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Tailoring of specific sites on the nanocluster surface can tailor the properties of
nanoclusters at the atomic level, for the in-depth understanding of structure and
property relationship. In this work, we explore the regulation of surface structure of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via alloying. We successfully obtained
the well-determined tri-metal [Au9Ag8@Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 by the reaction of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 with the CuI(SAdm) complex precursor. X-ray
crystallography identifies that the Cu dopants prioritily replace the position of the silver
capped by Dppm ligand in the motif. The Cu doping has affected the optical properties of
Au9Ag12 alloy nanocluster. DPV spectra, CD spectra and stability tests suggest that the
regulation of surface structure via Cu alloying changes the electronic structure, thereby
affecting the electrochemical properties, which provides insight into the regulation of
surface structure of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 via alloying.

Keywords: regulation of surface structure, alloy engineering, optical properties, electrochemical properties,
intercluster reactions

INTRODUCTION

Atomically precise core-shell nanoclusters have become a promising material in catalysis,
biomedicine, and chemical sensing due to the unique quantum confinement effect resulting in
optical properties (Jin et al., 2016; Yao et al., 2018; Xu et al., 2019; Jin R. et al., 2021; Sun et al., 2021;
Zheng et al., 2021). The studies on correlation between the properties and structures of cluster
compounds based on the determined crystal structures show that the core and shell structures have
different effects on the performance of the cluster compounds, and modifications on the core and
shell structures may induce variations on clusters properties (AbdulHalim et al., 2014; Chakraborty
and Pradeep, 2017; Khatun et al., 2018; Yan et al., 2018; Jin Y. et al., 2021). The Pt core-doped
nanocluster PtAu24(SC6H13)18 exhibits higher hydrogen production than that of Au25 (Kwak et al.,
2017), and the dopant AuAg24 shows stronger fluorescence performance (Bootharaju et al., 2016).
Surface shell dopant Au24Cu6 exhibited superior catalytic activity compared to other homometallic
and Au-Cu alloy nanoclusters (Chai at al., 2019). Therefore, alloying could serve as an efficient
approach to tailor the properties of nanoclusters for more applications (Ghosh et al., 2018; Jin et al.,
2018a; Wang et al., 2018; Dias and Leite, 2019).

Current alloy research mainly focuses on bimetallic clusters, and there are few studies on
trimetallic clusters due to factors such as synthesis, characterization, and crystallization, etc. (Kang
et al., 2016; Sharma et al., 2016; Yan et al., 2016; Hossain, et al., 2018; Kang et al., 2019a; Kang et al.,
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FIGURE 1 | (A) Optical absorption spectra and (B) the XPS spectra of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 (black line) and
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 (red line); ESI-MS spectra of (C) [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and (D) [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3. The
peaks labeled by asterisks in Panels (C, D) correspond to [Au9Ag12(SAdm)4(Dppm)6Cl6+(SbF6)]

2+ and [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6+SbF6)
2+, respectively.

SCHEME 1 | The metal exchange from [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 to [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 (Color labels: Golden � Au; Sky blue
� Ag; red � S; purple � P; Gray � C; light green � Cl; Turquoise � Copper).
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2019b; Kang et al., 2020) When the third metal is doped into the
bimetallic alloy clusters, what site will it occupy andwhat effect will it
have on the overall performance?Recently, for the active metal Cu
doping, several surface Cu-doped nanoclusters such as Au13Cux (x �
2, 4, 8) (Yang et al., 2013), CuxAu25-x (Yang et al., 2017), Cu3Au34
(Yang et al., 2017), Ag28Cu12 (Yan et al., 2016), Ag30Cu14 (Li at al.,
2020) and Cu-internal-doped nanoclusters like Ag61Cu30 have been
observed and well-determined by x-ray crystallography (Zou et al.,
2020). Specifically, the outer Au shells always are partially alloyed by
the incorporated Cu heteroatoms for Au-based nanoclusters, while
core-shell alloy nanoclusters with a shell-by-shell configuration
could be generated for Ag-based nanoclusters. However, for the
Au-Ag alloy nanocluster, howwill the copper atoms choose the sites?

Herein, we use position-determined alloy clusters
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 as templates for the doping
of the third metal copper (Jin et al., 2018b). The crystallography
analysis suggested that the four Cu atoms priority replace the position
of the silver capped by Dppm ligand in the motif for
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 (Scheme 1). And the Cu
doping affected the electronicstructure, resulting in the difference of
optical properties inCD spectra, DPV spectra and so on. This provides
a good observation method for understanding the doping position.

MATERIALS AND METHODS

Materials
Tetrachloroauric(III) acid (HAuCl4.3H2O, 99.99%), silver nitrate
(AgNO3, 98%), tetrabutyl ammonium chloride (TBAC, 98%),
sodium borohydride (NaBH4, 99.99%), bis-(diphenylphosphino)
methane (Dppm, 98%), 1-Adamantanethiol (C10H16S, 99%),
sodium hexafluoroantimonate (NaSbF6, 98%), toluene (Tol,
HPLC grade, Aldrich), methanol (CH3OH, HPLC, Aldrich),
n-hexane (Hex, HPLC grade, Aldrich), dichloromethane

(CH2Cl2, HPLC grade, Aldrich), Pure water was purchased
from Wahaha Co. Ltd. All reagents were used as received
without further purification.

Synthesis of [Au9Ag12(SAdm)4(Dppm)6Cl6]
(SbF6)3 nanocluster
The synthesis of [Au9Ag12(SAdm)4(Dppm)6Cl6] was obtained by
the method reported (Jin et al., 2018a). Typically, HAuCl4 3H2O
(40 mg) and AgNO3 (60 mg) was mixed in 15 ml toluene with
TBAC (200 mg). Stirring for 5min, 50 mg bis-
(diphenylphosphino)methane and 50 mg 1-Adamantanethiol
were added together. 15 min later, a solution of 20 mg NaBH4

(1 ml H2O) was added. The reaction sustained for 12 h at room
temperature. The crude product was spied dry and washed by
hexane. 30 mg NaSbF6 in 3 ml CH3OH was added to replace the
anion of the cluster for easy crystallization. The yield of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 is as high as 70% based
on the Ag element, which was determined by ESI-MS and X-ray
crystallography. The CCDC number is 2114779.

Synthesis of CuISR Complex Precursor
CuCl (0.05 g, 0.5 mmol) was dissolved in 5 ml CH3CN, and
AdmSH (0.09 g, 0.55 mmol) was dissolved in 5 ml CH3CN and
added drop-wise to the solution under vigorously stirred. The
resulting solution mixture was then washed several times with
hexane. Then the final product was used directly.

Synthesis of
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3
nanocluster:
The 20 mg [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 dissolved in
7 ml methylene chloride, CuISR (1 mg) was added to the solution.

FIGURE 2 | (A) the time-dependent UV-Vis spectra and (B) ESI mass spectra of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 in CH2Cl2 after adding CuI(SAdm) complex
precursor.
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The reaction lasted for 10 min at room temperature. After that,
the reaction mixture was centrifuged at 8,000 rpm. The organic
layer was separated from the precipitate and evaporated to
dryness. [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 was
obtained. The yield of
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 is as high as 60%
based on the [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3. Orange
crystals were crystallized from CH2Cl2/hexane at room
temperature after 7 days. The CCDC number is 2114780.

Characterization
All UV/Vis absorption spectra of nanoclusters are recorded on a
Techcomp UV1000 spectrophotometer. Electrospray ionization
time-of-flight mass spectrometry (ESI-TOF-MS) measurement
was performed using a UPLC H-class/XEV0G2-XS QTOF high-
resolution mass spectrometer. The sample was directly infused
into the chamber at 5 μL/min. Photoluminescence spectra were
measured using an FL-7000 spectrofluorometer with the same

FIGURE 3 | (A) the overall structure of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3; (B) the overall structure of [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3; Packingmodels of
(C) [Au9Ag12(SAdm)4(Dppm)6Cl6]

3+ and (D) [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]
3+ from default view a, b, c. Color labels: Golden � Au; Sky blue � Ag; red � S; purple � P;

Gray � C; light green � Cl; Turquoise � Copper).

FIGURE 4 | The circular dichroism (CD) spectra of the enantiomer in (A)
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and (B)
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 nanoclusters.

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 7933394

Deng et al. Surface Structure Regulation of Au9Ag12

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


optical density (OD) of ∼0.2. X-ray photoelectron spectroscopy
(XPS) measurements were performed using a Thermo ESCALAB
250 configured with a monochromated Al Kα (1486.8 eV) 150W
X-ray source, 0.5 m mm circular spot size, a flood gun to counter
charging effects, and an analysis chamber base pressure lower
than 1 × 10–9 mbar, and the data were collected with FAT �
20 eV. CD spectra are recorded with a BioLogic MOS-500 CD-
spectropolarimeter in a 0.1-cm path length quartz cell. The
spectra are recorded in diluted solutions of dichloromethane
and the signal of the blank solvent is subtracted. The
enantiomers of chiral [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3
were separated by HPLC on an Agilent 1260 system equipped
with a Chiralcel OD-H column (5 µm, 4.6 mm ø × 250 mm). A
diode array detector (DAD) in situ monitors the entire optical
absorption spectrum (190–950 nm range) of the eluted solution,

and the 427, 482 and 710 nm wavelength were used for the
chromatogram. The nanoclusters were pre-dissolved in solvent
which has the same composition of the mobile phase (methanol/
isopropanol � 35/65). The flow rate was at 0.4 ml min−1 and the
temperature set at 20°C.

RESULTS AND DISCUSSION

The synthesized [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 based on
the reported method was determined by ESI-MS and X-ray
crystallography. The next is the regulation of surface structure
of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 with CuI(SAdm)
complex precursor. As shown in Figure 1A, the
[Au9Ag12(SAdm)4(Dppm)6Cl6]

3+ shows main peaks at 322,
365, 427, 480 and 670 nm, respectively, and
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+ shows 322, 366, 427, 482
and 710 nm, respectively. In contrast, most of the peaks for both
nanoclusters have not changed significantly, except for the red
shift of the 670 nm peak to 710 nm. The binding energy of Cu2p
from XPS data confirmed the Cu doping in the
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+ (Figure 1B), and energy
level positions of other elements have basically not changed
(Supplementary Figure S1). The peak at m/z 2084.85
corresponds to the 3 + charge of
[Au9Ag12(SAdm)4(Dppm)6Cl6] and can be perfectly assigned
by the calculated result (m/z 2084.81) (Figure 1C). And peak
at m/z 2026.20 corresponds to the 3 + charge of
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6] (Cal. 2026.18) (Figure 1D).
Meanwhile, the H-NMR and 1H–1H COSY spectra of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and
Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 nanoclusters were
performed, showing that the overall chemical environment is
weakly affected by copper doping regulation (Supplementary
Figures S2, 3).

Furthermore, in order to have a deep understanding of the
regulation process, the time-dependent UV-Vis spectra and ESI
mass spectra of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 in
CH2Cl2 after adding CuI(SAdm) complex precursor were
performed. As shown in Figure 2A, with the increase of time
of CuI(SAdm) complex precursor. adding, the peak centered at
427 nm always maintained, and the peak centered at 480 only
2 nm redshifts. While the 670 nm peak gradually red shift to
710 nm, with a redshift value of 40 nm. ESI mass spectra
suggested the copper atoms are gradually replacing silver
atoms, which leads to red shift (Figure 2B). The successful
determination of [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+ structure
allowed us to know the site of doping clearly.

As shown in Figure 3, the overall structure of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 are basically the
same: firstly, five gold atoms and eight silver atoms constitute
the icosahedron, then the Au5Ag8 icosahedron and four gold
atoms constitute the Au4@Ag8Au5 metallic kernel. The Au4@
Ag8Au5 is first capped by four Dppm ligands and two Cl ligands,
forming Au4@Ag8Au5(Dppm)4Cl2 framework. After the Au4@
Ag8Au5(Dppm)4Cl2 is further protected by two peripheral

FIGURE 5 | (A) Photon energy spectra of Au9Ag12 (black line) and
Au9Ag8Cu4 (blue line). (B) DPV of Au9Ag12 (black line) and Au9Ag8Cu4 (blue
line).
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structures DppmAg2Cl2(SR)2, the Au9Ag12 was obtained. By
contrast, Au5Ag8@Au4@Cu4 is obtained when four copper
atoms doped the position of the silver of peripheral structures
DppmAg2Cl2(SR)2. Meanwhile, the copper doping has little effect
on the bond length and angle of the icosahedron metal core
(Supplementary Figure S4). Based on the doping sites of copper
atoms, we realize that the Au4@Ag8Au5 will be a stable metal core.
In the packing model, the difference of arrangement can be
observed clearly, and it is worth mentioning that the doping
can affect the arrangement of clusters in the unit cell (Figures
3C,D) from a crystal engineering point of view.

As reported, the chirality of metal clusters mainly come from
chiral metalcore, the arrangement of chiral ligands and local
chiral patterns on an achiral surface (Zeng and Jin, 2017). The
chirality of [Au9Ag12(SAdm)4(Dppm)6Cl6]

3+ comes from the
chiral Au4@Ag8Au5 metallic kernel. After doping, the cluster
will have a different CD spectrum compared to the parent
compound. Importantly, herein, the Cu dopants also have
some impacts on the chiral properties. As shown in Figure 4,
the CD spectra of [Au9Ag12(SAdm)4(Dppm)6Cl6]

3+ reveal
multiple CD-active peaks at 325, 363, 428 and 483 nm,
respectively, and some weak peaks. While the CD spectra of
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+ shows peaks at 340, 373,
442, and 493 nm, respectively. The Au38 cluster with Pd atoms
leads to core-doped Pd2Au36(SC2H4Ph)24. Comparison between
the CD spectra of Au38(SC2H4Ph)24 and Pd2Au36(SC2H4Ph)24
shows significant differences, revealing core-doping has strong
impacts on the electronic structure of the cluster (Barrabés et al.,

2014). The comparison between the CD spectra of
[Au9Ag12(SAdm)4(Dppm)6Cl6]

3+ and
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+shows that all the peaks
from [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+ have redshift,
different from the differences between Au38(SC2H4Ph)24 and
Pd2Au36(SC2H4Ph)24. The doping location may have different
impacts on the CD spectra.

In addition to the CD spectra, the electronic structures of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 are investigated
by optical and electrochemical spectroscopies. Differential
pulse voltammetry (DPV) of Au9Ag12 and Au9Ag8Cu4 are
carried out. The scan direction was detected from +1.6 to
-1.6 V and then back from −1.6 to +1.6 V. As shown in
Figure 5, The HOMO-LUMO gaps of Au9Ag12 and
Au9Ag8Cu4 are determined as 1.54 and 1.44 eV, respectively.
For the differential pulse voltammetry (DPV) curves, there is a
reduction peak at −1.32 V (R1) and two oxidation peaks at
0.40 V(O1) and 0.58 V (O2) for Au9Ag12, while there are two
reduction peaks at −0.82 V (R1) and −1.01 (R2) and one
oxidation peaks at 0.83 V (O1) for Au9Ag8Cu4. So, the
electrochemical energy gap is 1.72 eV for Au9Ag12 and
1.65 eV for Au9Ag8Cu4. The HOMO-LUMO gaps calculated
from DPV are consistent with those derived from the optical
absorption spectra. So, the regulation of surface structure via Cu
alloying changes the electronic structure, thereby affecting the
electrochemical properties. Besides, the
[Au9Ag12(Sadm)4(Dppm)6Cl6](SbF6)3 in CH2Cl2 solution

FIGURE 6 | The stability test: (A–C) for [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and (D–F) for [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster. (A, D) the thermal
stability test; (B, E) oxidizing stability test; (C, F) reducing stability test.
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shows non-fluorescence, while the Cu dopant
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 in CH2Cl2 solution
shows weak fluorescence at 638 nm, once again verifying the
changes in the electronic structure. (Supplementary Figure S5).

The [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 show good
stability in an ambient environment (Figures 6A,D) and
the stability tests (i.e., under oxidizing/reducing
environments) for Au9Ag12 and Au9Ag8Cu4 are also
performed to explore the effects of copper dopants on the
stability of nanoclusters. Under the oxidizing environment (by
mixing 200 μL of H2O2 (50%) with 6 mg of cluster in 10 ml of
CH2Cl2), the Au9Ag12 can stabilize for several hours (Figures
6B,E), and the peaks of the UV-vis spectra are obvious.
However, the Au9Ag8Cu4 decompose quickly to form
complexes within several mins (Figures 6C,F). This
difference may be because the peripheral copper atom is
easier to be oxidized. Meanwhile, the copper doping has an
impact on the properties of clusters on reducing environment
(by mixing the 10 ml CH2Cl2 solvent of 6 mg of cluster with
200 μL of EtOH solvent of 1 mg of NaBH4). The UV-vis of

Au9Ag12 changes quickly until there are no obvious peaks
within 30s. And the UV-vis of Au9Ag8Cu4 also changes
quickly, but still some peaks can be observed within 60 min.
These indicate the regulation of surface structure affects the
stability of nanoclusters.

Intercluster reactions between Au9Ag12 and Au9Ag8Cu4
(Abs.671nm � 0.3 for Au9Ag12 and Abs.712nm � 0.3 for
Au9Ag8Cu4, respectively) are performed (Zhang et al., 2016;
Khatun et al., 2020; Neumaier at al., 2021). As shown in
Figure 7, the reaction was completed quickly (1 min), similar
to the UV-vis spectrum that prolongs the reaction for 3 h. As
shown in the Figures 7A,B, intercluster reactions produce a
spectrum with 428, 482 and 702 nm, respectively. Learned
from the Figures 7C,D, the products are Au9Ag8Cu4,
Au9Ag9Cu3, Au9Ag10Cu2, Au9Ag11Cu1,respectively. Theoretical
and experimental isotopic distributions of them matched
perfectly as shown in Supplementary Figures S6, 7. This
indicates the copper migration between Au9Ag12 and
Au9Ag8Cu4 upon mixing in solution, similar to silver
migration between Au38(SC2H4Ph)24 and doped AgxAu38-x
(SC2H4Ph)24 nanoclusters (Zhang et al., 2016).

FIGURE 7 | (A, B) the UV-vis spectra of intercluster reaction between [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 and [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 and (C, D)
the ESI-MS spectra after reacting 3 h. For the top spectra of Figure 4D, the peaks with +3 charge indicate the [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]

3+,
[Au9Ag9Cu3(SAdm)4(Dppm)6Cl6]

3+, [Au9Ag10Cu2(SAdm)4(Dppm)6Cl6]
3+ and [Au9Ag11Cu1(SAdm)4(Dppm)6Cl6]

3+. And For the bottom spectra of Figure 4D, the peaks
with +2 charge indicate the {[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6]+(SbF6)}

2+, {[Au9Ag9Cu3(SAdm)4(Dppm)6Cl6]+(SbF6)}
2+, {[Au9Ag10Cu2(SAdm)4(Dppm)6Cl6]+(SbF6)}

2+ and {[Au9Ag11Cu1(SAdm)4(Dppm)6Cl6]+(SbF6)}
2+.
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CONCLUSIONS

In conclusion, the regulation of surface structure of
[Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via alloying
produced an trimetallic nanocluster formulated as
[Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3. X-ray crystallography
identifies that the Cu dopants prioritily replace the position of
the silver of peripheral structures DppmAg2Cl2(SR)2. This
controlled target metal exchange method may be extendable to
other sized nanoclusters capped by multiple-ligands. Meanwhile
the regulation of surface structure affected the CD spectra, DPV
spectra, and stability. The [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3
and [Au9Ag8Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 contribute to
understanding of the structure-optical property relationship
deeply.
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