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Pathogenic microorganisms pose great challenges to public health, which is constantly
urgent to develop extra strategies for the fast staining and efficient treatments. In addition,
once bacteria form stubborn biofilm, extracellular polymeric substance (EPS) within biofilm
can act as protective barriers to prevent external damage and inward diffusion of traditional
antibiotics, which makes it frequently develop drug-resistant ones and even hard to treat.
Therefore, it is imperative to develop more efficient methods for the imaging/detection and
efficient inhibition of pathogenic microorganisms. Here, a water-soluble aggregation-
induced emission (AlE)-active photosensitizer TPA-PyOH was employed for fast
imaging and photodynamic treatment of several typical pathogens, such as S. aureus,
methicillin-resistant Staphylococcus aureus, L. monocytogenes, C. albicans, and E. coli.
TPA-PyOH was non-fluorescent in water, upon incubation with pathogen, positively
charged TPA-PyOH rapidly adhered to pathogenic membrane, thus the molecular
motion of TPA-PyOH was restricted to exhibit AlE-active fluorescence for turn-on
imaging with minimal background. Upon further white light irradiation, efficient reactive
oxygen species (ROS) was in-situ generated to damage the membrane and inhibit the
pathogen eventually. Furthermore, S. aureus biofilm could be suppressed in vitro. Thus,
water-soluble TPA-PyOH was a potent AlE-active photosensitizer for fast fluorescent
imaging with  minimal background and photodynamic inhibition of pathogenic
microorganisms.

Keywords: aggregation-induced emission, photosensitizer, fast staining, photodynamic therapy, pathogenic
microorganisms
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INTRODUCTION

Pathogenic microorganisms, especially drug-resistant bacteria,
are posing more and more severe threat to human health in
last decades. (Bartell et al., 2019; Kang et al., 2019) According to
the World Health Organization, bacterial infection caused
highest death rate in less developed countries in the past
15 years. (Wang Y. et al., 2020) Due to the high infectivity and
mortality of bacteria, bacterial infection threats the public health
and economic development all over the world. The use of
antibiotic, such as penicillin and colistin, has saved millions of
people and has achieved periodical success. (Yu et al., 2021)
However, antibiotics are double-aged swords. Long-time use and
overuse of traditional antibiotics have led to multidrug-resistance
bacteria as far as superbug. Apart from that, extracellular
polymeric substances form biofilm and protect bacteria from
treating and external environments. (Liu et al., 2016; Cao et al,,
2020) Due to the presence of biofilm, bacteria become more and
more strong to result in more challenging public health issues.

To tackle the dilemma of antibiotics, many efforts have been paid
to develop alternative antibacterial agents and materials with extra
inhibition mechanisms. (Lakemeyer et al, 2018) With the rapid
progress of medicine and interdisciplinary, new antibacterial systems
have received more and more attention. (Xi et al., 2019; Cui et al.,
2020) Several antimicrobial systems with diverse modalities have
been designed to eliminate or inhibit pathogenic microorganisms,
such as inorganic antibacterial materials, (Qiao et al, 2020),
antimicrobial peptides (AMPs), (Chen H. et al.,, 2018; Yang et al.,
2020) hydrogels, (Wang et al., 2019; Zhu et al,, 2019; Tian et al,
2020), polymeric antimicrobials, (Cao et al., 2018; Lu et al,, 2018),
antibacterial coatings, (Wang B. et al, 2018; Wei et al, 2019),
phototherapeutic antibacterial systems, (Qing et al, 2019; Li Y.
et al, 2020; Wang Y. et al, 2020; Guo et al, 2020; He et al,
2020; Yuan et al.,, 2020; Zhao et al., 2020) etc.

As a novel antibacterial method, photodynamic therapy (PDT)
has attracted more and more attention for bacterial inhibition. (Liu
et al,, 2019; Xiao et al., 2020) Compared with traditional antibiotics,
the advantages of PDT are prominent, such as non-invasive nature,
favorable spatiotemporal control, negligible drug resistance, and low
systemic toxicity. (Yao et al., 2020; Qi et al., 2021) Photosensitizers
can transfer photon energy to surrounding oxygen molecules to
produce ROS eventually for therapeutic applications in typical PDT
processes. (Dai et al., 2020) In terms of photodynamic inhibition of
pathogenic microorganisms, the exploration of photosensitizers in
PDT to produce ROS for antibacterial therapy and localized
pathogen elimination has made great progress, (Hu et al., 2019),
but traditional photosensitizers inevitably suffer from well-known
aggregation-caused quenching (ACQ) effect, which has caused
serious compromise of fluorescence emission and ROS generation
in aggregation state. (Tang, 2020; Xu et al.,, 2020) Most traditional
photosensitizers are hydrophobic, their self-assembled aggregates
and subsequent interaction with cells usually lead to fluorescence
quenching and decreased ROS generation. In the past 2 decades, the
proposed AIE concept has shaded light on diverse fields as well as
novel AlE-active photosensitizers for biological applications, (He
et al, 2019; Kang et al., 2020), which have been widely applied for
in vitro and in vivo detection and theranostics. (Pandey and
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Chakravarthy, 2021) AlE-active photosensitizers show strong
fluorescence emission and ROS generation in aggregation state,
which benefits from the mechanism of restriction of
intramolecular motion. (Hu F. et al, 2018; Li Q. et al,, 2020) In
addition, the exploration of water-soluble AIE-active
photosensitizers is favorable to reduce imaging background and
promote the resultant theranostic performances in restricted
aggregates. (Wang D. et al, 2018) The generated ROS can
oxidize DNA, RNA and lipids of bacterial membrane and cells,
and lead to bacterial destruction. (Chen S. et al., 2018; Li et al., 2021).

In this work, an AIE-active photosensitizer, TPA-PyOH, was
developed for fast pathogen imaging and photodynamic
inhibition (Figure 1). TPA-PyOH had a quaternary
ammonium group and a terminal hydroxyl unit, possessing
excellent water solubility, so its biological application was
widely applicable with favorable working concentration range.
More importantly, it demonstrated good antibacterial property
via in vitro analysis, including not only Gram-positive bacteria,
such as S. aureus, methicillin-resistant Staphylococcus aureus
(MRSA), and Conocytogenes, but also Gram-negative E. coli.
Apart from that, C. albicans, a fugus, was also inhibited
effectively by the photodynamic effect of TPA-PyOH. After
that, the S. aureus biofilm could be also inhibited. In addition,
as a proof-of-concept, TPA-PyOH was also employed for wash-
free cell imaging, which could potentially further promote its
extra theranostic applications.

EXPERIMENTAL

Chemicals and Materials

4-methylpyridine and 2-bromoethan-1-ol were purchased from
Aladdin. Dichloromethane (DCM) was distilled over CaH,. Methyl
sulfoxide (DMSO), N, N-dimethylformamide (DMF), ethanol, and
all other reagents were purchased from Sinopharm Chemical
Reagent Co., Ltd., and used as received. SYTO 9 and propidium
iodide (Invitrogen LIVE/DEAD®BacLight Bacterial Viability Kit,
L7012) was purchased from Thermo Fisher Scientific. Water used
in this study was deionized with a Milli-QSP reagent water system
(Millipore). S. aureus (ATCC 6538) and MRSA (ATCC 43300)
were used as Gram-positive bacteria. E. coli (ATCC 25922) was
used as Gram-negative bacteria, and C. albicans (ATCC 10231) was
used as a representative fungus.

Synthesis of TPA-PyOH

As shown in Figure 1A, TPA-PyOH was synthesized via facile
two steps. (Wang Y.-L. et al, 2020). Its structure was
characterized by 'H NMR spectrum (Supplementary Figure S1).

Characterization

UV-vis spectra were obtained by an UV-2600 ultraviolet and
visual spectrophotometer (Shimadzu, Japan). Fluorescence
spectra were investigated by an FL-1000 Steady State and
Transient State Fluorescence Spectrometer (Edinburgh
Instruments Ltd., United Kingdom). CLSM imaging was
performed on a confocal laser scanning microscope (Carl Zeiss
LSM 880 META, Germany).
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FIGURE 1| Schematic illustration for (A) the synthesis of a water-soluble aggregation-induced emission (AlE)-active photosensitizer, TPA-PyOH. (B) Its application
for fast staining and imaging of pathogenic microorganisms. Upon white light irradiation, reactive oxygen species (ROS) was in situ generated to inhibit pathogens
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Typically, ABDA (20 pl stock solution, 5 mM) was added to the
dispersion of TPA-PyOH, and finally diluted into 2ml by
deionized water. The mixed dispersion was irradiated by white
light for different time and the absorption intensity of ABDA at
378 nm was recorded.

Confocal Laser Scanning Microscopy
Imaging

The interaction of TPA-PyOH with pathogenic microorganisms was
observed by confocal laser scanning microscopy (CLSM) imaging.
Typically, a single colony of microorganism was inoculated in Luria-
Bertani (LB) broth at 37°C and shaking overnight. After 12 h, the
suspension was centrifuged and washed with PBS buffer for three
times, then the suspension was adjusted to OD600 = 0.1 with PBS
buffer. The microorganism dispersions were co-incubated with
TPA-PyOH (25uM or 5uM) or PBS for 5min at 37°C,
respectively. Then the dispersion was centrifuged and washed
with deionized water for three times. Finally, the residual
microorganism cells were imaged by the CLSM system.

In Vitro Antibacterial Activity

The MIC values of TPA-PyOH against S. aureus, MRSA, E. coli, and
C. albicans were determined by standard procedures. (Li et al., 2014)
Typically, a single colony of microorganism was inoculated in Luria-
Bertani (LB) broth and kept shaking at 37°C overnight, then the
suspension was diluted to OD600 = 0.001 (S. aureus, MRSA, and
E. coli) or OD600 = 0.1 (C. albicans) with LB broth. The aqueous

solution of TPA-PyOH was adjusted to a series of two-fold dilutions
with deionized water. Microorganism suspension (100 pl) was added
to the diluted TPA-PyOH dispersion (100 pl) at 96-well plates, and
the mixture was incubated at 37°C for 30 min. The mixture was
subjected to white light for 20 min or at dark, respectively. After
growing at 37°C for 24 h, the turbidity of microorganism with TPA-
PyOH or PBS buffer was recorded by OD at 600 nm using a
microplate reader (infinite 200 pro, Tecan).

Zeta Potential Analysis

The dispersions of S. aureus and E. coli were incubated overnight,
respectively, then diluted to OD = 0.1. The bacteria dispersion
was then stained with TPA-PyOH for 10 min, the zeta potential
value was finally determined by a Malvern Zetasizer.

Formation of S. aureus Biofilm

Typically, single colony of S. aureus was inoculated in LB broth at
37°C. After shaking overnight, the bacterial suspension was
adjusted to OD600 = 0.02, then added into 96-well plates. The
96-well plate with bacterial suspension was cultivated at 37°C for
72h. The medium was refreshed every 24h and planktonic
bacteria were removed by PBS washing. Eventually, the S.
aureus biofilm was formed in the bottom of 96-well plates.

In Vitro Biofilm Inhibition Assay

S. aureus biofilm was formed on 96-well plates according to the
protocol described above. The LB broth was removed, and the
biofilm was washed by PBS buffer for two times to wash away
the planktonic bacteria. The obtained biofilm was incubated
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FIGURE 2 | (A) UV-vis absorption spectrum of TPA-PyOH and its representative photograph of aqueous solution. (B) PL spectra of TPA-PyOH (10 mM) in water/
THF mixtures with different THF volume fractions (frF). (C) The plot of the emission maximum and the relative emission intensity (//o) versus the composition of the water/
THF mixtures of TPA-PyOH. Inset: fluorescence photographs of TPA-PyOH in the pure water and in water/THF mixtures with 99% THF fractions under 365 nm UV
irradiation. (D) Absorption spectra of ABDA (50 pM) upon white light irradiation for diverse durations. (E) Absorption spectra of ABDA in the presence of TPA-PyOH
(20 uM) upon white light irradiation for diverse durations. (F) Plot of the relative absorbance of ABDA with white light irradiation under different conditions (Ag and A are the
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with PBS or TPA-PyOH (100 uM) at 37°C for 2 h at dark. After
incubating for 2 h, the mixture was treated with white light
irradiation (~38.6 mW/cm?, 20 min) or kept at dark in the
whole process, then the residual biofilms were rinsed with PBS
buffer for three times. After that, PBS (200 pl) was added into
each well and treated with ultrasonication for 10 min to
disperse the residual biofilm. Finally, the bacteria colony
from the residual biofilm was calculated by Mueller-Hinton
(MH) agarose plate analysis.

Live/Dead Staining Assay

S. aureus were cultured to form biofilm on a poly (methyl
methacrylate) (PMMA) slide (10 mm x 10 mm X 0.2 mm) in
24-well microtiter plates at 37°C. After 72 h, free bacteria were
rinsed with sterile PBS buffer. Then the obtained biofilms were
incubated with PBS or TPA-PyOH for 2h at 37°C. After
irradiation by white light or at dark, the residual biofilm was
washed by PBS buffer and stained by the LIVE/DEAD BacLight
bacterial viability kit. Finally, 3D confocal images were obtained
on the CLSM system. Bacteria stained with green and red were
considered to be living and dead, respectively.

Cell Viability Assay
MTT assay was used to measure potential cytotoxicity of TPA-
PyOH. Human pulmonary epithelial cells (A549 cells) were

seeded in 96-well plates. After culture for 24h at 37°C in a
humidified incubator (5% CQO,), the culture medium was
refreshed and added with TPA-PyOH with different
concentration and co-incubated for 24h. Then the culture
milieu was refreshed, and MTT agent was added into the 96-
well plates to incubate for another 4 h. Then, the milieu was
removed, and DMSO was added into the plates. The absorbance
intensity at 570 nm was measured by a microplate reader.

Hemolytic Analysis

Hemolysis was evaluated by rat red blood cells (RBCs). RBCs
were collected by centrifugation (1,000 rpm, 20 min). After
washing with PBS buffer for three times, the dispersion of
RBCs (100 pl) was added into diverse samples with different
contents (900 ul) and incubated at 37°C for 4h. Finally, the
mixture was centrifuged at 1,000rpm for 5min. The
supernatant was collected and the absorbance at 540 nm was
recorded by a microplate reader.

RESULTS AND DISCUSSION

Characterization of TPA-PyOH
The absorbance peak of TPA-PyOH in water located at ~457 nm
(Figure 2A), the excitation of TPA-PyOH was not in ultraviolet
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FIGURE 3 | CLSM images (40x) of S. aureus and L. monocytogenes after staining with TPA-PyOH at diverse content for 5 min. TPA-PyOH was excited at 488 nm,
and the emission range was collected at 520-670 nm. Green pseudo color is used to represent fluorescent signal from TPA-PyOH channel.

L. monocytogenes

region, thus avoiding its negative effects for biological
applications. Typical AIE curve of TPA-PyOH was performed
in diverse solvent fractions using water as a good solvent and
tetrahydrofuran (THF) as a poor solvent. PL spectra of TPA-
PyOH in water/THF mixtures with different THF volume
fractions (frgr) were determined accordingly (Figure 2B). The
emission maximum located at around 660-680 nm, along with
the THF fraction gradually increases to 90%, the emission
intensity increased gradually. However, when the THF fraction
reached from 90 to 99%, the emission intensity increased
dramatically and the emission peaks of it was ~92 times
higher than that in pure water solution. The insert fluorescent
image of sample at 99% exhibited remarkable orange red
fluorescence compared to its pure aqueous solution. The AIE
cure of TPA-PyOH definitely indicated its AIE characteristics
(Figure 2C), which was well consistent with some reported AIE
systems. (Li et al., 2018; Wang et al., 2020b).

In Vitro ROS Generation

The ROS generation capacity of TPA-PyOH was evaluated
accordingly. Cytotoxic ROS in PDT can be generated by both
type I and type II mechanisms, which produces superoxides
and single oxygen ('O,), respectively (Yang et al., 2020).

9,10-Anthracenediyl-bis(methylene) dimalonic acid (ABDA)
was used as indicator of '0,. The absorbance of ABDA had no
obvious decrease upon white light irradiation with different
durations (Figure 2D). However, the absorption spectra of the
mixture of ABDA and TPA-PyOH was changed significantly
upon the same treatments (Figure 2E). Relative absorbance of
ABDA at 378 nm showed that the photodynamic process of
TPA-PyOH had remarkable ability to produce 'O, (Figure 2F)
(Zheng et al., 2020).

Fast Imaging of Pathogenic
Microorganisms and Wash-Free Cell
Staining

Aggregation-induced emission luminogen (AIEgen) molecular
probes have intensive fluorescence emission upon aggregation
arised from the mechanism of restriction of intramolecular
motion. (Hu F. et al., 2018) The unique light-up fluorescence
of AlEgens with excellent photostability has made them popular
in fluorescence imaging in biomedicine. (He et al., 2020) Based on
this, in vitro fluorescence imaging of microbes was evaluated by
typical CLSM imaging. S. aureus and L. monocytogenes were
selected as two Gram-positive bacterial models to explore their
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FIGURE 4 | CLSM images (40x) of E. coli and C. albicans after staining with TPA-PyOH for 5 min. TPA-PyOH was excited at 488 nm, and the emission range was
collected at 520-670 nm. Green pseudo color is used to represent fluorescent signal from TPA-PyOH channel.

E. coli

2.5 UM

interaction behavior with TPA-PyOH. As shown in Figure 3, S.
aureus and L. monocytogenes both showed obvious fluorescent
signal after incubating TPA-PyOH for only 5 min. The working
content of TPA-PyOH was also examined at 2.5 and 5uM,
respectively. There was no significant imaging difference
between these two different concentrations. The native
fluorescence of S. aureus was minimal in the absence of TPA-
PyOH (Supplementary Figure S2).

Furthermore, Gram-positive L. monocytogenes is a significant
threat in food industry and daily life. It is an opportunistic
pathogen with a high fatality rate in susceptible populations.
(Dygico et al,, 2021) It can grow under adverse conditions in
food production environment. Therefore, it is important to
improve the detection efficiency of L. monocytogenes. In this
work, the fast staining of L. monocytogenes was achieved upon
only 5min incubation with TPA-PyOH. Obviously, with the
concentration improved from 2.5 to 5uM, the bacterial
fluorescence intensity increased slightly, thus it provided a new
method for rapid staining and imaging of L. monocytogenes. The
native fluorescence of L. monocytogenes was minimal in the
absence of TPA-PyOH (Supplementary Figure S3).

After that, E. coli was employed as a representative Gram-
negative bacterium for the imaging examination of TPA-PyOH.

As presented in Figure 4, upon incubation for 5min, the
fluorescent intensity of E. coli was slightly weak. The result
was speculated from the difference of their bacterial
membrane compared with Gram-positive bacteria. Gram-
negative bacteria are well-known to be intrinsically resistant to
many antibiotics due to the permeability barrier that is provided
by their unique cell envelope. (Hu X. et al., 2018) This envelope
consists of an outer membrane (OM) and inner membrane (IM),
which are separated by a periplasmic space. (Masi et al., 2017)
The special structure of Gram-negative bacteria made TPA-
PyOH slightly difficult to attach and diffuse in the membrane,
but the short-time staining of typical Gram-negative bacteria was
still discernable and effective. Similarly, the native fluorescence of
E. coli was minimal in the absence of TPA-PyOH
(Supplementary Figure S4). In addition, the dispersion of S.
aureus and E. coli was incubated with TPA-PyOH for 10 min,
respectively, (Supplementary Figure S5). The charge properties
of these two bacteria kept negative, which primarily resulted from
sufficient adhesion and inward diffusion of positively charged
TPA-PyOH with the negative bacterial membrane.

Notably, C. albicans was also examined as an example of fungi.
Upon staining with the same short duration, the concentration
increasing of TPA-PyOH could further brighten the fluorescent
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images of C. albicans (Figure 4 and Supplementary Figure S6).
The fast staining and imaging of C. albicans has been a challenge
in biomedicine due to the presence of protective cell wall with
complex eukaryotic cell structure. Slightly enhanced treating
content of TPA-PyOH was favorable to achieve fast staining
and fluorescent imaging of C. albicans.

Apart from the fast imaging of pathogenic microorganisms,
TPA-PyOH was also interrogated for the staining of
mammalian cells. Inspired from its minimal fluorescent
background in pure water, wash-free staining of TPA-PyOH
was performed for EMT6 cells and observed by CLSM imaging.
(Huang et al., 2021). EMT6 cells were incubated with TPA-
PyOH for 4h and imaged directly without extra washing
(Supplementary Figure 7), the fluorescence intensity of the
cells was remarkable for facile observation, in which the
fluorescence background was undetectable. This result agreed
well with the AIE characteristic of water-soluble TPA-PyOH. In
addition, the cytotoxicity of TPA-PyOH towards EMT6 cells
was minimal at dark at the content of 5uM (Supplementary
Figure S8).

In Vitro Photodynamic Inhibition of

Pathogenic Microorganisms
Since TPA-PyOH could interact and diffuse in pathogenic
microorganisms or probably accumulate on the cell surface,

the ROS produced by the AlEgen could attack the microbe
upon white light irradiation. Inspired by efficient fluorescence
imaging and ROS production of TPA-PyOH, in vitro
antimicrobial ability of TPA-PyOH was further evaluated in
subsequent section. Using a microbroth dilution protocol, the
antimicrobial activities of TPA-PyOH were evaluated against
clinically representative pathogentic microorganisms, including
S. aureus, MRSA, E. coli, and C. albicans. The turbidity of
microbes upon diverse treatments was recorded by the OD
values at 600 nm (Figures 5A-C). The killing effect of TPA-
PyOH on Gram-positive S. aureus and MRSA was stronger than
that of Gram-negative E. coli. It mainly resulted from the
membrane structure of Gram-negative bacteria that probably
inhibit or delay the adhesion and entry of the AIEgen, and some
of the internalized molecules were even expelled by an efflux
pump. (Masi et al., 2017) Herein, for Gram-negative bacteria,
extracellular ATEgens were less effective in killing bacteria due to
their less potency to enter the cells as well as limited action range
and lifetime of ROS in subsequent PDT, which resulted in the
compromised bacterial inhibition efficiency by TPA-PyOH. On
the other hand, even in the dark condition, TPA-PyOH also
showed moderate inhibition towards the Gram-positive bacteria.
The PDT treatment of TPA-PyOH was determined to be effective
towards C. albicans was also effective (Figure 5D).

The morphology of bacteria upon PDT of TPA-PyOH was
further observed by SEM analysis, which could directly visualize
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FIGURE 6 | SEM images of S. aureus upon diverse treatments. The blue arrows indicated probable adhesion sites of TPA-PyOH with the bacteria. The red arrows
indicated the obvious damage sites on the membrane upon photodynamic treatments.
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subtle change of bacterial morphology for S. aureus upon
diverse treatments (Figure 6). The untreated S. aureus cells
displayed almost intact surface, which was comparable to the
group with only white light irradiation. For the bacteria
incubated with TPA-PyOH, bacterial cells were obviously
coated with many small patches, which were indicated by
blue arrows in the image, probably resulting from the
adhesion and fusion of TPA-PyOH as well as co-assembly
with the membrane. It provided favorable condition for in-
situ ROS generation in the membrane in subsequent
photodynamic treatment due to limited ROS damage range.
(Zhang et al.,, 2019) Upon further white light irradiation, as
noted by red arrows in the image, the bacteria membrane
collapsed at the patching sites arised from TPA-PyOH
accumulation and in-situ ROS damage. These direct
observations from SEM analysis demonstrated the efficient
PDT potency of TPA-PyOH in bacterial inhibition.

In Vitro Biofilm Inhibition Analysis

As a proof-of-concept, the inhibition effect of TPA-PyOH
towards established biofilm was evaluated using S. aureus
biofilm as a model. (Wang C. et al., 2020) Firstly, LIVE/DEAD
staining assay was performed by 3D CLSM imaging for all
biofilm samples after different treatments. As shown in
Figure 7A, live bacteria and dead bacteria were noted in
green (SYTO-9) and red fluorescence color (PI), respectively.
Compared with other groups, the group of TPA-PyOH with
white light irradiation displayed stronger red fluorescence in
the biofilm. The group of TPA-PyOH without white light

irradiation also displayed weak red fluorescence, suggesting
moderate native inhibition effect of TPA-PyOH. These
results indicated that the PDT of TPA-PyOH could inhibit
biofilm to some extent. Efficient treating and eradication of
the bacteria in deep biofilm was still challenging due to the
protection of EPS. (Cao et al.,, 2020; Wang Y. et al., 2020)
After that, the biofilm inhibition efficiency of TPA-PyOH was
quantitatively examined, broth dilution method was used to
calculate  the residual bacteria after ultrasound.
Representative photographs of plates with residual S.
aureus biofilm after each treatment were shown in Figures
7B,C. The group of TPA-PyOH with white light irradiation
exhibited most apparent killing effect for the S. aureus
biofilm.

Biocompatibility Analysis

Then the biocompatibility of TPA-PyOH was evaluated,
including cytotoxicity and hemolysis. The cell survival rate
was observed to be ~87.5% when the concentration of TPA-
PyOH was up to ~62.5 uM (Figure 8A). The result suggested
that the cytotoxicity of AIEgen was minimal to mammalian
cells. In addition, the hemolysis of TPA-PyOH was analyzed
typically (Figure 8B). The hemolysis ratio was minimal for
TPA-PyOH, determined to be <1%, as the content of
increased from 0 to 62.5 uM. The AIEgen only caused <3%
red blood cell hemolysis at a high content up to 125 uM. These
results were also supported by photographs of different
concentrations of samples incubated with red blood cells
(Figure 8B insert). These results verified the acceptable
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FIGURE 7 | (A) The merged fluorescence images of S. aureus biofilms upon diverse treatments. The whole biofilm was co-stained by SYTO-9 (green channel) and
PI (red channel); (B) Representative plate photographs of S. aureus colonies upon diverse treatments; (C) Number of viable S. aureus bacterial count after different
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biocompatibility of TPA-PyOH for promising biological
applications.

CONCLUSION

In summary, a water-soluble AIE-active photosensitizer, TPA-
PyOH, was developed for fast imaging and photodynamic
inhibition of pathogenic microorganisms. TPA-PyOH could fast
stain and image several typical pathogens, such as S. aureus, MRSA,

L. monocytogenes, C. albicans, and E. coli. The effective working
concentration of TPA-PyOH could be as low as ~2.5 uM to achieve
favorable performance with minimal background interference.
Upon white light irradiation, in-situ ROS generation in bacterial
membrane could damage and inhibit the bacteria eventually. As a
proof-of-concept, TPA-PyOH was observed to inhibit S. aureus
biofilm benefited from its efficient adhesion and subsequent PDT
treatments.  Furthermore, TPA-PyOH exhibited excellent
biocompeatibility at dark, which also laid a solid foundation for its
promising clinical translational applications.
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FIGURE 8 | (A) /n vitro cytotoxicity analysis for TPA-PyOH upon incubation with A549 cells for 24 h; (B) Typical hemolytic analysis of TPA-PyOH against mice red
blood cells. Inset: Representative images for the samples upon diverse treatments in hemolytic analysis.
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