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Extensive efforts have been made in the last decades to simplify the holistic sample
preparation process. The idea of maximizing the extraction efficiency along with the
reduction of extraction time, minimization/elimination of hazardous solvents, and
miniaturization of the extraction device, eliminating sample pre- and posttreatment
steps and reducing the sample volume requirement is always the goal for an analyst
as it ensures the method’s congruency with the green analytical chemistry (GAC) principles
and steps toward sustainability. In this context, the microextraction techniques such as
solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), microextraction
by packed sorbent (MEPS), fabric phase sorptive extraction (FPSE), in-tube extraction
dynamic headspace (ITEX-DHS), and PAL SPME Arrow are being very active areas of
research. To help transition into wider applications, the new solventless microextraction
techniques have to be commercialized, automated, and validated, and their operating
principles to be anchored to theory. In this work, the benefits and drawbacks of the
advanced microextraction techniques will be discussed and compared, together with their
applicability to the analysis of pharmaceuticals in different matrices.
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INTRODUCTION

As green analysis is becoming more significant, reduction of solvent use and method miniaturization
gain most relevance in pharmaceutical analysis (Mohamed, 2015). Sample preparation is considered
the cornerstone step for the green analytical procedure. There are different ways for more
environment-friendly sample preparation, which mainly includes excluding or at least
minimizing the amounts of reagents and solvents in the analysis. Besides, a green solvent is
used, rather than petrol-based ones. Integration of automation is a very valuable principle in
greening your procedure, which can lead to miniaturization of the used method (Płotka-Wasylka
et al., 2013). As a result, novel solid-phase microextraction techniques (SPME, SBSE, MEPS, FPSE,
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ITEX-DHS, and PAL SPME Arrow) have been lately explored
(Spieteluna et al., 2013). All of these innovative solutions enhance
and enable the direct injection of the analytes into the separation
unit, and accordingly, they require fewer solvents, time, and labor
work (Płotka-Wasylka et al., 2015).

The SPME technique has been widely used in various areas
such as food analysis, environmental analysis, bioanalysis, drug
monitoring, and toxicology (Moein et al., 2015). Pharmaceuticals
and biological materials are complex and may contain acids,
bases, salts, biomolecules, and other additives with comparable
properties to the analytes of interest that areactive ingredients and
metabolites acting as interfering compounds (Ebele et al., 2017).
Generally, sampling and sample preparation steps make up more
than 80% of the total time of analysis, and these are very crucial
steps in determining the success of the analysis of the compounds
of interest in complex matrices such as biological samples, for
instance, plasma, urine, sputum, oral fluid, and whole blood
(Abuzar et al., 2017) or water, soil, and food samples
(Zambonin and Aresta, 2021). Thus, it is not amplification
when saying that the choice of a proper sample preparation
method significantly affects the reliability and accuracy of the
analysis in addition to its greenness and sustainability profiles.

The aim of this review is to report and compare the advantages
and drawbacks of the recent techniques and devices used for the
extraction and procedures for pharmaceuticals analyses in
complex matrices, with the main goal being the reduction of
solvent consumption, analysis time, and sample manipulation, in
accordance with green analytical chemistry (GAC) concepts.

Solid-Phase Microextraction
Solid-phase microextraction (SPME) presents a cornerstone for a
new era of solventless extraction, miniaturization, and
automation in pharmaceutical analysis. It assimilates sampling,

extraction, and analyte pre-concentration into one single step,
which results in low cost, reduction of labor, increased sensitivity,
reduced carryover, and sample losses, and enhances the overall
analytical process performance. Figure 1 shows the direct
immersion (DI) and headspace (HS) SPME extraction and
their direct coupling to the chromatographic system (Luo
et al., 2011).

Nevertheless, one of the major downsides of SPME is the
instability of the fibers: breaking and stripping of coatings that
can significantly reduce their overall lifetime (Reyes-Garcés et al.,
2018). Using HS extraction, rather than the DI, has improved the
lifetime, yet it is still considered a drawback (Płotka-Wasylka
et al., 2015). Another negative point of SPME is the
reproducibility that mainly results from various factors related
to batch-to-batch variation of fiber coatings, low thermal stability
of the fibers, short expiry date, and small selectivity. These factors
trigger the improvement of materials used for SPME. In general,
the DI-SPME has better reproducibility, but it does not allow
changes to the sample matrix, for example, change in pH (Płotka-
Wasylka et al., 2015).

Fiber Solid-Phase Microextraction and Capillary
Solid-Phase Microextraction
The commercially available fibers can be classified into non-
bonded, bonded, partially cross-linked, and highly cross-linked
phases, which all differ in their degree of stability with organic,
polar, and non-polar solvents. The physicochemical properties
and coating thickness strongly affect the distribution of analytes
between the sample matrix and the extraction phase, which in
turn influences the efficiency of extraction, selectivity, and
reproducibility of the analysis. Factors to be considered while
selecting of the fibers are molecular weight, polarity, and volatility
of target analytes (Spietelun et al., 2010). To enhance the

FIGURE 1 | Process of extraction of analytes using direct immersion and headspace SPME that further coupled to chromatographic instrument (GC-MS or LC-MS
or CE).
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selectivity and applicability of solid-phase microextraction
(SPME), different coating techniques have been explored and
utilized.

Conventional SPME Fiber Coatings
Polydimethylsiloxane (PDMS), polydimethylsiloxane/
divinylbenzene (PDMS/DVB), divinylbenzene/carboxen/
polydimethylsiloxane (DVB/CAR/PDMS), carbowax/
divinylbenzene (CW/DVB), and carbowax/templated resin are
used for conventional SPME fibers in both HS and DI modes
(Portillo-Castillo et al., 2018). The main problem for the
conventional coating is that they are mostly restricted to non-
polar or relatively non-polar analytes with relatively low
commercial availability (Souza et al., 2013).

Ionic Liquid–Based SPME Fiber Coatings
Ionic liquids are common alternative fiber coating materials. IL-
SPME fibers are mostly manufactured by immersion–agglutination
techniques for both fused silica and metallic supports. Sometimes, a
combination of ILs and adhesive or binder is used to obtain thicker
and more resistant coatings. One of the superior advantages is their
high viscosity that helps to acquire enhanced coatings and improve
film homogeneity and integrity. Moreover, due to the high thermal
stability of ionic liquids, the fibers are more resistant with higher
half-lives than the conventional ones. In addition, the
hydrophobicity of the ionic liquids has to be considered while
preparing the coating material. Better extraction efficiency is due to
the easier analyte diffusion from bulk matrix samples to SPME
fibers with the aid of the ionic liquid. The most commonly used
ionic liquids for SPME coating are the ones containing imidazolium

cations combined with different anions (Portillo-Castillo et al.,
2018).

Polymeric ionic liquids (PILs) are polymeric analogs of ILs;
they have the same selectivity and solvation power. However,
their viscosity and thermal stability are much higher. As a result,
PIL-based coatings have been used for SPME to improve their
thermal, mechanical, and chemical resistance. Additionally, it
extended their applicability to various samples and different
analytes. Afterward, the functionalized PIL-SPME was used to
further expand their application. Figure 2A shows an
immersion–agglutination coating procedure to obtain IL/PIL-
SPME fibers.

In further modification, monolithic SPME fibers are prepared
with different materials such as polymers or graphene in a form of
very thin rods. Their key advantages are simple preparation,
flexibility, and solvent resistance, and they show higher mass
transference rates than traditional fibers. Monolithic fibers can be
used for direct immersion–solid-phase microextraction (DI-
SPME) extractions due to their physical and chemical
characteristics (Mei et al., 2014).

Another alternative approach is the multiple monolithic fiber
SPME (MMF-SPME); it is based on using several monolithic
fibers bound together in a device. The available spaces between
the fibers allow sample convection and improve the mass transfer
(Mei et al., 2014). Recently, PILs have been used as MMF-SPME
fiber coating.

Molecularly Imprinted Polymer SPME Fiber Coatings
Molecularly imprinted polymers are obtained by monomer
polymerization with a cross-linking agent using a selected
template molecule, mainly through free radical polymerization.
The role of the template molecules is to organize the monomer
functional groups and outline the properties of binding sites
(Zhang et al., 2013). Among the common templates that are used
for the molecularly imprinted polymers are drugs, amino acids,
proteins, carbohydrates, nucleotides, and hormones. Cross-
linking agents mainly function to control the morphology of
the matrix and to stabilize the binding site; examples of the
common cross-linking agents are ethylene glycol dimethacrylate,
trimethylolpropane trimethacrylate, and others. Chloroform,
dichloromethane, and acetonitrile are the commonly used
solvent in the manufacturing process to maintain all
components in only one phase (Vasapollo et al., 2011).

Figure 2B presents a scheme of the fabrication basic principle
of MIP and an example of an SPME fiber coating process. MPIs
are mainly used for coating SPME-fused silica or metallic fibers.
MIP-SPME fibers can be used for direct immersion due to their
high solvent resistance and wide pH stability.

Carbon-Based SPME Fiber Coatings
Carbon nanotubes (CNTs), graphene, graphene oxide (GO), and
fullerenes are very widely used in sample extraction techniques.
Their high superficial area ensures a high extraction capacity
(Souza, Risticevic, and Pawliszyn 2013). Graphene (mostly GO) is
commonly used in SPME fiber coating for its high surface area
and mechanical, chemical, and thermal stability. Being easily
functionalized, it offers greater flexibility in extracting different

FIGURE 2 | (A) Immersion–agglutination coating procedure to obtain IL-
or PIL-coated SPME fibers. (B) MIP fabrication and coating of SPME fibers.
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compounds with different natures. It can be prepared by
immersion of a stainless steel wire in a graphene adhesive
suspension that results in a 6- to 8-μm-thick coating film or
by sol-gel procedures. Graphene-based fibers yield 1.5 times
higher extraction efficiencies than poly(dimethylsiloxane
(PDMS) and poly(dimethylsiloxane/divinylbenzene (PDMS/
DVB) commercial fibers; this can be related to their porous
surface and their strong affinities to analytes (Portillo-Castillo
et al., 2018). Graphene-based SPME fiber was used for extraction
of some UV filters that are frequently used in cosmetics,
sunscreens, and personal care products (Zhang and Lee
2012a). Multi-walled nanotubes (MWNTs) functionalized with
polyethylene glycol were used for coating a fused silica fiber via a
sol-gel process. CNTs and MWNTs were used to extract
ibuprofen, naproxen, and diclofenac from water samples; it
was stable at high temperatures up to 320°C and used for at
least 150 extraction cycles (Sarafraz et al., 2012).

Other Materials for SPME Fiber Coatings
Some inorganic materials can be used in SPME fibers due to their
good thermal, mechanical, and chemical stability. They also show
good selectivity due to their electronic structures, hydrophobic
interactions, electrostatic attractions, or covalent bond formation.
Ti–TiO2–ZrO2 fiber was used for PPCP analysis, 2-hydroxy-4-
methoxybenzophenone, 2-ethylhexyl-4-methoxycinnamate, 2-
ethylhexyl-4-(N,N-dimethylamino) benzoate, and ethylhexyl
salicylate were extracted by DI of the Ti–TiO2–ZrO2 fiber into
the samples with good performance (Li et al., 2020). Gold
nanoparticles (C8-S-AuNPs/SS) have also been used for SPME
fiber coating and applied to UV filters and phthalate ester (Yang
et al., 2017). Metal oxide nanosheets, such as, TiO2 nanosheets
and Zn–ZnO nanosheets were used. Conducting polymers (CPs),
namely, polypyrrole, polyaniline, and its derivatives have been
used as SPME fiber coating. CPs are rigid molecules producing
fibers with adequate hardness and sturdiness and show food
adsorption capacity (Bagheri, Ayazi, and Naderi 2013).
Metal–organic frameworks (MOFs) are also used as a coating
material; they are porous materials formed by metal ion clusters
connected by organic ligands (Tian et al., 2013).

In-Tube Solid-Phase Microextraction/
In-Tube Extraction Dynamic Headspace
ITEX-DHS
This technique uses an open tubular capillary as an SPME
device and can be coupled with liquid chromatography (LC). It
can also be coupled to GC using a GC capillary tube (Kataoka,
2005). In in-tube SPME, the extraction, desorption, and
injection can be automated using a standard autosampler.
The automation has advantages like shorter analysis time,
more accurate, and precise results. The analyte extraction
depends on the polarity of the capillary coating, the number
and volume of draw/eject cycles, and pH (Kataoka, 2005). In
addition, the internal diameter, length, and film thickness of
the column have to be chosen carefully. For optimum
extraction, the capillary column length should be around
50–60 cm; if the extraction is lower, efficiency is reduced,

and above this level, peak broadening can be observed
(Kataoka, 2005).

ITEX-DHS grants many advantages compared to the
previously described techniques, especially having an external
heater unit that allows desorption to be done independently of the
injector temperature (Parodi et al., 2019). So far, most of the
volatile organic compounds (VOCs) have been analyzed using
ITEX-DHS, although many commercial sorbent materials are
available. This could be related to the fact that ITEX-DHS is only
suitable for HS extraction (Kataoka, 2005).

Solid-Phase Dynamic Extraction
It is an inside-needle technique for vapor and liquid sampling
(Ke˛dziora-Koch and Wasiak, 2018). It is composed of stainless
steel needles (8 cm) coated with a 50-mm film of PDMS and 10%
activated carbon on which the analytes are concentrated. The
robustness of the capillary is the main advantage of SPDE over
SPME. SPDE has been successfully applied to the analysis of
volatile compounds, pesticides, and some drugs. Nevertheless,
one of SPDE’s disadvantages is the carryover, since the analytes
tend to remain in the inside needle wall followed by heat
desorption in the GC injection port (Luo et al., 2010).

Microextraction in a Packed Sorbent
MEPS is considered a potential extraction method that allows for
little solvent consumption, small sample volume (10–250 µl) that
can be directly injected without additional treatments into GC,
LC, or MS and without any modification of the instrument.
Another green key point is that it only requires a small amount of
sorbent, so only relatively small amounts of solvents are needed
for the elution process of the different analytes (Moein et al.,
2015). The process for MEPS includes conditional step, sample
loading, sample washing, sample elution, and a final MEPS
cleaning step. The MEPS device has multiple uses and variable
applications, such as, biologicals and environmental and food
applications, yet in environmental applications, where the sample
volume is high, MEPS shows some drawbacks (Silva et al., 2014).

Several types of packing materials are available; unmodified
silica, C2, C8, C18, polystyrene–divinylbenzene (PS-DVB),
porous graphitic carbon, MIPs, monoclonal antibodies (mAbs)
for immunoaffinity sorbent production, and other commercial
ones, as recently reviewed (Yang et al., 2017). In order to improve
the reproducibility of the MEPS devices, they are coupled to
syringes as they help in the reproducibility of the flow rates.
Figure 3A shows the general procedure applied in MEPS
extraction.

Fabric Phase Sorptive Extraction
Procedures
It is a relatively new method, developed by Kabir and Furton
(2014), that overcomes the drawback of MEPS as it is effectively
used for small- and large-volume samples and could be practically
applied in all fields (environmental, biological, food, toxicological,
pharmaceutical, and quality control). Recently, the inventors
introduce adjustments for FPSE not to either require matrix
modifications or clean up (Kabir et al., 2018). FPSE
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significantly simplifies the sample preparation workflow
compared to other available techniques. Figure 3B shows the
general procedure applied in FPSE.

Stir Bar Sorptive Extraction
A stir bar with a polymer coat is used to extract the analytes
typically by direct immersion; the analytes are extracted and pre-

FIGURE 3 | (A) General procedure applied in MEPS extraction. (B) General procedure applied in FPSE. (C) General procedure applied in SBSE. (D) General
procedure applied in magnetic nanoparticle extraction.
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concentrated when the SBSE spins inside the solution. Afterward,
the analytes are desorbed using a thermal desorption unit coupled
to gas chromatography or by solvent desorption busing a small
volume of a suitable organic solvent. It was developed to increase
the extraction sensitivity by incorporating substantially higher
sorbent loading. As it eliminates the use of solvents and reduces
the exhaustive and time-consuming sample preparation step,
SBSE simply satisfies the GAC requirements. Only two phases
are available, PDMS and poly(ethylene glycol) in PDMS, to be
coated onto a glass-coated magnetic bar, and due to their high
viscosity, they slow down analyte diffusion during extraction that
negatively impacted the extraction sensitivity in SBSE (Płotka-
Wasylka et al., 2015). The availability of only two phases is
considered as the major drawback of the method. The SBSE is
considered as a direct and independent sample preparation
device, it can simply operate without the need of an external
magnet by diffusing the sample matrix on a magnetic stirrer
where both extraction and pre-concentration are directly done.
Figure 3C shows the general procedure applied in SBSE.

Magnetic Nanoparticle Extraction
Recently, magnetic nanoparticles have been used for selective
extraction of trace species from complex matrices. The dominant
advantages of this innovative technique are it is possible to retain
the adsorbed analytes directly in the tube, clean away the matrix
and the interference compounds, and analyze the trace species in
the extract directly. In addition, the use of strong magnet ensures
no loss of analytes in the washing step and the possibility of
having a great pre-concentration factor for trace analyses. This
technique is reported to be used in food analysis (Hernández-
Hernández et al., 2017), for drugs in biological matrices
(Vasconcelos and Fernandes, 2017), or in other research fields
(Ríos and Zougagh, 2017). Figure 3C shows the general
procedure applied in magnetic nanoparticle extraction.

PAL SPME Arrow
PAL SPME Arrow was recently introduced to overcome the
drawbacks of SPME and SBSE. It combines trace-level
sensitivity with high mechanical robustness. Contrary to the
classical SPME fibers, the Arrow design fully shields the
sorptive material, reducing adverse effects and losing of
analytes during transfer processes. Additionally, PAL SPME
Arrow has a larger sorbent volume, providing a higher
extraction capacity than SPME, as seen in Figure 4. In

contrary to SBSE, it can be fully automated. It was used and
compared to SPME in extracting polycyclic aromatic
hydrocarbons (PAHs) from the freely dissolved fraction in
laboratory water and groundwater using polydimethylsiloxane
(PDMS) as common sorption phase material via direct
immersion (Kremser et al., 2016). Table 1 compares the
advantages and drawbacks of these microextraction techniques.

EXTRACTION EFFICIENCIES OF SPME
TECHNIQUES

Despite the practical applicability of SPME in sampling
procedures, modifications to improve the extraction
efficiencies are still a research aim. In general, the extraction
efficiencies for SPME will depend on extraction conditions, that
is, temperature, extraction time, and mixing method, ionic
strength of solutions, sample pH, stationary phase volume,
headspace phase volume, the volume of the sample, and fiber
material (Rutkowska et al., 2014).

It could be improved by adding salt to the sample for example
sodium chloride and sodium sulfate (salting out), pH or
temperature changes (as it affects the partitioning of the
targeted analytes, due to the different pKa values); agitating
the sample by stirring, for example, it can enhance the
extraction efficiency in non-equilibrium situations (Fiorini
et al., 2015).

Other solutions related to the use of unique phases have been
developed to improve extraction efficiency, for instance, using
inner coating with polypyrrole polymers for the commercially
fused silica capillary (Portillo-Castillo et al., 2018). In addition,
optimum column length is important for the efficiency of
extraction. Other techniques include wire-in-tube or fiber-in-
tube SPME, which improves extraction efficiency while extending
the method to microscale applications.

In SBSE, the sample volume and the speed of stirring impact
the extraction efficiency, and the usual stirring times for
equilibration are between 30 and 60 min (Pang et al., 2017).
The introductions of SPME–trap and SPME–trap with multi-step
enrichment (MSE) are improvements in sample extraction and
lower detection limits (Emmons et al., 2019).

Since the extraction efficiency can be affected by a high
number of factors, the role of each factor and its interactions
have to be studied for better extraction outcomes. For this
purpose, formal design of experiments (DoE) can provide a
fast, efficient, and cost-effective approach that is superior to
that achievable by the one-factor-at-a-time (OFAT)
methodology. Two broad groups of experimental designs are
used: simple linear models (screen from two to 6–8 factors) and
the more complicated quadratic models to describe the response
as a function of two to four factors by applying the response
surface methodology (RSM) (Marrubini et al., 2020). There are
many pieces of software used for DoE computations, namely,
Chemometric Agile Tool (CAT), Design Expert, Minitab®
Statistical Software, JMP, and MATLAB. Marrubini and
coworkers reviewed articles published in the period from 2009
to 2019 that used microextraction techniques and applied DoE.

FIGURE 4 | Difference between classical SPME fiber and the PAL
SPME arrow.
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They included some points that represent the least information
needed to describe and report a DoE study: the experimental plan
and experimental matrix, the model equation and model
adequacy checking (R2, adjusted R2, residuals, analysis of
variance (ANOVA), t-test of the coefficients, normal
probability plot, inflation factors), the model validation and
finally the response surfaces plots, interpretation, and
discussion of the role of the factors (Marrubini et al., 2020).

SELECTION CRITERIA FOR THE
MICROEXTRACTION TECHNIQUE

The selection of the optimal microextraction technique can be an
overwhelming task for the researchers, and it highly depends on
the specific analytical problem. The characteristics of the analytes
are very crucial to determine the most suitable extraction
technique, and the analytes’ partitioning constants can help
predict the suitability of the DI or HS extraction mode (Parodi

et al., 2019). Another factor to be considered is the volatility of the
analytes, if the analytes are sufficiently volatile, HS is always
preferred over DI extraction. Using HS with volatile analytes
allows exclusion of more interferences, faster equilibrium due to
the diffusion boundary layer being thinner, and prolonged
lifetime of the sorbent material (Płotka-Wasylka et al., 2015).
Both DI and HS sampling modes of SPME are used extensively in
SPME–GC application. HS extraction can be performed with all
the techniques previously described; however, it is best fit with the
dynamic extraction techniques like ITEX-DHS. While DI–SPME
is more suitable for gaseous or simple liquid sample matrices,
HS–SPME is preferentially used for extraction from complex
liquid and solid samples. For very dirty samples, the HS mode
is the most suitable, yet if the analysis becomes more
complicated, pH adjustment or salt addition should be
performed to facilitate the transfer of the target compounds
to the headspace. HS also is more suitable to analyze highly
volatile and low-polar analytes in contrary to DI extraction.
Commonly, for SPME–LC applications, DI is used as the

TABLE 1 | Advantages and limitations of some green solid phase-based extraction techniques.

Microextraction technique Advantages Disadvantages

Solid phase microextraction (SPME) No need for solvents Robustness of fiber coatings
Rapid, simple and sensitive Stationary phase of limited range
Used for polar and non-polar analytes In-between batch variations
Applicable with wide range of matrices
Compatible with different separation and detection
systems
Suitable for headspace and immersion modes

In-tube extraction dynamic headspace
(ITEX-DHS)

High sorption capacity Stationary phase of limited range
Many available commercial sorbent materials
External heater unit allows independent desorption

Solid-phase dynamic extraction (SPDE) More sensitive than SPME Carryover; analytes might remain on the needle inner wall
Robust
Shorter extraction time than SPME Stationary phase of limited range
Smaller sample size than SPME More complicated analytical process

Microextraction in a packed sorbent (MEPS) Short procedure time Clogging of the barrel insert and needle
Applicable with wide range of matrices Not very suitable for processing large volume samples
More simple analytical procedure Limited range of sorbents available
Reuse sorbents many time
Economical

Fabric phase sorptive extraction procedures
(FPSE)

No special equipment or set-up is needed, flexible
technique

Longer extraction time

Stable even in harsh chemical environment (pH 1–13)
High primary contact surface area (efficient extraction)
Low solvent required for quantitative desorption
Low risk of cross-contamination

Stir bar sorptive extraction (SBSE) Lower detection limit than SPME High matrix effects
Compatible with different separation and detection
systems

Limited number of commercially available coatings

High thermal and chemical stability of stir-bar coatings Requires high control of extraction conditions
Suitable for headspace and immersion modes High enrichment factor only for non-polar analytes
Higher enrichment factor than SPME Possibility of bleeding at even relatively during thermal

desorption
Magnetic nanoparticle extraction Good cleanup of matrix and the interference compounds Particle agglomeration that leads to low extraction efficiency

No loss of analytes Oxidation of magnetic cores
PAL SPME Arrow Higher extraction capacity than SPME Limited mechanical stability

High mechanical robustness Small phase volumes of the fibers
Trace-level sensitivity
Can be fully automated
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TABLE 2 | (Continued) Applications of the microextraction techniques discussed in this review for determination of pharmaceuticals in different matrices.

Application Analyte Extraction method Matrix LOD/LOQ (ng/ml) Recovery Analysis method References

α-17-ethynylestradiol 0.020β-Estradiol 0.042

α-Bisphenol A
Ciprofloxacin and levofloxacin, two fluoroquinolones MEPS (C18) Sputum 17–50 >80% HPLC-PDA Locatelli et al. (2015)

Cocaine, amphetamines, natural and synthetic opioids, and hallucinogens (AMP,

MAMP, MDA, MDMA, and MDEA)

MEPS Oral fluid 1, 1, 1, 0.5 & 0.5 >60% LC-MS/MS Montesano et al.

(2015)

Estriol, 17β-estradiol, testosterone, ethinylestradiol, estrone, progesterone, and
mestranol

SPME-fiber Urine nr 75.6–116% HPLC Liao et al. (2016)

Benzodiazepines FSPE (sol-gel PEG) Blood serum 30 nr HPLC Samanidou et al.

(2016)10

Abacavir SPME-fiber Urine 43.9 × 10−3 88–99% LC-MS Terzopoulou et al.

(2016)

12 azole drugs (bifonazole, butoconazole, clotrimazole, econazole, itraconazole,

ketoconazole, miconazole, posaconazole, ravuconazole, terconazole, tioconazole, and

voriconazole)

MEPS (C18) Plasma, urine 0.23 and 0.37 88.5–99.2% HPLC-DAD Campestre et al.

(2017)

Trans,trans-muconic acid MIP-MEPS Urine 50 89.8–91.6% HPLC-UV Soleimani et al. (2017)

15

Statins MEPS (C18) Plasma 10–20 nr UHPLC-MS/MS Ortega et al. (2017)

Drugs of abuse MEPS C8/SCX Plasma 5–10 80–104% UPLC Fernández et al. (2017)

Morphine

Methylone

6-AM

Mephedrone

BEG

Cocaine

MDPV

Cocaethylene

EDDP

Methadone

Voriconazole SPME-MS Human plasma 3–6 nr Coated blade

spray-MS

Tascon et al. (2017)

Ciprofloxacin FSPE (sol-gel

Carbowax
®
20 M)

Whole blood Plasma 250 (10) nr HPLC-PDA Kabir, et al. (2018)

Sulfasalazine Urine 110 (30)

Cortisone 100 (30)

Cyclosporine SPME-MS Whole blood 3.0 nr Coated blade

spray-MS/MS

Gomez-Ríos et al.

(2018)Tacrolimus Whole blood 0.3

Sirolimus Whole blood 1.0

Everolimus Whole blood 0.3

losartan and valsartan SBSE Human plasma 7.0 98–117% LC-MS Babarahimi et al.

(2018)27.0

Methylphenidate SPME Human heparin plasma nr nr TD-ESI/MS Wang et al. (2018)

Doxorubicin SPME Lung tissue 103.2% LC-MS/MS Roszkowska et al.

(2018)

Antibiotics and their metabolites (amoxicillin, cefotaxime, ciprofloxacin, clindamycin,

metronidazole, amoxycilloic acid, 4-hydroxyphenyl glycyl amoxicillin, desacetyl

cefotaxime, 3-desacetyl cefotaxime lactone, ciprofloxacin N-oxide, N-demethyl

clindamycin, clindamycin sulfoxide, and hydroxy metronidazole

SPME-C18 fiber Human whole blood and

tissue samples

28–45 89.29–98.39% HPLC-QqQ-MS Szultka-Mlynska et al.

(2018)85–135

NSAIDs (ibuprofen, diclofenac, naproxen, and nalidixic acid) SPME- Fe3O4/

Cu3(BTC)2 MOF

Human urine, serum,

plasma, and tablets

0.03–0.05 94.0–102.0%. HPLC Mirzajani et al. (2019)

0.12–0.18

Methamphetamine SPME Hair 0.067 90.2–95.8% LC-MS Meng et al. (2020)

Amphetamine 0.067

Ketamine 0.067

Norketamine 0.067

Perphenazine, chlorpromazine, chlorprothixene, promethazine, and trifluoperazine Hollow fiber SPME Human whole blood and

urine

0.025, 0.0125, 0.025, 0.025 and

0.0125

46.4–96.6%

(blood)

UPLC-MS/MS Li et al. (2020)

65.2–101.9%

(urine)

Alprazolam and amitriptyline DI-SPME Human blood and bone

marrow

1.87–10.45 nr LC-TOFMS Majda et al. (2020)

Bromazepam and carbamazepine, citalopram 5.60–31.35

Clonazepam,clorazepate, desipramine, and diazepam

Estazolam, flunitrazepam, and fluoxetine

(Continued on following page)
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analytes of interest are not sufficiently volatile. PAL SPME
Arrow, MEPS, and SBSE are the recommended techniques,
especially when coupled to GC. Better sensitivities are
achieved by SBSE due to the higher phase volume
available. Nevertheless, it still requires a significantly
longer time to reach equilibrium in addition to substantial
matrix effects (Płotka-Wasylka et al., 2015). The limiting
spectrum of analytes for SBSE is mainly due to the limited
availability of the coating material. If the optimal phase is not
available in the SBSE design, PAL SPME Arrow is the
recommended alternative. Table 1 summarizes the
advantages and limitations of these green microextraction
techniques.

APPLICATIONS

A wide application range for pharmaceutical extractions using
solventless techniques is reported, which includes analysis of
pharmaceuticals in environmental, water, food, and biological
matrices. All applications would never be possible to
summarize; yet in Table 2, some solventless extraction
techniques used for pharmaceutical applications in different
matrices are presented.

Environment Applications
Many novel microextraction techniques are now replacing
liquid extraction for the analysis of pharmaceuticals in water
samples. It enriches and enables the direct injection of the
analytes into the separation unit, which requires less solvents,
time, and labor (Płotka-Wasylka et al., 2015; Ke˛dziora-Koch
and Wasiak, 2018). They are usually coupled to gas
chromatography–mass spectrometry or liquid
chromatography–mass spectrometry. The determination of
chlorophenols in water is very important due to its high
toxicity level (Gallego et al., 2018). Many studies had
reported the extraction of chlorophenols and some
estrogenic compounds using HS-SPME, followed by on-fiber
derivatization coupled with GC-MS (Yuan et al., 2017).

VOCs, being volatile, can be analyzed using preferably HS-
SPME–based methods, rather than DI (DIN EN ISO 17943:2016).
SPDE and ITEX-DHS are very useful for the VOC analysis in
water, and due to the greater sorption volume, their linear range is
broader and LODs are much lower. SPME-GC was developed for
monitoring selected personal care products, estrogens, and
pharmaceutical compounds (clofibric acid and carbamazepine)
in surface water (Huang et al., 2015).

In a study to determine phenolic compounds, bisphenol A, and
acidic pharmaceuticals, the sensitivity was adjusted by calculating
the log D values of the target analytes at different pH levels. To
ensure the desorption of strong polar–polar interactions between
analyte and solid phase, SPME on a carbowax/templated fiber was
used, and the results showed better sensitivity and remarkable
improvement in the level of detection, 1 ng/ml in tap and river
water and 2–9 ng/ml for wastewater (Kim et al., 2013).

Monolithic fibers have been developed and used to improve
the mechanical stability of MIP to extract diacetylmorphine andT
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analogous compounds in aqueous solution (Yılmaz et al., 2017).
In another study, using multiple monolithic fiber SPME, analysis
of sex hormones in tap and lake water was done with good
performance and recoveries between 77.7 and 115%. The use of
poly(1-allyl-3-methylimidazolium) bis(trifluoromethylsulfonyl)
imide copolymerized with ethylene dimethacrylate as the
monolithic fiber coat has resulted in a lifetime that is higher
than 200 cycles and the analysis time is shorter (Liao et al., 2016).

MEPS provides a significant advantage by allowing the use of
small sample volume, particularly when the amount of sample is
limited, especially in forensic toxicology. The method showed a good
recovery range for all the studied drugs of abuse 80–104%. In
addition, the sorbent can be reused up to 80 times in human
plasma (Fernández et al., 2017), the use of limited volumes, and
the reusability of the sorbent can add to the green credit of the
method (Mohamed, 2015). In another study, Soleimani and
coworkers combined the MIP and MEPS (MIMEPS) and used it
for the extraction of trans,trans-muconic acid; the LOQ of the
method was lower than that suggested by the American
Conference of Governmental Industrial Hygienists (75 μg/ml)
(Soleimani et al., 2017). The MIMEPS used much smaller
volumes of solvents for conditioning, washing, and elution
procedures, which makes it a greener alternative than the
conventional SPE technique (Soleimani et al., 2017). To enhance
the extraction recoveries of sulphonamides from wastewater
(88–109%), Salami et al. (Salami and Queiroz, 2014), used salting
out by adding 15% NaCl, where the water molecules form hydration
spheres around the NaCl molecules. In consequence, they reduce the
water concentration available for dissolution of the analytemolecules,
and this will drive additional analytes into the extraction phase.

Biological Applications
The use of solventless microextraction techniques has a broad
spectrum of applications in clinical control for diagnosis and
treatment of diseases, doping, forensic analysis, and toxicology.
All of the different techniques could be coupled to on-line HPLC,
LC/MS, or GC/MS. Each technique as discussed earlier has its
advantage and disadvantage. Table 2 represents some trials on
extracting pharmaceuticals in the biological matrix with the
extraction and analysis methods, recoveries, and LOD/LOQ.

Twenty illicit drugs and their metabolites were determined in
oral fluid using MEPS; the method was successful in the
determination of the selected drugs with fairly lower cutoff
values than recommended by the Substance Abuse and Mental
Health Services Administration (SAMHSA) (Montesano et al.,
2015), using a miniaturized extraction procedure.

Analysis of amphetamine, methamphetamine, cannabinoids,
cocaine, opioids, and hallucinogens was reported using various
microextraction techniques. Determination was done in saliva
samples for forensic purposes (Jain, 2017). The SPME coupled to
mass spectroscopy and coated blade spray (CBS) was used to
determine voriconazole in human plasma (Tascon et al., 2017)
and immunosuppressant drugs in whole blood (Gomez-Ríos
et al., 2018). Using the CBS has a challenge that the analytes
largely bound to plasma proteins or red blood cells resulting in
noticeably lower extraction recovery rates. Hence, it was treated by

performing the analyte enrichment step through direct immersion in
a solvent-modified matrix (Gomez-Ríos et al., 2018).

Abacavir, an anti-HIV drug, was determined using an SPME
fiber coated with an acrylic acid–based MIP (Terzopoulou et al.,
2016). An observed good recognition capability for abacavir in
real sample analysis was reported, with extraction efficiencies
88–99%, and no matrix effects in either biological or
environmental matrices—urine and wastewater.

Solid-phasemicroextraction (SPME)was also used for therapeutic
drug monitoring of tranexamic acid in plasma and urine of patients
with renal failure. The method was a greener alternative for the fast
high-throughput monitoring of tranexamic with no biological matrix
interference. The use of a biocompatible polyacrylonitrile-based
hydrophilic–lipophilic–balance extraction phase help prevent the
macromolecules from any interaction with the device which make
the method convenient and easy to use as it allows direct exposure of
the sample without major sample pretreatment steps whichmake it a
greener alternative (Looby et al., 2021).

The use of FPSE for the determination of important biological
molecules, 17-ethynylestradiol, β-estradiol, and bisphenol A, had
shown lower detection limits of the analytes over previously
reported methods. The analysis time was lower than the
compared methods, and this contributes to the economic
efficiency of the method and its greenness profile. Good
recoveries were obtained for drinking water (96–98%), river
water (92–94%), and groundwater (94–95%) (Kumar et al.,
2014). In further study that determines some androgens and
progestogens in water and urine samples, the analysis showed
lower values for the matrix effect (between −10 and +7% for all
the compounds), which ensures high selectivity from the
interferences and the target analytes (Guedes-Alonso et al., 2016).

SPME coupled with thermal desorption–electrospray
ionization/mass spectrometry (TD-ESI/MS) was used to study
the pharmacokinetics of methylphenidate in plasma in a very
small sample volume. High sensitivity and reproducibility of the
SPME-TD-ESI/MS were reported due to the suitability of the
PDMS for concentrating plasma methylphenidate, complete
desorption in the thermal decomposition chamber, and the
ionization efficiency of methylphenidate (Wang et al., 2018).

SBSE has been successfully applied to pharmaceutical analysis
in different kinds of matrices, including environmental water,
biological fluids, soils, and gaseous samples (Vo Duy et al., 2012;
Hu et al., 2013). Several trials have been going on to improve the
SBSE efficiency and its recent developments (Amlashi and
Hadjmohammadi, 2016); nevertheless, the number of
applications within this field is lower than that in food and
environment analyses (Camino-Sánchez et al., 2014). This
could be related to the complexity of the biological matrix
where SBSE is not a highly selective or specific extraction
technique. Moreover, many pharmaceutical analytes are polar
compounds, and they have reduced extraction efficiency when
PDMS is in the stationary phase (Camino-Sánchez et al., 2014;
Taraji et al., 2015). Some approaches were carried out recently to
increase the recovery of polar analytes, for instance, in situ
derivatization and SBSE with solvent-swollen PDMS (Ochiai
et al., 2018).
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Other Applications
Moreover, solventless extraction techniques can be used for
pharmaceutical extraction in pharmaceutical formulations,
animal tissues, and food samples, as shown in Table 2.
Mercolini and coworkers (Mercolini et al., 2012) had
determined melatonin and other antioxidants in food and
beverages derived from grapes. The sample pretreatment was
carried out by fast and reliable microextraction by packed sorbent
(MEPS) procedure. This was followed by an HPLC determination
coupled with fluorescence detection. Similarly, sodium chloride
addition from 0 to 0.3 g/ml was used to enhance the extraction
efficiencies of salicylic, 3-methyl salicylic, 4-methyl salicylic,
acetylsalicylic, and benzoic acids from fruits and vegetables
(Aresta and Zambonin, 2016).

SPME was used to determine clenbuterol in pork using GC-
MS, with 97.4–105.7% recovery (Ye et al., 2016), and
neurotransmitters in bovine tissue using LC-MS/MS (Lendor
et al., 2019). SPME was used for direct analysis in real time,
coupled to tandem mass spectroscopy, for rapid and high-
throughput screening of multi-residue pharmaceuticals in
bovine tissue. Although it has limited analyte scope and lower
detectability levels compared to electrospray ionization–based
methods, yet the high-throughput, simplicity, and real-time use
are advantages of the technique. In another work (Khaled et al.,
2020), the multi-residue pharmaceutical drugs in bovine tissue
were analyzed using solid-phase microextraction and direct
analysis in real-time-tandem mass spectrometry (SPME-
DART-MS/MS).

SBSE was used to separate carvedilol enantiomers (Taraji et al.,
2015) in pharmaceutical dosage forms. The applicability of two
sorptive phases, poly(methyl methacrylate/ethyleneglycol
dimethacrylate) (PA–EG) and polydimethylsiloxane, was
evaluated for extracting carvedilol enantiomers from aqueous
samples. The homemade PA–EG sorptive phase has shown
recovery yields much better than the conventional PDMS and
the least limit of detections and shorter time of analysis (Taraji
et al., 2015).

CONCLUSION

The extraction (cleanup) process is considered one of the major
steps that hinder the greenness of any analysis procedure,
especially complex matrices, due to high solvent consumption
and use of toxic solvents; in addition, it prolongs the time of the
analysis. Solid-phase extraction (SPE) techniques offer an
interesting alternative to conventional liquid–liquid extraction.
Having the advantage of being simple, economic in terms of time
and solvents use, the SPE techniques have become more popular
overtime. Advancement to improve them to be better solutions
for sample preparation has been introduced, for instance, SPME,
SBSE, MEPS, FPSE, and PAL SPME Arrow. These new
techniques are considering the green analytical chemistry
principles at many aspects (miniaturization, cost, solventless,
etc.) that allow them to be a greener alternative.

Various factors contribute to select the optimum technique,
for instance, the sample type, the analyte of interest, and the
priority of the analysis. Moreover, the analytes’ characteristics, for
instance, the partitioning constant, can affect the selection of
headspace or direct immersion for the extraction mode.

Another advantage of these microextraction techniques is that
they allow the analysis to take place using simpler analytical
methods such as HPLC-UV/Vis while avoiding the use of more
complex and expensive ones if needed, which again supports the
GAC principles. Further investigation of more novel sorbents
with advanced features that improve selectivity, loading capacity,
or retention efficiency, and recoveries is still needed. In addition,
exploring futuristic tools such as smartphones, microfluidics, and
other small handheld detectors will be useful to ensure their
sustainability and suitability.
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