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Chemotherapy is one of the commonly used therapies for the treatment of malignant
tumors. Insufficient drug-loading capacity is the major challenge for polymeric
micelle–based drug delivery systems of chemotherapy. Here, the redox-responsive
star-shaped polymeric prodrug (PSSP) and the dimeric prodrug of paclitaxel (PTX)
were prepared. Then the dimeric prodrug of PTX (diPTX, diP) was loaded into the core
of the star-shaped polymeric prodrugmicelles of PSSP by hydrophobic interaction forming
the redox-responsive prodrug micelles of diPTX@PSSP for intracellular drug release in
tumor cells. The hydrodynamic diameter of diPTX@PSSP nanoparticles was 114.3 nm ±
2.1 (PDI � 0.219 ± 0.016), and the micelles had long-term colloidal stability and the drug-
loading content (DLC) of diPTX and PTX is 16.7 and 46.9%, respectively. The prepared
micelles could broke under the reductive microenvironment within tumor cells, as a result,
the dimeric prodrug of diP and polymeric prodrug micelles of PSSP were rapidly
disassembled, leading to the rapid release of intracellular drugs. In vitro release studies
showed that under the condition of reduced glutathione (GSH) (10 mM), the release of PTX
was significantly accelerated with approximately 86.6% released within 21 h, and the
released PTX in cytoplasm could promote the disintegration of microtubules and induce
cell apoptosis. These results indicated that the new type of this reduction-sensitive
nanodrug delivery system based on dimeric prodrug@polymeric prodrug micelles
would be a promising technology in chemotherapy.
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INTRODUCTION

Polymeric micelles with a well-defined core-shell structure, which can improve the solubility,
bioavailability, and circulation half-life of hydrophobic drugs thus became a promising nano-
carrier for cancer treatment (Feng et al., 2020; Gauger et al., 2020; Yi et al., 2021a). Due to the
unique physiological property of tumor blood vessels, polymer micelles usually from 50 to 150 nm
can be passively enriched in tumor tissues through the enhanced permeability and retention (EPR)
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effect (Yi et al., 2021b; Ghosh and Biswas, 2021; Kaur et al.,
2021). Although nano-sized polymeric micelles can efficiently
accumulate in tumor tissues, insufficient drug loading is still
one of the main challenges for polymeric micelles in the drug
delivery system.

The prodrug is obtained by directly coupling the drug and the
carrier through chemical bonds, which can accurately control the
drug loading and increase the solubility and stability of the drug
(Deng et al., 2021; Du et al., 2021; Yang et al., 2021). It thus
changes the biodistribution, improves pharmacokinetics and
pharmacodynamics, increases therapeutic effect, and reduces
side effect (Dhiman et al., 2021; Wang et al., 2021). FDA-
approved polymers such as PLGA, PEG, and dextran have
been widely used in the development of polymer-drug
conjugates (prodrugs) (Li et al., 2017; Hong et al., 2020; Zeng
et al., 2020; An et al., 2021). The therapeutic effect of nano-drug
not only depends on the enrichment effect of nanoparticles in

tumor tissues, but also on the exposure amount of free drugs. In
order to achieve controlled drug release in tumor cells, many efforts
have been devoted to introduction of chemical bonds between
drugs and polymers, which are the intrinsic stimuli of the tumor
microenvironment, such as acidity, redox potential, and specific
enzymes (Chakroun et al., 2020; Hao et al., 2020; Sun and Zhong,
2020; Uthaman et al., 2020). For redox potential, the concentration
of glutathione (GSH) in tumor cells is much higher than that in the
extracellular. Among them, the concentration of tumor cells is
much higher than that in the normal cells (∼2 μmol) (Tang et al.,
2020). The disulfide bonds introduced in the polymeric prodrug
micelles can be reduced at high levels of GSH in the cytoplasm,
leading to the dissociation of the carriers and subsequent
intracellular release of the drug (Chen et al., 2018; Wang et al.,
2020). Therefore, designing reduction-sensitive disulfide bonds as
bridge bonds to construct polymeric prodrug nanoparticles is a
common strategy for drug delivery systems.

SCHEME 1 | A reduction-sensitive nanodrug delivery system based on dimeric prodrug@polymeric prodrugmicelles for drug delivery. (A) The structure of the star-
shaped polymeric prodrug (4-arm PEG-SS-PTX, PSSP) and reduction-sensitive dimer-PTX (PTX-SS-PTX, diP) with disulfide linker. (B) diP was encapsulated into the
core of PSSP micelles to obtain diP@PSSP micelles by hydrophobic effect. (C) PTX release mechanism of diP@PSSP micelles in tumor cells.
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Moreover, polymer prodrugs can also be used as drug carriers
to load other drugs for combination therapy (Yi et al., 2016; Lu
et al., 2020). It is worth noting that the drug loading and
encapsulation efficiency of small hydrophobic drugs loaded
by amphiphilic polymers are usually low (less than 10%)
(Shen et al., 2017; Wang et al., 2017). This result may be
mainly attributed to the formation of large drug aggregates
through the packing of drug molecules with a long-range order
(Cai et al., 2015). The design of the dimeric prodrug has
emerged as one of the new potential strategies for increasing
drug loading by hydrophobic interactions, due to the fact that
drug dimers can prevent large particle formation (He et al.,

2018). Furthermore, the dimeric prodrug possess the stronger
intermolecular hydrophobic interactions than the free drug
because of the increased surface area and the enhanced
tendency of the prodrug to aggregate (Pei et al., 2018; Li
et al., 2020; Zuo et al., 2020). Therefore, the design of the
drug delivery system based on dimeric prodrug can improve
drug loading effectively.

In order to obtain the nanodrug delivery system with a high
drug-loading content (DLC), in this study, a prodrug micelle with
DLC composed of a redox-responsive star-shaped polymeric
prodrug of paclitaxel (PTX) and a redox-responsive dimeric
prodrug of PTX was established to inhibit the growth of

FIGURE 1 | Facile synthesis of the redox-sensitive dimeric prodrug of dimer-PTX (PTX-SS-PTX, diP) and the star-shaped polymeric prodrug of 4-arm PEG-SS-PTX
(PSSP).

FIGURE 2 | 1H NMR spectrum (400 MHz, CDCl3) of diPTX.
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tumor cells. As shown in Scheme 1, the star-shaped polymeric
prodrug (4-arm-PEG-SS-PTX, PSSP) and the reduction-sensitive
dimer-PTX (PTX-SS-PTX, diP) with disulfide linker were
synthesized by a thiol-disulfide exchange reaction and an
esterification reaction, respectively. Then the dimeric prodrug
of diP was loaded into the hydrophobic core of the polymeric

prodrug of PSSP micelles by the hydrophobic interaction to
obtain diP@PSSP micelles. The diP@PSSP micelle has good
stability, the size of the diP@PSSP micelle is 114.3 nm ± 2.1
(PDI � 0.219 ± 0.016), and the DLC of diPTX and PTX is 16.7
and 46.9%, respectively. This diP@PSSP micelle is specifically
internalized into tumor cells by EPR effect and the disulfide

FIGURE 3 | 1H NMR spectrum (400 MHz, d-DMSO) of PSSP.

FIGURE 4 | (A)Hydrodynamic size distribution of PSSP and diP@PSSPmicelles. (B) Stability assay of PSSP and diP@PSSPmicelles in PBS during 20-day storage
at room temperature. The TEM images of (C) PSSP and (D) diP@PSSP micelles. The scale bar is 100 nm.
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bond could be cleaved immediately under the condition of high
concentration of GSH, thereby releasing PTX and diPTX.
Subsequently, the released diPTX and PTX could also be
released from the dimeric prodrug of diP. Finally, the released
drug would disrupt the balance of microtubule polymerization and
depolymerization to inhibit the growth of tumor cells.

RESULTS AND DISCUSSION

Characterization of the Prepared Prodrug
Redox-sensitive disulfides were introduced into the dimer prodrug
and polymer prodrug to control drug release, the synthetic route of
the redox-sensitive dimeric prodrug of dimer-PTX (PTX-SS-PTX,
diP), and the star-shaped polymeric prodrug (4-arm-PEG-SS-PTX,

PSSP) was shown in Figure 1A. The PTX reacted with 3,3′-
dithiobispropionic acid to obtain the prodrug of diP by the
esterification reaction (Yi et al., 2021a). Characterization was
obtained by 1H NMR, The signal at δ 2.5–2.8 is assigned to the
methylene proton beside the disulfide bond and the ester group in
deuterated dichloromethane, and the integral ratio of δ 2.5–2.8 is
about four times than that of δ 5.46, which shows the successful
synthesis of the dimeric prodrug of diP (Figure 2). Next, diP was
treated with DTT to afford PTX-SH by the redox reaction and then
PTX-SH reacted with excess 2,2′- dipyridyl disulfide to obtain the
product of pyridyl disulfide-PTX (PTX-SS-Py) by the thiol-exchange
reaction. The 1H NMR spectrum of PTX-SS-Py was shown in
Supplementary Figure S1; the shift at δ 8.71 was attributed to
methyne proton of the pyridyl disulfide group and the integral of δ
8.71 and δ 5.85 is close to 1:1, and the mass data of PTX-SS-Py was
1,051.3357; the result was close to the theoretical value (calcd [M +
H]+ � 1,051.3351) (Supplementary Figure S2), which shows the
successful synthesis of the PTX-SS-Py. Finally, the star-shaped
polymeric prodrug of PSSP was synthesized via the thiol-
exchange reaction between 4-arm PEG-SH and PTX-SS-Py. The
characteristic peaks of PTX-SS-Py units (δ 5.54, 5.46, 5.38, 2.89,
2.84, and 2.76) and PEG units (δ 3.50, 3.31) were observed for
PSSP (Figure 3). Moreover, the intensity ratio of the two signals
at δ 5.58 and δ 3.50 on PTX units and PEG units, respectively, is
close to 1:124, indicating that the PSSP with a four-armed star-
shaped amphiphilic polymer was prepared successfully. The
above shows that the redox-sensitive dimeric prodrug of diP
and the star-shaped polymeric prodrug of PSSP were
synthesized successfully.

Characterization of the Micelles
The hydrophobic dimeric prodrug of diP was encapsulated in the
polymeric prodrug micelles of PSSP to prepare diP@PSSP micelles.
The DLC of diP and PTX were determined and calculated by high-
performance liquid chromatography (HPLC) to be 16.7 and 46.9%,
respectively. The size of micelles is one of the key parameters
affecting their stability in vivo. The average diameters of the
prepared PSSP and diP@PSSP micelles were 83.1 ± 0.4 nm (PDI

FIGURE 5 | The size changes of (A) PSSP and (B) diP@PSSP micelles in response to 10 mM GSH at pH 7.4 determined by DLS, respectively.

FIGURE 6 | PTX was released from a PBS solution of diP@PSSP
micelles containing 0.1% (w/v) Tween 80 (pH 7.4, 0.1 M) at 37°C, with or
without 10 mM GSH.
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� 0.124 ± 0.016) and 114.3 ± 2.1 nm (PDI � 0.219 ± 0.016),
respectively, determined by the dynamic light scattering (DLS)
(Figure 4A). The PSSP and diP@PSSP micelles have good
stability, while their size remained essentially unchanged during
20-day storage at room temperature (Figure 4B). The morphology
of PSSP and diP@PSSP micelles were investigated by a transmission
electron microscope (TEM). The micelles showed spherical
morphology and the sizes were smaller than the micelles
obtained by DLS, which might be caused by the collapse of the
hydrophilic PEG shell in the dry state (Wu et al., 2020) (Figures
4C,D). This size of micelles ranged from 50 to 150 nm could
passively target the tumor with high efficiency through EPR
effect (Kang et al., 2020; Kuang et al., 2020). Then the character
of the reduction-sensitive was verified in this drug delivery
system, DLS was used to monitor the size change of PSSP and
diP@PSSP micelles in response to 10 mM GSH (Figure 5). The
results showed that the PSSP and diP@PSSP micelles were
quickly destabilized by GSH to form smaller and larger
aggregates simultaneously within 6 h, the particle size

distribution continued to change with the increase of time.
This may be due to GSH triggering the cleavage of the disulfide
bond of PSSP and diP to form water-soluble PEG and release
water-insoluble PTX. The above results indicate that PSSP and
diP@PSSP micelles were prepared successfully by self-assembly,
and the PSSP and diP@PSSP micelles have good size
distribution and excellent reduction responsiveness.

Drug Release and Cytotoxicity Assay
The PTX release behaviors of the diP@PSSP micelles in reduction
environment of 10 mMGSHwere evaluated in vitro, the results were
shown in Figure 6. Only less than 10% of the PTX was cumulative
released at pH 7.4 in absence of 10 mM GSH within 48 h, which
simulates the physicochemical environment of blood circulation.
This indicates that the micelle of diP@PSSP have good stability to
inhibit premature drug leakage, which may be due to the
hydrophobic interaction between PTX and diPTX and the stable
disulfide bond of the conjugated PTX (Yang et al., 2019). However, a
significant increase in drug release was observed at the condition of

FIGURE 7 | (A) The hemolysis ratio induced by PSSP and diP@PSSP micelles with the concentration of 200 μg ml−1 incubated at 37°C for 6 h in dark. (B) Optical
microscopic observation of the dispersion states of the RBCs after incubated with H2O, PBS, PSSP, and diP@PSSP micelles for 6 h. Scale bar: 50 μm.

FIGURE 8 | (A) Detection of microtubules in HeLa cells after incubation with PSSP and diP@PSSP micelles for 8 h, respectively. (B) Viability of HeLa cells treated
with diP, PSSP, and diP@PSSP nanoparticles under different concentration for 48 h, respectively. Scale bar: 20 μm.
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10mMGSH. The cumulative drug release of diP@PSSPmicelles was
about 85% within 48 h. These results show that the disulfide bonds
collapse occurred under the activation of GSH, which can accelerate
the release of PTX from diP@PSSPmicelles (Su et al., 2018). In order
to verify the prepared prodrug micelles in a short period of time is
not seriously destructive to red blood cells (RBCs), the hemolysis of
PSSP and diP@PSSP micelles was studied (Chibhabha et al., 2020).
As shown in Figure 7A, the prepared micelles had no obvious
corrosive effect on the behavior of RBCs. In addition, PSSP and diP@
PSSPmicelles exerted neglectable hemolysis (<5.0%) for RBCs at the
concentration of 200 μg ml−1 (Figure 7B). The results show that the
prepared PSSP and diP@PSSP micelles were safe drug delivery
systems with good biocompatibility.

It is well known that PTX is a hydrophobic drug that induces
apoptosis in tumor cells by promoting microtubule
disintegration. Microtubule is a kind of natural biological
macromolecule existing in cells, which can continuously
change its assembly and disassembly state in a few seconds
in life activities (Chan and Coen, 2020). In order to studied the
effect of polymeric prodrug PSSP and diP@PSSP micelles on
microtubules of HeLa cells, the morphology of microtubules
was observed by CLSM after the HeLa cells were incubated with
the PSSP and diP@PSSP micelles for 8 h. As shown in
Figure 8A, compared with the control group, PSSP and
diP@PSSP micelles showed significant contraction effect on
the microtubules of HeLa cells. This is due to the presence of
PTX in PSSP and diP@PSSP micelles, and the PTX released
under reduction condition in tumor microenvironment can
bind to specific sites of tubulin to prevent its depolymerization.
To study the cytotoxicity of the diP, PSSP, and diP@PSSP
micelles, the HeLa cells were incubated with these samples at
the concentrations of 1.25, 2.50, and 5.00 μg ml−1 for 48 h. As
shown in Figure 8B, the diP, PSSP, and diP@PSSP micelles
exhibited toxicity in HeLa cells, indicating the tumor cells are
very sensitive to these redox-responsive prodrugs. The
inhibitory effect of PSSP micelles on HeLa cells growth was
weaker than that of diP, which might be related to the
protective shell of PEG. Moreover, the cell viability of diP@
PSSP on HeLa cells is weaker than that of diP, which may be
attributed to two reasons, one is that the solubility of diP is
enhanced by PSSP carrier to facilitate its phagocytosis by cells
and the other is that the released PTX in tumor environment
exerts its drug effect. In general, diP@PSSP micelles with high
drug loading not only have good biocompatibility but also can
achieve controlled drug release in tumor cells and inhibit the
growth of tumor cell.

CONCLUSION

In summary, a new type of drug delivery system of diP@PSSP with
high DLC and excellent stability was developed based on
prodrug–drug complexes and dimeric prodrug. The polymeric
prodrug diP@PSSP micelles possessed high DLC of PTX as high
as 46.9% and excellent stability. The controlled release of PTX under
the 10mMGSH could be achieved for reductive-sensitive diP@PSSP
micelles. In addition, the polymeric prodrug of diP@PSSP micelles
showed good biocompatibility in RBCs and therapeutic effect in
HeLa cells. We hope that this strategy will be used to facilitate the
provision of multiple therapeutic drugs for a variety of purposes, in
particular to overcome multidrug resistance.
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