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Recently, expanding the applications of two-dimensional (2D) materials by constructing
van der Waals (vdW) heterostructures has become very popular. In this work, the
structural, electronic and optical absorption performances of the heterostructure based
on AlN and Zr2CO2 monolayers are studied by first-principles simulation. It is found that
AlN/Zr2CO2 heterostructure is a semiconductor with a band gap of 1.790 eV. In the
meanwhile, a type-I band structure is constructed in AlN/Zr2CO2 heterostructure, which
can provide a potential application of light emitting devices. The electron transfer between
AlN and Zr2CO2 monolayer is calculated as 0.1603 |e| in the heterostructure, and the
potential of AlN/Zr2CO2 heterostructure decreased by 0.663 eV from AlN layer to Zr2CO2

layer. Beisdes, the AlN/Zr2CO2 vdW heterostructure possesses excellent light absorption
ability of in visible light region. Our research provides a theoretical guidance for the
designing of advanced functional heterostructures.

Keywords: first-principles calculation, AlN/Zr2CO2, type-I band alignment, applications, heterostructure

INTRODUCTION

In 2004, the graphene was prepared and discovered to possess abundant interesting performances
(Geim and Novoselov, 2007), which has also encouraged researchers to explore other two-
dimensional (2D) materials (Pumera and Sofer, 2017; Sun et al., 2020a; Wang et al., 2020a; Sun
and Schwingenschlögl, 2020; Zhang et al., 2021a; Tan et al., 2021) different with bulk materials (Chen
et al., 2021). These 2D materials have attracted much attentions because of their unique electronic
(Qi et al., 2020), magnetic (Wang et al., 2020b), thermal (Xie et al., 2014; Qin et al., 2019a),
mechanical (Qin and Liu, 2017) and optical properties (Wang et al., 2020c). For example, at room
temperature, black phosphorus with a thickness of less than 7.5 nm can display transistor
performance, and the leakage current modulation order is 105 (Li et al., 2014). Arsenene can
adjust its band gap by applying external strain on the surface (Kamal and Ezawa, 2015). Based on
transition-metal dichalcogenides (TMDs), PtS2, the mobility of field effect transistors (FETs) has
been proved to be at least 200 cm2/V·s (Pi et al., 2019). All those desirable characteristics promise 2D
materials in future advanced applications, such as, photocatalyst (Wang et al., 2019; Zhang et al.,
2020a), metal-ion batteries (Sun and Schwingenschlögl, 2021a), and photoelectric devices (Zhang
et al., 2020b; Lou et al., 2021).

Recently, in order to further extend the performance and application range of these 2D materials,
the prediction of new 2D materials (Sun et al., 2020b; Ding et al., 2020; Sun and Schwingenschlögl,
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2021b; Zhang et al., 2021b; Sun et al., 2021) and the modification
of known 2Dmaterials have become more and more exciting (Liu
et al., 2019; Sun et al., 2019; Zhang et al., 2020c; Wang et al., 2021;
Zheng et al., 2021). In many modification methods, two different
materials are usually combined as a heterostructure by horizontal
(Qin et al., 2019b; Ren et al., 2020a) or vertical direction [(Wang
et al., 2020d), (Wang et al., 2020c)]. In particular, the vertical
heterostructure is constructed by weak van der Waals (vdW)
force at the interface instead of covalent bond, which can result
tremendous and novel performances. For example, the type-II
heterostructure possesses staggered band alignment, which has
ability to separate the photogenerated electrons and holes,
revealing a promising application as photocatalyst. It also has
been proved by some theoretical and experimental investigations,
such as TMDs/BP (Ren et al., 2019a), h-BN/C2N (Wang et al.,
2020e), TMDs/Mg(OH)2 (Luo et al., 2019) etc. The type-I band
structure in heterostructure can make the charge transfer from
wide band gap materials to narrow band gap materials, which can
be pretty reflected in light-emitting devices such as LEDs (Bellus
et al., 2017; Ren et al., 2021b). Interestingly, the band structure of
black/red phosphorus heterostructure can be transformed from
type-I to Z-scheme system by quantum confinement effect (Shi
et al., 2019). TMDs based heterostructure, such as MoTe2/WSe2,
has excellent photoluminescence (about 1.1 eV from MoTe2),
which provides promising optoelectronic applications (Yamaoka
et al., 2018). Furthermore, type-I heterostructure also can be used
as a photocatalyst for water splitting because of remarkable light
absorption characteristics (Do et al., 2020; Zhu et al., 2021a).
More recently, 2D aluminum nitride (AlN) has attracted
significant focus because of novel electronic (Zhang, 2012) and

magnetic (Zhang and Zheng, 2011) performances, which also can
be tuned by doping (Bai et al., 2015). Besides, some
heterostructure constructed by AlN also have been studied,
such as BiSb/AlN (Singh and Romero, 2017) and AlN/BP
(Yang et al., 2017) etc. Importantly, it has been reported that
the AlN films can be prepared on 6H–SiC substrates by various
sputtering pressures by RF reactive magnetron sputtering (Kuang
et al., 2012) and the AlN nanowires was also has been synthetized
(Xu et al., 2003), which demonstrated the preparation method for
AlN monolayer. At the same time, the Zr2CO2 as a MXene
materials has been studied extensively to form vdW
heterostructure (Zhu et al., 2021b). InSe/Zr2CO2

heterostructure possesses unique electron mobility (about
104 cm2/V·s) as a photocatalyst (He et al., 2019). MoS2/Zr2CO2

heterostructure also has decent band edge positions for the redox
reaction of the water splitting (Xu et al., 2020). Interestingly,
Zr2CO2/blue phosphorene heterostructure has a transformable
band structure between type-I and type-II under external strain
(Guo et al., 2017). Moreover, the MXene also can be prepared by
suitable means (Lei et al., 2015). Therefore, both AlN and MXene
possess possibility of preparation, which also show the future
synthetic work on AlN/MXene heterostructure. And the
investigations about the heterostructure based on AlN and
Zr2CO2 monolayer are rare, it is excited to explore the novel
properties and the potential application of the AlN/Zr2CO2

heterostructure.
In this work, the AlN and Zr2CO2 are selected to build a

heterostructure. Using first-principle theoretical calculation
methods, the structural and electronic natures of the AlN/
Zr2CO2 heterostructure are addressed, which shows that the

FIGURE 1 | The top and side views of the (A) AO-1, (B) AO-2, (C) AO-3, (D) AO-4, (E) AO-5, (F) AO-6 stacking configurations for the AlN/Zr2CO2 heterostructure,
the blue, yellow, cyan, black and red balls represent the Al, N, Zr, C, and O atoms, respectively.
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type-I band alignment in AlN/Zr2CO2 heterostructure gives a
potential usage of light-emitting devices. Then, the interfacial
performances of the heterostructure are calculated by charge
density and potential drop. Finally, the light absorption
capacity of the AlN/Zr2CO2 heterostructure is explored.

Computing Method
In this simulations work, the calculations were performed by first-
principles method using density functional theory by the
circumstances of Vienna ab initio simulation package (Kresse
and Furthmüller, 1996a; Kresse and Furthmüller, 1996b; Capelle,
2006). The generalized gradient approximation and the projector
augmented wave potentials were considered to explain the
exchange correlation functional (Kresse and Joubert, 1999;
Grimme, 2006). Besides, the DFT-D3 method was conducted
using Grimme to demonstrate the weak disperson forces
(Grimme et al., 2010). Furthermore, the
Heyd–Scuseria–Ernzerhof hybrid method was used for decent
electronic and optical results of the studied system (Heyd et al.,
2005). Moreover, the energy cut-off was 500 eV. The
Monkhorst–Pack k-point grids was 15 × 15 × 1 and the
vacuum space was set as 25 Å, which can efficiently prevent
the interaction of nearby layers. The convergence standard for
force and energy were limited in 0.01 eV·Å−1 and smaller than
0.01 meV, respectively.

RESULTS AND DISCUSSION

First, the AlN/Zr2CO2 is optimized by a decent lattice constant of
3.365 Å, which is comparable with of the AlN (3.127 Å) (Ren
et al., 2020b) and Zr2CO2 (3.294 Å) (Guo et al., 2017)
monolayers. When monolayered AlN and Zr2CO2 are
combined to form the heterostructure, considering that there
are various combination modes of AlN and Zr2CO2 monolayers,
we only select the most representative highly symmetrical
combination configurations among them. These six
combination styles of AlN/Zr2CO2 heterostructure are shown
as Figures 1A–F, named AO-1 to AO-6, respectively. For AO-1,
the N and Al atoms are located on the upper O and upper Zr
atoms, respectively. The AO-2 is obtained by putting the N and Al
atoms on the C and lower O atoms, respectively. The AO-3 is
built by locating the N and Al atoms on the C and lower Zr atoms,
respectively. Then, fixing the N and Al atoms on the lower O and
lower Zr atoms, respectively, can construct the AlN/Zr2CO2

heterostructure by AO-4 configuration. Differently, locating
the N and Al atoms on the lower O and C atoms, respectively,
can build the AO-5 configuration. Furthermore, AO-6
configuration is constructed by fixing the N and Al atoms on
upper O and C atoms, respectively. Besides, the most stable
stacking configuration of the AlN/Zr2CO2 heterostructure is
decided by the binding energy, represented by Eb as follow:

Eb � EAIN/ZrCO2 − EAIN − EZr2CO2 (1)

where EAlN/Zr2CO2, EAlN and EZr2CO2 are showing the total energy
of the AlN/Zr2CO2 system, original AlN and Zr2CO2monolayers,
respectively. Furthermore, the calculation demonstrations that
the stacked structure in Figure 1A is the most stable
heterostructure with binding energy of –36.05 meV/Å2, which
also proves that the single-layer AlN and Zr2CO2 are constructed
by vdW force (Chen et al., 2013). In addition, the distance of
interface and the bond length of these different stacking
configurations of the optimized AlN/Zr2CO2 heterostructure
are calculated in Table 1. Moreover, the following discussion
in this work is based on the most stable stacking structure of
AO-1.

The projected band energy of AlN/Zr2CO2 vdW
heterostructure is obtained by HSE06 calculation, as shown in
Figure 2A. One can clearly find that AlN/Zr2CO2 has a
semiconductor nature with indirect band gap of 1.790 eV. In
addition, the red and black marks are contributed from AlN
and Zr2CO2 monolayers, respectively, suggesting that the
(conduction band minimum) CBM and (the valence band
maximum) VBM of AlN/Zr2CO2 vdW heterostructure are
mainly resulted by Zr2CO2 monolayer. Thus, a type-I band
structure is constructed in AlN/Zr2CO2 vdW heterostructure.
Besides, the partial density of AlN/Zr2CO2 vdW
heterostructure, as shown in Figures 2B, 2is also obtained
to further prove the characteristics of intrinsic type-I band
structure. It is obvious that the CBM and the VBM of the AlN/
Zr2CO2 vdW heterostructure are mainly donated by Zr and O
atoms, respectively.

TABLE 1 | The optimized distance of interface (H, Å) and the bond length (L, Å) of
the AlN/Zr2CO2 heterostructure with different stacking styles.

H LAl–N LZr–C LZr–O

AO-1 1.909 1.943 2.388 2.110
AO-2 2.231 1.945 2.373 2.139
AO-3 3.235 1.943 2.387 2.137
AO-4 3.626 1.943 2.387 2.136
AO-5 3.475 1.943 2.387 2.137
AO-6 2.710 1.943 2.387 2.131

FIGURE 2 | (A) The projected band structure and (B) the partial density
of states of the AlN/Zr2CO2 vdW heterostructure, the Fermi level is expressed
by 0 shown as dash line.
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Such type-I band structure in the AlN/Zr2CO2 vdW
heterostructure provides some important advanced
applications in nano-devices. In AlN/Zr2CO2 vdW
heterostructure, as shown in Figure 3A, CBM and VBM of
AlN/Zr2CO2 vdW heterostructure are contributed by single-
layer Zr2CO2, and the band gap of single-layer Zr2CO2 is less
than that of single-layer AlN. When AlN/Zr2CO2 vdW
heterostructure is excited by some external conditions, the
electrons in the broad-band gap AlN monolayer are inspired
and transferred to the CBM, generating holes at the VBM. It is

worth noting that under the action of conduction band offset,
CBO (valence band offset, VBO), electrons (holes) at the CBM
(VBM) of the AlN layer can be transferred to the CBM (VBM) of
the Zr2CO2 layer. Besides, the obtained CBO and VBO in AlN/
Zr2CO2 vdW heterostructure are 2.432 and 0.471 eV respectively.
While the electrons and holes excited in the relatively narrow-
band gap of Zr2CO2 layer cannot be transferred to AlN layer due
to low energy, in Figure 3B, which explains the AlN/Zr2CO2 vdW
heterostructure can be considered as a potential light-emitting
device material.

FIGURE 3 | Band alignment schematic of the excited charge transfer mode of the AlN/Zr2CO2 vdW heterostructure: (A) feasible and (B) limited charge
migration mode.

FIGURE 4 | (A) The charge density difference and the (B) potential drop of the AlN/Zr2CO2 vdW heterostructure. The yellow and cyan regions contribute the gaining
and losing of electrons, respectively.
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Then, we discussed the interface properties of AlN/Zr2CO2

vdW heterostructure by the charge density difference (Δρ) and
the potential drop (ΔV) in the interface. The charge density
difference across the interface of the AlN/Zr2CO2 vdW
heterostructure is calculated by:

Δρ � ρAIN/Zr2CO2 − ρAIN − ρZr2CO2, (2)

where ρAlN/Zr2CO2, ρAlN and ρZr2CO2 represent the charge density
of the AlN/Zr2CO2 vdW heterostructure, monolayered AlN and
Zr2CO2, respectively. Demonstrated by Figure 4A, the Zr2CO2

layer acts as an electron acceptor and AlN is an electron donor
layer. Through Bader charge analysis (Tang et al., 2009), the
obtained charge transfer fromAlN layer to Zr2CO2 layer is 0.1603
|e| in AlN/Zr2CO2 vdW heterostructure. Importantly, there is a
certain degree of potential drop across the interface of the AlN/
Zr2CO2 vdW heterostructure, shown as Figure 4B, and the
calculated potential drop of 0.663 eV also play a critical role to
assist the migration of the excited electrons and holes between the
AlN/Zr2CO2 vdW heterostructure (Wang et al., 2018).

In order to produce more efficient light-emitting device, active
materials should be able to effectively absorb light in the visible
and near-infrared regions, especially type-I heterostructure.
Therefore, we investigated the light absorption performance of
AlN/Zr2CO2 vdW heterostructure by the calculation:

α(ω) �
�
2

√
ω

c
{[ε21(ω) + ε22(ω)]1/2 − ε1(ω)}1/2, (3)

where ω is the angular frequency; α shows absorption coefficient
and c is the speed of light. Besides, ε1(ω) is used to explain the
dielectric constant for real parts, which the imaginary one is
demonstrated by ε2(ω). As shown in Figure 5 (the data source of
solar flux is obtained from NREL website), AlN/Zr2CO2 vdW
heterostructure demonstrates capacity to absorb sunlight over a
wide range in the visible region the AlN/Zr2CO2 vdW
heterostructure possesses a lot of absorption peaks. In
ultraviolet region (left side of blue dotted line), the AlN/

Zr2CO2 vdW heterostructure exhibits an absorption peak of
3.97 × 105 cm−1at the wavelength as 344 nm. In the in the
visible region (right side of blue dotted line), the obtained
absorption peak is 3.14 × 105 cm−1 locating at the wavelength
of 369 nm, which is higher than other studied 2D
heterostructures, such as WS2/GeC (2.651 × 105 cm−1) (Ren
et al., 2021a), Arsenene/GaS (1.403 × 105 cm−1) (Li et al.,
2021), g-GaN/BSe (1.470 × 105 cm−1) (Ren et al., 2019c) etc.
The calculated results demonstrate the AlN/Zr2CO2 vdW
heterostructure possesses excellent light absorption capacity.

CONCLUSION

In conclusion, the AlN and Zr2CO2 monolayers are constructed
by vdW force to form a heterostructure. And the most stable AlN/
Zr2CO2 is decided by the lowest binding energy of about –36.05
meV/Å2. The, the HSE06 obtained projected band structure
shows the AlN/Zr2CO2 vdW heterostructure possesses
semiconductor nature with a band gap of 1.790 eV, and
presents a type-I energy band alignment, which is a
satisfaction candidate for light-emitting devices. Furthermore,
the interface characteristics of AlN/Zr2CO2 vdW heterostructure
is investigated by charge density difference (0.1603|e| from AlN
layer to Zr2CO2 layer) and potential drop (0.663 eV). Moreover,
the AlN/Zr2CO2 vdW heterostructure explains a remarkable light
absorption performance, which can further offer excellent
technical guidance for nano light-emitting device materials.
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FIGURE 5 | The light absorption spectrum of the AlN/Zr2CO2 vdW
heterostructure.
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