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Developing efficient and low-cost replacements for noble metals as electrocatalysts for the
oxygen evolution reaction (OER) remain a great challenge. Herein, we report a needle-like
cobalt carbonate hydroxide hydrate (Co(CO3)0.5OH·0.11H2O) nanoarrays, which in situ
grown on the surface of carbon cloth through a facile one-step hydrothermal method.
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
characterizations demonstrate that the Co(CO3)0.5OH nanoarrays with high porosity is
composed of numerous one-dimensional (1D) nanoneedles. Owing to unique needle-like
array structure and abundant exposed active sites, the Co(CO3)0.5OH@CC only requires
317 mV of overpotential to reach a current density of 10 mA cm−2, which is much lower
than those of Co(OH)2@CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC (380 mV). For
the stability, there is no significant attenuation of current density after continuous operation
27 h. This work paves a facile way to the design and construction of electrocatalysts for
the OER.

Keywords: cobalt carbonate hydroxide hydrate, needle-like nanoarrays, porous structure, electrocatalyst, oxygen
evolution reaction

INTRODUCTION

As a key anodic reaction, oxygen evolution reaction (OER) plays an important role in energy-relative
electrochemical conversion technologies, such as water splitting and rechargeable Zn–air batteries
(Song et al., 2020; Wu et al., 2020). However, OER suffers from sluggish kinetics owing to four
electron transfer process, which significantly increases the overpotential. (Fu et al., 2018; Xiao et al.,
2019; Liu et al., 2020). To facilitate the OER, the noble metal-based materials like IrO2 and RuO2 have
been regarded as highly active catalysts for the OER. (Xie et al., 2019; Du et al., 2021; Wang et al.,
2021). Although they present outstanding activity for the OER, the high cost, scarcity reserves and
poor stability are main reasons to limit their practical applications. Therefore, it is highly urgent to
explore and develop the cost-effective and earth-abundant electrocatalysts for the OER.

For the past few years, cobalt-based transition metal materials, such as cobalt oxides (CoOx) (Xu
et al., 2016; Li et al., 2018), cobalt phosphides (CoPx) (Chen et al., 2019; Jin et al., 2019), cobalt sulfide
(CoSx) (Wang et al., 2015; Zhang H. et al., 2020), cobalt nitride (CoNx) (Chen et al., 2016; Liu et al.,
2021), and cobalt hydroxides (Co(OH)2) Dileep et al. (2020), Qin et al. (2020) have been widely
investigated as non-noble metal electrocatalysts for the OER. More recently, cobalt carbonate
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hydroxide hydrate [Co(CO3)0.5OH·0.11H2O] have received far-
ranging attention as the OER catalysts (Zhang et al., 2015; Wang
et al., 2017; Zhang S. et al., 2020), and not rather than only as a
precursor to produce oxides and phosphides. However, the low
conductivity and deficient catalytically active sites of
Co(CO3)0.5OH·0.11H2O limit its intrinsic OER activity in
energy-relative electrochemical devices. To address such
problems, the introducing carbon support and morphology
modulation should be two important strategies for improving
the OER activity of transition metal-based materials. Through the
introducing carbon support, the electronic contact between the
carbon support and the active materials can induce the charge
redistribution and the changes in electronic structure of the active
materials, probably leading to improve the electronic
conductivity and facilitate charge transfer during the OER (Liu
et al., 2018; Yang et al., 2020). For the morphology modulation,
three-dimensional (3D) porous array structure presents
significant advantages among various morphology, including
large specific surface area, abundant exposed catalytically
active sites, excellent structure stability, which are highly
favorable for the mass and charge transfer during
electrocatalytic reactions (Xu et al., 2018; Wang et al., 2020).
Besides, 1D-nano structure have inherent structural advantages,
such as high specific surface area, fast electron and material
transport, low solubility and difficult agglomeration, etc.
Therefore, 1D-nanostructures are widely used in
electrocatalytic applications. However, it still exists a big
challenge to realize deliberate control over the above two
features in a facile and efficient method.

Herein, we report the anchoring of needle-like
Co(CO3)0.5OH·0.11H2O nanoarrays on carbon cloth
[Co(CO3)0.5OH@CC] with the assistance of urea and NH4F
through a facile one-step hydrothermal method. Urea and
NH4F serve as both effective agents to help to favor the
formation of well-defined needle-like array structure. The
geometric and electronic structure are explored in detail by
different characterization methods. Benefitted from needle-like
array structure and abundant exposed active sites, the developed
Co(CO3)0.5OH@CC displays superior electrocatalytic
performance towards OER with a low overpotential of 317 mV
at 10 mA cm−2 and a long-term stability.

EXPERIMENTAL SECTION

Reagents and Chemicals
All reagents and chemicals in the experimental sections were used
without further purification. Cobalt nitrate hexahydrate
[Co(NO3)2·6H2O] was purchased from Macklin Biochemical
Co., Ltd. (Shanghai, China). Urea [CO(NH2)2] was brought
from Beijing Solarbio Science and Technology Co., Ltd.
(Beijing, China). Ammonium fluoride (NH4F) and ethanol
were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Cobalt (Ⅱ) carbonate hydrate
(CoCO3·H2O), Cobalt (Ⅱ) hydroxide (Co(OH)2), commercial
ruthenium (IV) oxide (RuO2) were purchased from Aladdin
Ltd. (Shanghai, China).

Synthesis of the Co(CO3)0.5OH@CC
The Co(CO3)0.5OH@CC was fabricated by a facile one-step
hydrothermal method. In a typical preparation procedure,
1.5 mmol Co(NO3)2·6H2O was dissolved in 30 ml deionized
water by magnetic stirring for several minutes to form a
homogeneous solution. Then, 0.1 g NH4F and 0.3 g urea were
added to the reactor under vigorous string for 5 min. The
obtained clear solution was transferred into a Teflon-lined
stainless-steel autoclave and a piece of 2*4 cm2 carbon cloth
was immersed into the solution vertically. The autoclave was
then sealed and placed in an oven at 120 oC for 8 h. After cooled
to room temperature, the as-fabricated Co(CO3)0.5OH@CC was
taken out and rinsed with ethanol and deionized water for several
times, and dried at 40 oC overnight.

Characterization
X-ray diffraction (XRD) measurement was performed on X-ray
powder diffractometer with a Cu Kɑ radiation (λ � 1.5406 Å).
Scanning electron microscopy (SEM) images were collected on
Hitachi S5500 scanning electron microscope. Transmission
electron microscope (TEM) and high-resolution transmission
electron microscope (HRTEM) images were collected using a
JEOL JEM2100F (accelerating voltage of 200 kV). Element
dispersive spectroscopy (EDS) measurements and line scans
profiles were performed on FEI Tecnai G2 F20 microscope, an
accessory built on the JEOL JEM-2100F. All XPS analyses were
carried out with Thermo VG Scientific ESCALAB 250
spectrometer (Al Kα radiator).

Electrochemical Measurement
Electrochemical properties of all catalysts were studied with a
standard three-electrode system on CHI 760E electrochemical
analyzer (Shanghai Chenghua Co.). A saturated calomel electrode
(SCE) and a graphite rod were employed as the reference
electrode and the auxiliary electrode, respectively. All the
potentials involved in this manuscript were converted to the
reversible hydrogen electrode (RHE) scale by following equation:
ERHE � ESCE + 0.0592*pH + 0.242. All the potentials involved in
this manuscript were not corrected by iR-correction. Before the
test, 1.0 M KOH was saturated by high-purity O2. A catalysts-
modified carbon cloth (1*1 cm2) was used as working electrode.
Linear sweep voltammetry (LSV) measurement was performed
with a sweep rate of 5 mV s−1. The Cdl value of different catalysts
were performed at potential of 1.02 to 1.12 V with the cyclic
voltammograms at different sweeping rates from
2 mV s−1–10 mV s−1. The electrochemical impedance
spectroscopy (EIS) was collected in a frequency range from
0.01 Hz to 100 kHz at 1.7 V.

RESULTS AND DISCUSSION

The synthesis route of Co(CO3)0.5OH@CC nanoarrays is
illustrated schematically in Figure 1. The needle-like
Co(CO3)0.5OH nanoarrays were in situ grown on the surface
of carbon cloth through a facile one-step hydrothermal method,
where the Co(NO3)2 aqueous solution were used as precursors
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and urea as an alkaline reagent in the presence of NH4F at 120°C.
Urea, a common ammonia-releasing agent, provides hydroxyl
ions (OH−) and carbonate ions (CO3

2−) during the hydrolysis
(Wang et al., 2012). NH4F is a good complexing ligand for Co2+

that can serve to reduce the concentration of free Co2+ ions,
lowing the supersaturation to probably favor the gradual growth
of needle-like Co(CO3)0.5OH nanoarrays (Zhu et al., 2013).

Figure 2A shows the X-ray powder diffraction (XRD) pattern of
as-prepared product, which was utilized to investigate the phase and
purity of the as-synthesized Co(CO3)0.5OH@CC catalysts. Except for
the peak about 26° derived from carbon cloth, other identified peaks
can be matched well with pure orthorhombic
Co(CO3)0.5OH·0.11H2O (JCPDS No. 48–0,083, a � 8.792 Å, b �
10.150 Å and c� 4.433 Å). The surface composition and valence states

of Co(CO3)0.5OH@CC nanoarrays were determined by X-ray
photoelectron spectroscopy (XPS). Full XPS spectrum
demonstrates the co-existence of Co, O, N and C in
Co(CO3)0.5OH@CC nanoarrays (Figure 2B). Figure 2C shows the
high-resolution Co 2p XPS spectrum, which can be best fitted with
two spin-orbit doublets and two shakeup satellites. The fitting peaks at
782.40 and 798.10 eV are assigned to Co2+ species, whereas the fitting
peaks at 780.46 and 796.40 eV are attributed to Co3+ species (Li et al.,
2020a; Li et al., 2020b). For O 1s XPS spectrum, the peaks located at
530.3, 530.95 and 532.40 eV are associated with metal-oxygen bond,
hydroxyl group (OH−) and oxygen vacancies (Tang et al., 2020; Li M.
et al., 2021). In the as-prepared Co(CO3)0.5(OH)@CC catalysts, the
metal-oxygen bond and hydroxyl group are typical characteristics of
carbonate hydroxide hydrates. While the high content oxygen
vacancies could also be found in this catalyst, which could offer
more efficient active sites and act as oxygen buffer to accelerate the
OER kinetics during electrocatalysis process.

The morphology and structure of the product were further
characterized with scanning electron microscopy (SEM) and
transmission electron microscopy (TEM). From typical SEM
images (Figures 3A,B; Supplementary Figure S1), one can
see that the as-prepared Co(CO3)0.5OH·0.11H2O exhibits a
needle-like array structure and grew vertically and densely on
the surface of carbon cloth, forming a 3D network structure. The
needle-like structure of Co(CO3)0.5OH·0.11H2O was clearly
observed in TEM images shown in Figures 3D,E. The average
diameter of Co(CO3)0.5OH·0.11H2O of nanoneedle is about
80 nm. 3D porous array structure can facilitate the mass
diffusion and the accessibility of the active sites/electrolytes.

FIGURE 1 | Schematic illustration for the synthesis of Co(CO3)0.5OH@
CC nanoarrays.

FIGURE 2 | (A) XRD pattern of Co(CO3)0.5OH@CC nanoarrays; (B) Full XPS spectrum of Co(CO3)0.5OH @CC nanoarrays; High-resolution (C) Co 2p and (D) O 1s
XPS spectra.

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 7543573

Yan Co(CO3)0.5OH·0.11H2O for Oxygen Evolution Reaction

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Figure 3F shows the high-resolution TEM (HRTEM) image of
Co(CO3)0.5OH·0.11H2O of nanoneedle, which presents well-
resolved lattice fringes with lattice spacing of about 0.23 nm
corresponding to the (231) plane of Co(CO3)0.5OH·0.11H2O.
Energy dispersive X-ray (XPS) spectrum confirms the presence
of Co and O elements (Supplementary Figure S2), in accordance
with XPS results. The element distribution was further
investigated by EDX element mappings (Figure 3G;
Supplementary Figure S3) and EDX line scanning profiles
(Supplementary Figure S4). It can be seen that the Co, O and
C elements are homogeneously distributed throughout the
Co(CO3)0.5OH·0.11H2O nanoneedles. All the characterizations
above prove that Co(CO3)0.5OH@CC catalyst was successfully
synthesized.

The electrocatalytic performance of Co(CO3)0.5OH@CC
nanoarrays for the OER was evaluated using a standard three-
electrode configuration in an alkaline medium (1.0 M KOH).
For comparison, Co(OH)2@CC, CoCO3@CC and RuO2@CC
were also tested under the same condition. Figure 4A displays
the OER polarization curves of Co(CO3)0.5OH@CC,
Co(OH)2@CC, CoCO3@CC and RuO2@CC. It can be found
that Co(CO3)0.5OH@CC presents the best electrocatalytic
activity towards OER as compared with the rest of samples.
The Co(CO3)0.5OH@CC electrode only require 317 mV of
overpotential to reach a current density of 10 mA cm−2

(Figure 4B), which is much lower than those of Co(OH)2@
CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC
(380 mV). The OER reaction kinetics of catalysts was
evaluated from the corresponding Tafel plots. As indicated
in Figure 4C, the Co(CO3)0.5OH@CC exhibits the smallest
Tafel slope of 146.3 mV dec−1, much lower than those of

Co(OH)2@CC (162.1 mV dec−1), CoCO3@CC (183.8 mV
dec−1) and RuO2@CC (177.3 mV dec−1), demonstrating a
more favorable reaction kinetics of Co(CO3)0.5OH@CC
during the OER. The excellent reaction kinetics of
Co(CO3)0.5OH@CC may be associated with good charge
transfer rate (Sun et al., 2018). To confirm this point, the
electrochemical impedance spectroscopy (EIS) was
performed. The Nyquist plot of Co(CO3)0.5OH@CC
presents the smaller semicircles compared to those of
Co(OH)2@CC and CoCO3@CC (Figure 4D), demonstrating
the lower charge-transfer resistance (Rct) and rapider charge
transfer rate. The electrochemical double layer capacitance
(Cdl) was applied to appraise the magnitude of
electrochemical active surface area (ECSA) (Li Z. et al.,
2021). The measurements were performed at potential of
1.02–1.12 V with the cyclic voltammograms at different
sweeping rates from 2 mV s−1 to 10 mV s−1

(Supplementary Figure S5). As revealed in Figure 4E, the
Co(CO3)0.5OH@CC has a larger Cdl value (21.82 mF cm−2)
than those of Co(OH)2@CC (14.45 mF cm−2) and CoCO3@
CC (0.462 mF cm−2), suggesting the presence of higher active
surface area on Co(CO3)0.5OH@CC. The long-term stability is
another vital parameter for the practical application of
electrocatalysts, which was studied via the
chronoamperometric i-t test conducted at 1.5 V. After
continuous operation 27 h, there is no significant
attenuation of current density for the Co(CO3)0.5OH@CC,
indicating good electrocatalytic stability.

The electrocatalytic stability of Co(CO3)0.5OH@CC is also
evidenced by XRD, XPS and SEM characterizations before and
after continuous OER operation. From XRD pattern shown in

FIGURE 3 | (A,B) SEM images of Co(CO3)0.5OH@CC nanoarrays at different magnifications; (C–E) TEM images of Co(CO3)0.5OH nanoneedles at different
magnifications; (F) HRTEM image of Co(CO3)0.5OH nanoneedle; (G) STEM image and EDX element mappings of Co(CO3)0.5OH nanoneedles.
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Figure 5A, the diffraction peak of recovered Co(CO3)0.5OH@
CC is the same as that before the OER stability. Figure 5B shows
the high-resolution Co 2p XPS spectra of Co(CO3)0.5OH@CC

before and after test. Compared with that before the reaction,
the peaks of Co 2p spectrum for Co(CO3)0.5OH@CC negatively
shift, which suggested that Co2+ had a tendency to transform

FIGURE 4 |Comparison of the OER activity of catalysts: (A)OER polarization curves in O2-saturated 1.0 MKOH; (B)Overpotentials at 10 mA cm−2; (C) Tafel plots;
(D) EIS Nyquist plots; (E) Cdl values of catalysts; (F) The chronopotentiometry curve of Co(CO3)0.5OH@CC obtained at 1.5 V.

FIGURE 5 | (A) XRD pattern of recovered Co(CO3)0.5OH@CC after i-t test; (B) High-resolution Co 2p spectra of Co(CO3)0.5OH@CC before and after i-t test; (C–D)
SEM images of recovered Co(CO3)0.5OH@CC.
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like Co3+ during the OER process. The Co3+ species may be
assigned to the Co species in CoOOH, suggesting CoOOH may
serve as active site for the OER (Zhong et al., 2021).
Furthermore, the morphology of Co(CO3)0.5OH@CC is
maintained well apart from the slight surface corrosion
(Figures 5C,D). According to the above results and data
analysis, the Co(CO3)0.5OH@CC demonstrates outstanding
OER activity, which can be its unique needle-like array
architecture and surface chemical properties.

CONCLUSION

In summary, we reported a novel catalyst consisting of long-
needle like carbonate hydroxide hydrate nanoarrays dirrectly in
situ growth on carbon cloth substrate by a green and facial one-
step hydrothermal strategy. Benefiting from the nanoneedles
arrayed architecture and unique active component, the as-
prepared Co(CO3)0.5OH@CC possess abundant accessible
active sites, efficient mass/electron transfer channels and
robust structure stabilities. Thus, the as-synthesized
Co(CO3)0.5OH@CC exhibits outstanding electrocatalytic
performance towards the OER in alkaline medium (1.0 M
KOH) with a low overpotential of 317 mV at a current density
of 10 mA cm−2 and could maintained well even after 27 h
continuous electrolysis. We believe that such excellent catalytic
activity and robust stability of Co(CO3)0.5OH@CC enables it to
be an economical and competent electrocatalyst for large-scale
electrochemical applications.
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