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A protein’s structure is the key to its function. As protein structure can vary with
environment, it is important to be able to determine it over a wide range of
concentrations, temperatures, formulation vehicles, and states. Robust reproducible
validated methods are required for applications including batch-batch comparisons of
biopharmaceutical products. Circular dichroism is widely used for this purpose, but an
alternative is required for concentrations above 10 mg/mL or for solutions with chiral buffer
components that absorb far UV light. Infrared (IR) protein absorbance spectra of the Amide
I region (1,600–1700 cm−1) contain information about secondary structure and require
higher concentrations than circular dichroism often with complementary spectral windows.
In this paper, we consider a number of approaches to extract structural information from a
protein infrared spectrum and determine their reliability for regulatory and research
purpose. In particular, we compare direct and second derivative band-fitting with a
self-organising map (SOM) approach applied to a number of different reference sets.
The self-organising map (SOM) approach proved significantly more accurate than the
band-fitting approaches for solution spectra. As there is no validated benchmark method
available for infrared structure fitting, SOMSpec was implemented in a leave-one-out
validation (LOOV) approach for solid-state transmission and thin-film attenuated total
reflectance (ATR) reference sets. We then tested SOMSpec and the thin-film ATR
reference set against 68 solution spectra and found the average prediction error for
helix (α + 310) and β-sheet was less than 6% for proteins with less than 40% helix. This is
quantitatively better than other available approaches. The visual output format of
SOMSpec aids identification of poor predictions. We also demonstrated how to
convert aqueous ATR spectra to and from transmission spectra for structure fitting.
Fourier self-deconvolution did not improve the average structure predictions.
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INTRODUCTION

Proteins are biomolecules with characteristic 3D shapes that
determine their functions, e.g., structural, immune response,
enzyme catalysis, and regulation (Lesk, 2010). In addition,
there has been a growing interest in proteins as therapeutic
agents over the past 20 years (Leurs et al., 2015). For a protein
to be functional, it needs to be in a certain conformation;
however, purification procedures often induce structural
changes. To ensure the correct structure is retained/obtained
during protein production and formulation, robust analysis
methods must be used for regulatory as well as research
purposes (Leurs et al., 2015).

Optical spectroscopic methods have the major advantage of
not requiring a protein to form crystals, and they can be applied
to any size molecules from peptide to high molecular weight
assemblies. Circular dichroism (CD) spectroscopy is routinely
used to estimate the secondary structure of unknown proteins
and for batch-to-batch comparison of biopharmaceutical
products (Woody, 1994; Sklepari et al., 2016; Spencer and
Rodger, 2021). CD has the advantage of being relatively
straightforward both to implement and to interpret. However,
it has a number of limitations largely following from the need to
keep the sample absorbance below a maximum of 2.5 at all
wavelengths of interest and the need to know the
concentration and path length. In aqueous solution, the
protein concentration range is therefore practically limited to
approximately 0.01—10 mg/ml protein. This is further restricted
for biopharmaceuticals which are often formulated with high
concentrations of non-protein absorbing components such as
amino acids and chloride ions.

An alternative spectroscopic method to CD is mid-infrared
absorption spectroscopy as the differential patterns in H-bonds
and geometrical orientations of amide bonds in different
secondary structure motifs affect the frequencies and
intensities of vibrations. Protein IR spectra contain nine
separate bands, referred to as Amide A, B, and I–VII (Kong
and Yu, 2007; Rygula et al., 2013). It is generally accepted that the
Amide I band (1,600–1700 cm−1) carries the most direct link to
secondary structure content. Its vibrational contribution is from
the C�O stretching of the amide group coupled with the in-phase
bending of the N–H bond and stretching of the C–N bond
(Krimm and Bandekar, 1986; Bandekar, 1992). Some side
chains also absorb in the region; however, in this work, we
ignore side-chain contributions because Venyaminov and
Kalnin (Venyaminov and Kalnin, 1990) and Oberg (Oberg
et al., 2004) found that subtracting side chain contributions
provided only a moderate improvement to secondary structure
determination. A great deal of work has been done on protein IR
spectroscopy, but the best way to extract secondary structure
information for regulatory or research purposes remains unclear.

The Amide I band is usually a featureless broad band so curve
fitting methods, often preceded by band-narrowing, have been
implemented to facilitate structure fitting (Kauppinen et al., 1981;
Maddams and Tooke, 1982; Susi and Byler, 1983; Byler and Susi,
1986). Byler and Susi (Byler and Susi, 1986) developed a band-
fittingmethod involving first a deconvolution procedure and then

band-shape fitting with the Gaussian bands centred at the
maximum (negative) values of the second derivative of the
spectrum. They decided, after empirical analysis of over 20
proteins, that the relative areas under bands assigned to α-
helix (∼1,654 cm−1), β-sheet (∼1,631 ± 7 cm−1 and
∼1,678 cm−1), and everything else corresponded to their
relative secondary structure contents. (This has been assumed
by other workers.) They found a fairly good match of their
predictions with the Levitt and Greer’s algorithm for
extracting secondary structure from crystal data (Levitt and
Greer, 1977). However, Levitt and Greer noted in their
original work that their approach significantly over-estimates
β-structure, making Byler and Susi’s IR predictions a significant
over-estimate of β-structure as deemed by other annotation
approaches. The more recent consensus, e.g., (Kong and Yu,
2007; Yang et al., 2015), is that 1,620–1,640 cm−1 is attributed to
β-sheet, 1,640–1,650 cm−1 to Other structures, 1,650–1,656 cm−1

to α-helix, and 1,670–1,685 cm−1 to turns. However, as noted by
Oberg et al. (2004), band fitting usually requires a series of
subjective decisions that can dramatically affect both result
and interpretation. The authors arguably making the strongest
claims for the efficacy of a band fitting approach (Yang et al.,
2015) refer to their previous work on cytochrome-c (Dong et al.,
1992) and to a paper by Kalnin et al. (1990). However, the Dong
cytochrome-c result, while good for α-helix, has a 21–25% error
in β-sheet content and Kalnin et al. (1990) used a reference set of
proteins of known structure as their fitting approach rather than
band fitting.

Various factor analysis methods have been applied to proteins
using different reference sets. Lee et al. (1990), using a reference
set of 18 protein IR spectra, concluded that they could predict
protein secondary structure with standard errors of 4% for α-helix
and 8% for β-sheet. Pancoska Keiderling and others used a
reference set as well as principal component and factor
analysis methodologies for both vibrational CD and IR spectra
(Pancoska et al., 1991; Baumruk et al., 1996). Further refinement
of the data through Fourier self-deconvolution did not improve
their structure estimates (Wi et al., 1998). Dukor et al. and
BioTools (Jupiter, US) have developed this approach into an
easy-to-use fitting program by complementing the approach with
their IR reference set and integrating it with data collection on
their instrument. The resulting program ProtaTM provides
reasonably good structure estimates, but the details of the
fittings cannot be interrogated by the user. Oberg et al. (2004)
have extensively explored the application of a partial least squares
analysis (PLS) with a 50-protein reference set and concluded that
the most important factor is the quality of the reference set—it
must cover the structure-space of interest.

Oberg et al. (2004) also considered application of the CD
structure fitting program SELCON (Sreerama and Woody, 2000)
to IR data which proved to give similar performance to the PLS
analysis. They observed that larger reference sets usually do not
perform better than smaller ones, as they may include more
“anomalous” spectra—so it is important to be able to interrogate
results rather than simply accept a number. Goormaghtigh et al.
(2006) had significant success with an approach which identifies
three key wavenumbers for the three structural features that can
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FIGURE 1 | (A) A 50-protein thin-film ATR reference set (see Supplementary Table S1 for list of proteins). Inset: Amide I maxima plotted versus total α-helix red
and β-sheet blue content. Proteins F1−F7 (>60% helix) are purple; F8−14 (45–59% helix) are blue; F15−21 (34–44% helix) are turquoise; F22−F28 (26–33% helix) are
green; F29−F33, F36, F38 (17–25% helix) are yellow; F34, F35, F37, F39, F40 (10–16% helix) are orange; F41−F50 (<10% helix) are red with the unfolded F50 dotted. (B)
Overlay of some normalised ATR thin-film (solid lines) and aqueous transmission (dashed lines) spectra. (C) LOOV deviations of SS prediction from PDB structures
for helix (α-helix + 310-helix) and β-sheet for the Amide I 50-protein thin-film reference set in order of decreasing helix content from left to right. 5 × NRMSD of the spectral
fit is overlaid. Other category deviations are minus the sum of helix and β-sheet deviations. (D) Phosphoglycerate kinase (F17) LOOV SOMSpec output from 50-protein
film reference set for a relatively poor quality example. In the map, U1, U2, U3 are the best matching nodes for the test protein. These can be expressed as linear
combinations of their neighbouring reference set nodes. The proteins can be identified from Supplementary Table S1 in the SM, by noting that the test protein is F17 in
the reference set, so proteins R1–R16 correspond to F1–F16, and R17–R49 correspond to F18–F50. The real spectrum is F17’s input data, and the predicted spectrum
is the SOMSpec output.

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 7846253

Pinto Corujo et al. Secondary Structure From Protein Infrared

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


be distinguished in the IR spectrum. Their ascending stepwise
method identifies the relevance of each wavenumber of the
infrared spectrum for the prediction of a given secondary
structure and yields a particularly simple method for
computing the secondary structure content. The original work
has been successfully extended to high throughput secondary
structure determination by collecting data in an array format (De
Meutter and Goormaghtigh, 2021). However, the preference for a
data point in the Amide II band is a concern for
biopharmaceutical samples as we have observed that the
magnitude of this band varies significantly with formulation
vehicle. A different choice of optimal wavenumbers could
make the analysis more universal.

Our experience of using CD for the analysis of
biopharmaceutical protein structure has convinced us that the
most important aspect of a structure fitting approach is to know
its limitations. Extensive work has been done to validate methods
that determine structure fromCD spectra of unknowns. Themost
widely used methods for CD analysis, e.g., CDsstr (Johnson,
1988) and SELCON3 (Sreerama and Woody, 2000), all use a
reference set of spectra of proteins of known secondary
structures. Our self-organising map approach (Hall et al.,
2014a; Hall et al., 2014b) uses a different approach from
CDsstr and SELCON, but we have shown it is equally reliable
and it has the advantage that it produces output that enables the
user to interrogate what is behind secondary structure estimates.
When we needed to develop robust methods for analyzing
protein infrared absorbance spectra, we therefore adapted our
self-organising map analysis, now called SOMSpec, to be used for
structure fitting from Amide I IR spectra (Corujo et al., 2018) and
found it seemed to work well for the few examples we considered,
though it depended on the reference set of spectra and structure
assignments. SOMSpec is described in theMaterials andMethods
section and the Supplementary Material. The goal of this work
was to develop an easy-to-use protein IR spectra analysis platform
based on the SOMSpec program and to determine how well it
works for various datasets of transmission, Fourier self-
deconvolved spectra, and attenuated total reflectance (ATR)
spectra. We also provide the means to transform ATR spectra

into transmission for slightly improved secondary structure
predictions against a transmission reference set. The endpoint
of the work is a clear idea of how reliable SOMSpec is for this
application and where the user must interrogate the output for
further information.

MATERIALS AND METHODS

Secondary Structure Annotation
The hydrogen-bonding pattern-based Dictionary of Secondary
Structure of Proteins (DSSP) which divides protein secondary
structure into 8 major classes abbreviated as follows: 310-helix
(G), α-helix (H), π-helix (I), β-sheet (E), β-bridge (B), turn (T),
bend (S), and coil (C) is used in this work. The different reference
sets combine the categories differently to reduce the number of
classes (Wi et al., 1998). Annotations may be found in http://
2struc.cryst.bbk.ac.uk [(Whitmore and Wallace, 2004) and
(Oberg et al., 2003)]. Based on the results of reference
(Spencer and Rodger, 2021) for CD spectroscopy and
reference (Oberg et al., 2004) for IR, we limited our final
discussions to three categories which we refer to as α-helix or
helix (which includes α-helix and 310-helix), β-sheet, and other
(which is the combination of the rest of secondary structure
types). As any residue belongs either to the helix or sheet or Other
category, we only explicitly present the helix and sheet results in
our figures. The deviations for Other are simply minus the sum of
the helix and sheet deviations.

Self-Organising Map Spectral Fitting
SOMSpec Operates in Three Steps
i) Training the map: in the first step, an unsupervised self-

organising (or Kohonen) map approach creates a 2D square
array and organises the reference set protein IR spectra to
cluster them in terms of spectral similarity, with the similarity
being represented by distances. Each node of the map has a
spectrum allocated to it. Unless a reference spectrum sits on a
node, a distance-weighted mean of neighbouring reference
spectra is assigned to each node. A trained map can be used

FIGURE 2 | Deviations of predictions from PDB structures for average helix (α-helix + 310-helix) and β-sheet for Amide I of 68 aqueous test proteins presented in
order of decreasing helix content from left to right. Other category deviations are minus the sum of helix and β-sheet deviations.
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repeatedly as long as the wavenumber range of the test
spectrum is the same as the reference spectra. For the
leave-one-out validations (LOOV, see below), we trained
for 20,000 steps and for full reference sets for 50,000
steps. The optimal map dimension (Hall et al., 2013) is
somewhat lower than the reference set size, so we used
20 × 20 for the solid-state reference set and 40 × 40 for the
film one.

ii) Structure assignment: in the second step, a vector which
summarises the secondary structure of the spectrum
assigned to a node is also assigned to the node. Reference
spectra nodes take the reference spectra secondary structure
vector. Nodes with distance-weighted sum spectra have
secondary structure assigned in the same way.

iii) Test: unknown spectra are tested against the map by
identifying nodes that are the best matching units
(BMU) for the unknowns in terms of the distance in the
spectral space. The secondary structure of the test
spectrum is determined by a distance-weighted average
of secondary structure of the top 5 or 3 best matching

nodes or units (BMUs) in terms of the Euclidean distance
on the map.

SOMSpec input files are created as comma-separated txt files.
For an N-member reference set, the training file consist of N
vertical columns of spectral data, separated by commas, with the
corresponding structural data placed below. The test files are in
the same format but without the structural information. The files
were either createdmanually using Excel (via the basic .csv output
format then renamed with the. txt extension) or automatically
produced by a MATLab™ code.

SOMSpec output includes Normalised Root Mean Square
Deviations (NRMSD, see Supplementary Materials for details)
between experimental and predicted spectra, a plot of the trained
map and the overlay of experimental and predicted spectra, the
secondary structure predictions, and all the files to enable the
plots to be regenerated.

More details about SOMSpec are given in the Supplementary
Material which also contains a summary of the input and output
information used below. The SOMSpec App [coded in

FIGURE 3 | (A) Amide I transmission IR spectra of 30 solid-state proteins normalised to 1. Proteins with α-helix content >45% are indicated with broad lines and
have maxima above 1,650 cm−1. Papain and lysozyme are broad dashed lines (see text). Colour coding of spectra is the same as in Figure 1: >60% helix purple;
45–59% helix blue; 34–44% helix turquoise; 26–33% helix green; 17–25% helix yellow; 10–16% helix orange; <10% helix red. Inset: Amide I maxima plotted against α-
helix and β-sheet content. (B) LOOV deviations of SS prediction from PDB structures for α-helix and β-sheet for the Amide I of 30-protein solid-state reference set
presented in order of decreasing helix content from left to right (for protein identities see Supplementary Material). Other category deviations are minus the sum of helix
and β-sheet deviations.
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MATLab™ (MathWorks, Chatswood, Australia)] and example
input and output files may be found in the data repository which
can be accessed via the Supplementary Material.

Leave-One-Out Validation
In LOOV testing the spectra and secondary structure assignments
of N–1 proteins out of N proteins in an IR reference set are used as
the training set to generate a SOM. Then, the Nth spectrum is
tested against that SOM. This is repeated N times. The SOMSpec
LOOV training files consist of N–1 vertical columns of spectral
data, separated by commas, with the corresponding structural data
placed below. The test files for the LOOV are a single column of
spectral data. The results of theN LOOV tests give an indication of
performance of the method−reference set combination.

Spectra Transformations
ATR to transmission and transmission to ATR: We used the
methodology developed in reference (Rodger et al., 2020) to
convert ATR spectra into transmission spectra and inverted
the methodology to convert transmission spectra into what
would be collected on the same sample with a 45° incidence
zinc selenide (ZnSe) ATR crystal. In summary (see
Supplementary Material for more details), the relationships
between ATR and transmission spectra we used are

AATR
protein � (εC)protein(adpf)(1 − (ln 10dpf)(εC)water)

ATransmission
protein � AATR

proteinℓ

((dpf)(1 − (ln 10dpf)(εC)water))
where AATR

protein denotes the protein’s ATR absorbance, dpf is the
penetration depth times the light intensity factor and εC � A/ℓ is

the protein’s extinction coefficient times its concentration, where
ℓ is the transmission path length. As the protein absorbance is
much smaller than that of water in our experiments, we used dpf
for water. Given the above equation is linear in (εC)protein, we do
not need to know the protein concentration or extinction
coefficient or path length if we ultimately plan to normalise
the spectra for structure fitting.

Fourier self-deconvolution (FSD): OriginPro 2021 (Originlab,
2021) was used to perform FSD with the gamma and smoothing
factor parameters varied. Each deconvolved spectrum was re-
zeroed and re-normalised to 1 at its maximum value.

Band Fitting
Two different band fitting approaches were undertaken. The
first uses peak deconvolution within Origin Pro (Originlab,
2021) to fit the absorption bands directly to Gaussians after
baselining the Amide 1 band by drawing a straight line from
1,600 cm−1–1700 cm−1. The secondary structure was
identified by normalising the total area under the bands to
1 and then summing the areas of the bands that occurred in
the accepted wavelength regions for each type of secondary
structure: 1,620–1,640 cm−1 for β-sheet and 1,650–1,656 cm−1

for α-helix. If the answers were obviously wrong, the
wavelength range was expanded slightly to favour the
band-fitting approach. The approach outlined in (Yang
et al., 2015) which involves taking the second derivative
then band-fitting was also attempted. OriginPro 2021
(Originlab, 2021) was used to take second derivatives and
to perform band fitting to Gaussians of minus the second
derivative spectrum. The OriginPro fitting methodologies
used in this work are detailed in the Supplementary

FIGURE 4 | Deviations of secondary structure prediction from PDB structures for helix and β-sheet for the Amide I band of the 50-protein film reference set
presented in order of decreasing helix content from left to right for (A) direct Gaussian band-fitting and (B) the second derivative fitting approach reported in reference
(Yang et al., 2015). See Supplementary Material for protein identities. Deviations of the Other category deviations are minus the sum of helix and β-sheet deviations.
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Material, and the OriginPro files are provided in the data
repository.

Materials and Data Collection
All the proteins used in this work were purchased from Sigma
Aldrich (Poole, United Kingdom) or available in-house.
Using 2 different Jasco J-4200 (Jasco, Hachioji, Japan)
spectrometers, spectra were collected with 64–1,000 scans
with 4 cm−1 resolution, cosine apodization, and
wavenumber range from 400 to 4,000 cm−1. The
instruments were flushed with nitrogen (N2) at ∼30 L/min
flow rate for 10 min to stabilise the water vapour contribution.
The sample chamber flow rate was decreased to 5 L min−1

during data collection, and the interferometer was closed to
the nitrogen flow. We collected 30 solid-state transmission
spectra (see below), 19 aqueous transmission spectra (see
below), and 2 aqueous ATR spectra. Baseline water spectra
(18.2 MΩ Milli-Q water) were subtracted from the aqueous
protein spectra to produce a flat line in the 2,100 cm−1

libration band region. A small scaling factor was
sometimes required. If the spectrum could not be made flat
in that region, the data were discarded. The integrated
absorbance of the 1717–1772 cm−1 or 3,800–3,900 cm−1

regions were used to guide water vapour subtraction where
necessary (Max and Chapados, 2009). A vapour spectrum was
collected by first purging the instrument with N2, collecting a
spectrum, then stopping the N2 flow (which allows a small
increase in water vapour in the light beam) and collecting a
second spectrum. The difference between the two spectra was
used for water vapour correction. In practice, the need for
water vapour correction was minimised by collecting a
baseline water spectrum directly before each protein
spectrum—so both spectra had similar water vapour
contributions. Protein spectra were normalised to 1 at the
Amide I maximum.

Solid-state data were collected using samples prepared by
grinding proteins to a fine powder before mixing with
separately grounded potassium bromide (KBr) to obtain a
1–10% w/w dilution of the protein. The KBr/protein mixture
was compressed by means of a Manual Hydraulic Press (Specac,
Orpington, UK) using 5–10 kpsi for about a minute to produce a
pellet which was held between sodium chloride (NaCl) windows
in a PIKE Technologies cell (Fitchburg, United States). Since
liquid water absorption was detected, a scaled water spectrum
collected separately with calcium fluoride (CaF2) windows was
subtracted to give a flat spectrum in the 2,100 cm−1 region (Max
and Chapados, 2009).

Aqueous protein solutions were prepared by dissolving
lyophilised protein powders in 18.2 MΩ cm Milli-Q water in
concentrations ranging from 10 to 80 mg ml−1. Insoluble
residues were removed by centrifugal filtration with Teflon
disk filters (0.22 µm pore size). Solution transmission spectra
were collected using a Specac (Orpington, United Kingdom)
transmission cell with CaF2 windows and no spacer making
an estimated 1 µm path length. About 40 µl of sample was
placed on one of the windows and the other was slid over it,
making sure no air bubbles got trapped in the process. Two high

β-sheet aqueous proteins samples were collected in ATR mode
using a Pike Miracle™ ATR unit.

In addition, a 50-protein reference set previously obtained
using ATR with thin films that were made by slowly evapourating
aqueous protein solutions containing 100 µg of protein under a
stream of N2 (Goormaghtigh et al., 2006) was used as the main
reference set for this work. The proteins in the 50-protein thin-
film set were selected to cover structure and fold space (Oberg
et al., 2003; Goormaghtigh et al., 2006). A 47-spectra normalised
aqueous transmission reference set provided by BioTools (Jupiter,
USA) was used as an additional test set.

RESULTS

The goal of this work was to determine how we could optimise
and validate the accuracy and reliability of secondary structure
predictions for proteins from good quality protein IR absorbance
spectra. A key goal was to have a procedure that required no
intelligent intervention until the final analysis of the results. For
validation of protein secondary structure fitting methods, the key
questions to be answered are:

i) when can the fitting be trusted (most relevant for day-to-day
applications)

ii) if the fitting is poor, why? (most relevant for method
assessment).

What is presented here is the largest consideration of protein
IR data that has been performed to date.We have worked with the
reference-set based method SOMSpec, which we designed for
CD, to extract structure information for an unknown protein
spectrum by finding combinations of known proteins that most
resemble the unknown using a self-organising map. We
undertook a leave-one-out validation within a large reference
set and then tested against a larger set of unknowns from different
sources. We also considered to what extent the band shape
enhancement of FSD facilitates how SOMSpec extracts
information from the broad largely featureless bands of
protein IR spectra. The structure information content of solid-
state IR spectra, which are even broader than aqueous spectra, is
assessed, as is whether transmission and ATRAmide I spectra can
be compared. We also perform direct and second derivative
band-fitting estimates on the same reference set in order to be
able to compare the performance of the approaches most
commonly used in the literature relative to an approach using
the information in a reference set.

Film Protein IR Spectra LOOV
The main protein IR reference set used in this work is a large one
available in the literature (Figure 1A, see Supplementary Table
S1 in the Supplementary Material for list of proteins and
spreadsheets with SOMSpec input and output data). It is a
50-protein film reference set designed to give structure and fold
coverage (Oberg et al., 2003; Goormaghtigh et al., 2006). The
data for 50 proteins were collected by drying aqueous protein
samples on an ATR unit to a thin film (we refer to this as the 50-
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protein thin film reference set). This approach has the advantage
that the water absorbance of the spectra, which needs to be
removed to give the protein contribution, is small rather than
dominating the signal. However, it raises the question whether
the spectra are an appropriate reference set for aqueous spectra.
We expected the ATR film spectra to have the same spectral
shape as transmission spectra based on reference (Jang and
Miller, 1993) (if the proteins are folded the same). However, we
were concerned that the film spectra might be less structured
than solution spectra as is observed for solid-state data (see
below). Figure 1B contains the overlay of some film and
solution spectra for a few proteins of different secondary
structure content. The spectra differ no more than
independently collected aqueous transmission spectra vary
which gave us the confidence to use this reference set as the
main training set for SOMSpec IR in this work.

The correlation between intensity maximum position and
helix or sheet content for the 50-protein thin film reference set
is illustrated in the Figure 1A inset. On a simple level, there is a
correlation between peak position and low α-helix/high β-
sheet content, which is the basis for the band-fitting
approaches. Peak position enables high, medium, and low
α-helical and β-sheet proteins to be directly identified.

To test the performance of SOMSpec with proteins whose data
were collected in an entirely consistent manner, LOOV analysis
was performed. The deviations of the predicted fractions of α-
helix and β-sheet from the Protein data bank (PDB) (Berman
et al., 2000) DSSP are summarised in Figure 1C where the
difference between the SOMSpec prediction and the DSSP
annotation is plotted for helix (α + 310) and β-sheet. The
deviation for Other structures is minus the sum of these two
(as both prediction and DSSP content sum to 1). The LOOV
average helix (α + 310) prediction error is 8% and the average β-
sheet error is 7% (when the unfolded metallothionein II (F50) is
excluded).

Figure 1D shows the LOOV graphical output for
phosphoglycerate kinase (protein F17). The top graph
illustrates the trained SOM with the BMUs for the test
protein overlaid. Although there are 1,600 nodes in the
map, only those corresponding to the 49 LOOV training set
proteins are shown as blue dots with black labels. In this case,
the fit is poor as shown by the BMUs not clustering (which
indicates the test spectrum does not resemble spectra in any
area of the map), a high spectral NRMSD, and poor maximum
intensity wavenumber match. If the training is repeated, the
map may look different with nodes moved, but the BMUs and
structure predictions are almost the same because the nodes’
relationships are regenerated.

For practical application of any fitting method to unknown
spectra, an estimate of the error for that specific sample is needed.
The spectral NRMSD (5×NRMSD is plotted in Figure 1C to aid
visualisation) gives an indication of how well the test spectrum
overlays the best spectrum generated from the combination of
spectra from the other N−1 spectra in the reference set. This
together with the accuracy of the predicted versus experimental
wavenumber maximum are guides to fit-quality. To get a more
detailed picture of the reliability of SOMSpec, all helix and sheet

errors above 10% were individually analysed. Caveats to
emerge are:

i) Poor water or water vapour correction causes problems (e.g.,
F48). If this was a test spectrum, the data should be
discarded. As it is part of a published reference set we
retained it.

ii) Metallo-proteins whose ligand IR signals contribute to the
Amide I region of the spectrum cause secondary structure
prediction errors both for their own analysis and where they
are BMUs (e.g., F10, F12, F26).

iii) 77% helix F4 (haemoglobin) and 41% helix F12 (cytochrome
c) have almost identical spectra so any fit involving either of
these as a BMU can only be concluded to have helix >40%.

iv) Predicted and original spectra that have a poor match of a
high wavenumber maxima >1,650 cm−1 and/or miss
significant high wavenumber intensity indicate helix
secondary structure errors.

v) Predicted and original spectra that have a poor match of a low
wavenumber maxima (<1,645 cm−1) and/or miss significant low
wavenumber intensity indicateβ-sheet secondary structure errors.

vi) Immunoglobulins (F42) only give good fits when an
immunoglobulin is present in the reference set.

vii) F46 and F50 both have∼70% random structure which is under-
estimated by ∼40% and causes problems when they are BMUs.

The poor protein fits in the LOOV for the 50-protein film
reference set are annotated in the final column of Supplementary
Table S1.

Aqueous Test Spectra of Known Structure
The LOOV results gave guidance for the use of SOMSpec with
unknowns. We therefore tested SOMSpec on a further 68
transmission spectra of various proteins with known
secondary structure content using a SOMSpec map trained for
the 50-protein thin-film reference set (the trained map is available
via the Supplementary Material). Nineteen of the test spectra
were collected in transmission mode, 2 were collected by ATR
and transformed computationally to transmission (see methods
and Supplementary Material spreadsheet), and 47 were from the
commercial BioTools reference set. The average total helix and
sheet errors were 8 and 5%, respectively (see Figure 2 for
deviations from PDB structures), with the major contributions
to the helix error being for high helix content proteins.When only
the results for proteins of helix content <48% are considered, the
helix and sheet average errors are both 5–6%, leading us to
conclude that high helix proteins contribute disproportionately
to the absolute helix errors. In general, the SOMSpec output plots
present warnings where needed as listed above.

Fourier Self-Deconvolution
It is widely accepted for IR spectroscopy applications that FSD
can improve analysis. This is partly visual, which is important in
most band fitting approaches, but may perhaps also be because it
can remove noise from a spectrum. The effects of different
parameters are illustrated in the Supplementary Material
(Supplementary Figure S1) for bovine serum albumin. LOOV
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testing of the BioTools 47-protein reference set with a range of
FSD parameters made significant improvements in the spectral
NRMSDs, e.g., γ � 25 and smoothing factor � 0.5 together with
re-zeroing and re-normalising improved average spectral
NRMSDs by ∼30%; however, disconcertingly, the average error
of structure predictions from PDB structures for these parameters
increased marginally (1–2%). Less dramatic parameters, e.g., γ �
10, smoothing factor � 0.25, showed a marginal average
improvement in secondary structure estimates, though this
probably correlates with the noise reduction of the FSD process.

Fitting ATR Spectra With a Transmission
Reference Set
Because we often wish to study proteins in their native environment
and aqueous ATR experiments are much easier to perform than
transmission, we also investigated the quality of the secondary
structure predictions for aqueous ATR spectra. Due to the
instrument to instrument and sample to sample (e.g.,
concentration and buffer components) differences of ATR spectra,
we decided that we should use a reference set that was instrument
independent (in this case, the 50-protein thin film reference set). We
produced ATR test spectra by transforming our transmission spectra
for 21 aqueous test proteins to ATR following the equations given in
the Supplementary Material which are based on reference (Rodger
et al., 2020) (assuming a single bounce 45° incidence ZnSe crystal).
The average SOMSpec helix prediction for the ATR spectra was
somewhat worse than the corresponding transmission tests at 8
versus 6% for this subset of proteins, but the sheet prediction was
marginally (1%) better. Again, visual inspection of output made
problems obvious.

Solid-State Protein IR Spectra LOOV
We were interested to test how well SOMSpec worked with
Amide I solid-state data, since solid-state proteins are more
likely to have the same structures as those used for
crystallography and the protein absorbance is not
dominated by the water signal. The solid-state spectra
(Figure 3A, see Supplementary Material for list of proteins
and spreadsheets with SOMSpec input and output data) are
broader and less structured than the 50-protein film reference
set (Figure 1A). The correlation between position of the
intensity maximum and helix or sheet content is slightly
worse for the solid-state protein set than for the 50-protein
film reference set.

The SOMSpec LOOV results for the 30-protein solid-state
reference set are summarised in Figure 3B (see Supplementary
Material for input and output details) in terms of deviations of α-
helix and β-sheet content from PDB values. The NRMSD levels
(plotted as 5×NRMSD) are generally a guide to the quality of the fit.
Overall, SOMSpec gave reasonable estimates of secondary structure
content with a few notable exceptions. The average deviations are
17% for α-helix and 10% for β-sheet. If we remove three types of
problematic proteins from the average error calculation the average
errors reduce to 11 and 8% respectively. The problem classes are
again 1) high helix content proteins especially those with papain
(S19) and/or lysozyme (S12) among their BMUs (the helix content

is significantly underestimated), 2) βII proteins in particular trypsin
(S24) and chymotrypsin (S25), and 3) the largely unfolded
bungarotoxin (S30). Interestingly, both lysozyme and papain
CD spectra (Whitmore et al., 2011; Olamoyesan et al., 2021)
have βII characteristics suggesting this is a key to the problems
with the first two types.

Overall, the solid state SOMSpec LOOV analysis can be
described as being indicative of the secondary structure of the
test protein as the errors are quite high. The increased accuracy
when high helix, high sheet, and βII proteins are removed flags a
warning for the quality of the fitting for these classes of proteins.
It should be noted that some of the reduced accuracy of the fits
with the solid-state rather than film or solution proteins will be
the result of the smaller reference set used. However, the space
coverage of this reference set is fairly good so we attribute most of
the increased error to the broader peaks.

Gaussian Band-Fitting to Determine
Secondary Structure
Using SOMSpec takes more effort than a simple band-fitting
approach so we assessed whether the extra effort was worth it by
making estimates of the secondary structures of the 50-protein thin-
film reference set using both a direct Gaussian fitting and second
derivative spectra fitting implemented in OriginPro. The differences
between the predicted fractions of α-helix and β-sheet and the Protein
data bank (PDB) (Berman et al., 2000) DSSP values (referred to as
deviations) are plotted in Figure 4A for direct band-fitting and in
Figure 4B for the Yangmethod via the second derivative spectra. The
proteins have been plotted in order of helical content decreasing from
left to right. The results of the direct fitting were average helix and
sheet errors of 19 and 13%, respectively, whereas fitting via second
derivatives gave average errors of 10 and 16%. We could see no
patterns or common signatures of poor secondary structure estimates
to help guide answering either question (i) or (ii) above.

CONCLUSION

The main goal of this work was to establish a robust and
reproducible approach, whose limitations are clear, to extract
secondary structure information fromAmide I protein IR spectra.
In summary, we implemented our reference-set based self-
organising map approach, SOMSpec, with a 50-protein thin-
film reference set in both LOOV and on 68 other test proteins.We
showed that the thin-film ATR spectra could be used as a
reference set for transmission spectra aqueous proteins. The
average SOMSpec prediction errors were 7% for both helix
and sheet content for aqueous protein samples. High helix
(>40–50%) estimates are of variable quality due e.g., to the
high similarity of cytochrome-c’s spectrum (41% helix) and
hemoglobin’s (77% helix). If high helix proteins are removed
from the average, then the errors reduce to 5–6%. Due to the
cause of the helix errors, adding more proteins to the reference set
will not resolve it.

Problematic results were able to be identified by inspection of
the SOMSpec outputs. In particular, shifts of wavelength maxima
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and loss of spectral intensity at high wavenumbers or low
wavenumbers indicate, respectively, low helix and low sheet
content in the prediction. We also found that proteins such as
lysozyme and papain which have βII characteristics in their CD
spectra (Whitmore et al., 2011; Olamoyesan et al., 2021) have
helix-like IR spectra. Finally, proteins with prosthetic groups
which absorb in the Amide I region such as flavins and hemes
may also cause errors in secondary structure predictions. Despite
these caveats, a key advantage of the SOMSpec approach is that
the fitting process is entirely reproducible so it can be used for
batch-to-batch comparisons. The attraction of the 50-protein
thin-film reference set is that the spectra mirror the shape of
transmission spectra as illustrated in Figure 3C but are easier to
collect and perform baseline correction than aqueous
transmission spectra so the reference set itself is more reliable.

We also estimated the secondary structures of the 50-protein
thin-film reference set using two band-fitting approaches and
found that the errors can be significant and variable. This work
and previous work by (Oberg et al., 2004) on applications of
SELCON to IR data suggests that the key advantage of SOMSpec
is that it is based on using a reference-set to provide secondary
structure information. Thus, it (or e.g., SELCON3) is dependent
on the quality of the reference set. SOMSpec has the additional
advantage that it enables the user to interrogate the input and
output regarding the quality of the fit.

A SOMSpec LOOV analysis of solid-state spectra suggests that
there is enough information in solid-state spectra for useful
secondary structure fitting, but that the 30-protein reference set
is too small.

In accord with the results of Wi et al. (1998), we found that
FSD does not improve structure fitting with the reference-set
based SOM approach, though the spectral NRMSDs improved in
a misleading manner. This is in accordance with FSD not actually
increasing the information content of any spectrum.

Finally, ATR data collection is extremely attractive for aqueous
protein samples as it is much simpler to mount the sample and
simpler to perform the baseline correction. Although we have
previously shown it is relatively straightforward to convert ATR
spectra to transmission as summarised in the Supplementary
Material (Rodger et al., 2020), many users find it attractive to be
able to ignore the differences. Our conclusion for ATR data is that
if the protein of interest either has high β-sheet content or an
extra 2% average helix error is acceptable, then normalised ATR
data can be used directly with a transmission (or ATR thin film as
in this work) reference set, and conversely. As quality protein
ATR data collection is much easier to achieve than with
transmission, this innovation addresses some of the challenges
of protein structure fitting from IR data.
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