hille, 2002). However, when extensively
starved nitrogen-fixating bacteria A. Viinelandi were grown in a
medium that lacked molybdate but that contained tungstate, A.
vinelandii synthesized the regular storage protein but with
tungstate. This is perhaps not surprising since tungsten, lies
below molybdenum in the d-block, and is consequently
expected to feature chemical properties related to those of
molybdenum. Recent work indicated that molybdenum and
tungsten-based enzymes are incredibly ancient and their
enzymatic role and functionality has been preserved (Vitousek
et al., 2002). It is thought that in the reducing environment of the
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primordial world tungsten-enzymes were favoured. In those days,
oxygen atom transfer reactions weremore challenging than in our
oxic modern world, with its preference for molybdenum-enzymes
(Schemberg et al., 2007). By deepening our understanding of the
microbial populations that cycle nitrogen, we can find
opportunities to deliver more efficient bioengineering
solutions. To date, no one has systematically explored the new
biotechnologies for nitrogen removal that can emerge from this
new knowledge because a purely empirical exploration would
require significant investigation. To achieve low-temperature,
cost-effective and efficient electrochemical ammonia synthesis
requires a multidisciplinary approach able to characterise natural
biocatalysts (nitrogenases) that efficiently catalyse N2 reduction,
as well as develop heterogeneous (molecular) catalytic systems
informed by current computational theory developments in the
area that can direct efficiently experimental investigation (Foster
et al., 2018).

We will start by looking into transition metal substituted
lacunary Keggin anions, as shown in Figure 1. Such structures
are derivatives from the parent anion [XM12O40]

n−, where X is
the heteroatom (most commonly are P5+, Si4+, or B3+), and M �
W, Mo, inspired by recent work in the area, (Lin et al., 2020)

which investigated the Gibbs free energy change for the reductive
adsorption of *N2 and *H on four Keggin-POM-supported Ru
single atom electrocatalysts. The phosphorus-templated
tungstate- and molybdate-Keggin clusters presented high
nitrogen-binding selectivity, whereas the silicon-templated
analogues prefer hydrogen binding. Our aim is to explore the
functionalization of molecular dinitrogen and its catalytic
conversion in POMs by combining our expertise in inorganic
chemistry with exploring the catalytic conversion d-block metals.
This will be our theoretical model structure, bearing in mind that
the pH increases the Mo- and W-based Keggin ions gradually
disintegrate (Kondinski and Parac-Vogt, 2018). Computational
chemistry will help us to describe the intermediates of bioinspired
reaction pathways. These results will complement in-depth
metabolic analyses of highly efficient nitrogenases at ambient
temperature and pressure. We will work closely with
experimentalists in the area that will help us to translate our
theoretical results into effective experimental N2 reduction
catalysis.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

LV-N conceived the idea, designed the project and together with
RG-C coordinated the efforts of the research team. LV-N and
RG-C co-wrote the paper with input from JAT.

FUNDING

Financial support for this work was provided by University of
Glasgow and the Engineering and Physical Sciences Research
Council Grants (EP/S030603/1; EP/R513222/1; EP/T517896/1),
Royal Society of Chemistry RSC Hardship Grant (Covid-19). We
also thank the University of Glasgow Early Career Development
Programme (ECDP) for support.

ACKNOWLEDGMENTS

The authors acknowledge Justin Hargreaves from the School of
Chemistry at the University of Glasgow for useful ongoing
discussions in this project and proof reading the manuscript.
We acknowledge Cindy Smith from the School of Engineering at
the University of Glasgow for ongoing discussions on
environmental controls of the microorganisms driving the
nitrogen cycle.

FIGURE 1 | Polyhedral (top-left) representation of mono-substituted
heteropolyanion. The nitrogen molecule adsorbs onto the transition metal site
through the η1 (end-on) binding mode. The schematic depiction (top-right)
shows the mono-substituted heteropolyanion in the nitrogen-bound
state. Below this, a schematic depiction of the associative mechanisms for
nitrogen reduction in which the N-N bond is cleaved simultaneously with the
release of ammonia. The associative mechanism can proceed via two
separate pathways—“alternating” and “distal” which invoke distinctly different
intermediates. Colours corresponding to addenda metal � Cyan; substituted
metal � yellow; heteroatom � Pink; O � red; N � dark blue; and H � white.
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