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Accelerating materials discovery is the cornerstone of modern technological
competitiveness. Yet, the inorganic synthesis of new compounds is often an important
bottleneck in this quest. Well-established quantum chemistry and experimental synthesis
methods combined with consolidated network science approaches might provide
revolutionary knowledge to tackle this challenge. Recent pioneering studies in this
direction have shown that the topological analysis of material networks hold great
potential to effectively explore the synthesizability of inorganic compounds. In this
Perspective we discuss the most exciting work in this area, in particular emerging new
physicochemical insights and general concepts on how network science can significantly
help reduce the timescales required to discover new materials and find synthetic routes for
their fabrication. We also provide a perspective on outstanding problems, challenges and
open questions.
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INTRODUCTION

Advanced materials are key enablers across many industries aimed at addressing the global
challenges of economic security, renewable and sustainable energy, and human welfare.
Innovation in these fields often requires searching for new materials or optimizing existing
ones. The traditional materials discovery approach is to focus on archetypal compounds in which
a desirable property was first observed. This approach involves trial-and-error chemical
exploration, which usually has high demands in terms of synthesis times and costs.
Therefore, accelerating the pace of discovery of new materials is essential to achieving global
competitiveness in the 21st century. Computational modelling has emerged as a powerful
complementary tool in accelerating the process of materials discovery. Thanks to the proven
predictive power of quantum chemistry methods, together with the spectacular growth of
computational resources, computer modelling is nowadays able to bring valuable insights in
understanding the structure, properties, and function of technological materials. In particular,
high-throughput screening of materials databases using first-principles simulation approaches
have demonstrated a successful track record of guiding advances in materials science (Jain et al.,
2016), including areas as diverse as heterogeneous catalysis (Greeley et al., 2002),
thermoelectricity (Carrete et al., 2014), and energy storage (Van der Ven et al., 2020). With
an increase in computer resources and given computational modelling is progressively being
implemented in synergy with experiments, this trend is only likely to grow. However,
computational simulations in particular ab initio molecular dynamics are computationally

Edited by:
Malgorzata Biczysko,

Shanghai University, China

Reviewed by:
Joshua Schrier,

Fordham University, United States
Kun Yao,

Schrodinger United States

*Correspondence:
Javier Carrasco

jcarrasco@cicenergigune.com

Specialty section:
This article was submitted to

Electrochemistry,
a section of the journal
Frontiers in Chemistry

Received: 20 October 2021
Accepted: 03 December 2021
Published: 21 December 2021

Citation:
Aziz A and Carrasco J (2021) Towards

Predictive Synthesis of Inorganic
Materials Using Network Science.

Front. Chem. 9:798838.
doi: 10.3389/fchem.2021.798838

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 7988381

PERSPECTIVE
published: 21 December 2021

doi: 10.3389/fchem.2021.798838

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.798838&domain=pdf&date_stamp=2021-12-21
https://www.frontiersin.org/articles/10.3389/fchem.2021.798838/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.798838/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.798838/full
http://creativecommons.org/licenses/by/4.0/
mailto:jcarrasco@cicenergigune.com
https://doi.org/10.3389/fchem.2021.798838
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.798838


demanding, energy intensive and risk being repeated multiple
times by various groups investigating similar materials.

An emerging alternative to traditional physical-based
approaches is data-driven modelling (Agrawal and Choudhary,
2016; Jennings et al., 2019; Noh et al., 2020; Lombardo et al.,
2021). As a matter of fact, recent trends in Big Data have raised
hopes for a new kind of paradigm to model complex systems with
a large number of strongly interacting elements. And
autonomous decision-making materials discovery schemes to
guide experimental campaigns are starting to emerge
(Montoya et al., 2020; Stach et al., 2021; Szymanski et al.,
2021). Data science may indeed help to answer many
fundamental research questions, especially as more and more
data becomes accessible (Hill et al., 2016). This is evident from the
rise in number and quality of computational materials databases
and related informatics such as the Materials Project
(materialsproject.org), AFLOWLIB (aflowlib.org), NoMaD
(nomad-coe.eu) and the Open Quantum Materials Database
(OQMD) (oqmd.org) that complement existing experimental
data sets such as the Inorganic Crystal Structure Database
(ICSD) (icsd.products.fiz-karlsruhe.de), NIST Materials Data
Repository (nist.gov), or the Pauling File (paulingfile.com).
However, data science alone cannot develop fundamental
research questions by itself. Collecting data and then
identifying new patterns has the potential risk of ending up
with spurious correlations, without understanding the
underlying causal relationships. Indeed, this applies to all data
driven approaches, and care must be taken to benchmark and
verify datasets with experiment.

From a theoretical viewpoint, materials discovery faces a two-
fold major paradigm. On the one hand, the identification of
thermodynamically stable compounds, also referred to as a
structure prediction problem. And on the other,
synthesizability, which typically involves evaluating metastable
lifetimes and reaction energies. Thanks to a number of
methodological developments in the last 20 years, reliable
structure prediction can nowadays be efficiently performed
without any prior knowledge or assumptions about the system
(Goedecker, 2004; Oganov et al., 2019; Tong et al., 2019). The
ability of these methods to predict not only the ground states, but
also low-energy metastable structures is indeed leading to the
identification of an increasing number of new virtual materials.
Thermodynamic considerations narrow down the chemical space
for where experimentalists should look (Szczypinski et al., 2021)
and indicate the synthesis probability of stable and metastable
structures in a first rung approach (Aykol et al., 2018). Yet, the
problem of synthesizability remains. As a consequence, the
continuous proposition of new virtual materials with optimal
properties is often seen from experimentalists as a dreamland of
unachievable real materials. Without an efficient way to assess
actual synthetic routes towards novel stable compounds,
theoretical materials discovery is severely hindered. The
problem of synthesizability is exceptionally hard to solve
because as it needs to be addressed in a holistic manner. In
principle, predicting feasible synthetic routes for a new material
requires not only finding the lowest energy structures of
candidate reactants and products, but also proposing plausible

multi-step reaction mechanisms (including possible metastable
compounds) and computing transition state structures. Headway
is being made and new strategies are being proposed to
incorporate the dynamics of these complex chemical spaces.
One such strategy is the high-throughput analysis of possible
reaction pathways to target a specific inorganic crystal phase by
through reaction energies of reactants, the number of competing
phases and approximated nucleation barriers, at each step,
thereby identifying preferential synthesis routes (Aykol et al.,
2021). An alternative strategy employs the use of neural networks
to generate synthesis predictions for inorganic materials by
mining the scientific literature (Kim et al., 2020). This
approach would benefit from the multitude of synthesis
data from unsuccessful experimental attempts, if such data
was to be made publicly available, as suggested by Kovnir,
2021. However, the use of experimental synthesis data in data
driven approaches has been shown to have anthropogenic
biases in the choice of reagents and reaction conditions that
may ultimately lead to skewed networks (Jia et al., 2019). In a
computational approach the consideration of both
thermodynamics and kinetics along reaction pathways could
target the synthesis of any hypothetical material with
properties of interest, but leads to the exploration of large
chemical spaces and requires the use of sophisticated and
computationally demanding methods.

In this perspective we focus on a strategy based on the
application of network science (Barabási, 2016) that is starting
to gain momentum, using the power of network-based
representations and topological analysis to examine solid-state
chemical reactivity for materials discovery, specifically a graph
based approach to mapping the thermodynamic relationships
between different materials. This bridge between the discovery of
new virtual materials and the simultaneous identification of likely
synthetic routes could guide experiments and accelerate materials
design and development.

MATERIALS NETWORKS

Networks are very simple models, yet extremely useful to
represent complex systems, where the components of the
graph system are represented by nodes and their interactions
by links or edges. These links can be undirected (lines) or
directed (arrows), depending on the system’s nature. For
example, a molecular chemical reaction network can be
represented as a directional connected graph. The reactants,
traverse a complex chemical space along reaction pathways
(links) that are governed by kinetics, through intermediates
(nodes) breaking and forming bonds, before finally reaching
the desired products. In contrast, in the crystalline network of
a solid, the nodes represent atoms and the links (bonds) are
undirected (Blatov et al., 2019, 2021). What makes networks
useful is that their interaction structure (i.e., the network’s
topology) accounts for their systemic properties and,
therefore, topological analysis can lead to applicable,
impactful outcomes. Topological characterization of
networks includes centrality analysis by computing average
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degree and degree distributions (the degree is the number
of links a node has to other nodes) as well as other more
complex characteristics such as clustering coefficients,
betweenness, or hierarchy (Barabási, 2016). Figure 1
illustrates how some of these topological characterizations
can be useful, with a simple materials network example
built up from experimental thermochemistry data, to
analyse inorganic reactivity and identify common nodes in
large chemical spaces.

With the availability of computational materials databases and
the development of network theory we now have the underlying
data and technical know-how to utilize network science in
material discovery. To date there have been a few
representative studies modelling chemical spaces using
networks that have predominately been focused on fragment-
based drug discovery and ligand-based screening of organic
molecules (Tanaka et al., 2009; Kunimoto et al., 2017). In
deciphering reaction mechanisms a novel approach employs
the PageRank algorithm as a collective variable to graph the
possible molecular topologies along a specific reaction pathway
(Zhou et al., 2019). Taking a more general approach, the
pioneering work by Gothard et al., 2012 demonstrated that
the construction of a directional network from organic
reactions reported in the literature can predict sequential
synthesis steps using specific chemical filters including
functional groups and synthesis conditions in a one-pot
approach. Only recently, has this approach gained the

attention of the inorganic research community; from both a
pure crystal structure prediction perspective (Ahnert et al.,
2017) and in the consideration of synthesizability (Aykol et al.,
2019; Hegde et al., 2020; Blau et al., 2021). From a chemistry,
and materials science point of view network representations
are indeed a good approach to tackle synthesizability for the
following reasons:

(i) Chemical reaction spaces are generally very high
dimensional, the need to reduce this dimensionality often
results in a loss of information. Network representations
avoid this issue as there is no need for the construction of a
coordinate system or for any form of dimensionally
reduction. Networks are a natural representation of
chemical reactions (Choudhury et al., 2020).

(ii) Network science provides an intuitive conceptual
framework to statistically analyse many aspects of
reaction spaces and synthesis strategies, with many
meaningful descriptors (e.g., hubs, communities,
hierarchy, and betweenness, among many others)
(Barabási, 2016).

(iii) The rapidly expanding study of complex networks across a
wide range of disciplines has given rise to a large arsenal of
efficient algorithms and mathematical approaches to
quantify network properties and interpret their
characteristics. This development in network science
paves the way to apply these tools to synthesizability.

FIGURE 1 | A network of A + B→ C solid-state reactions (see Supplementary Table S1 in the Electronic Supplementary Information for details) is used here with
the clique percolation method implemented in CFinder (Adamcsek et al., 2006) to automatically identify only one common node (B2O3) between the two communities in
the Li-B-O-Na chemical space (A). Additionally, the dendrogram generated by the Girvan-Newman algorithm in (B) using Networkx helps to systematically reproduce the
modules built into the network (Hagberg et al., 2008).
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EXAMPLES OF TOPOLOGICAL ANALYSIS
OF MATERIAL NETWORKS

Hegde and coworkers have recently developed a unidirectional
materials network encoding the thermodynamic stability (at T �
0 K) in the OQMD database (Hegde et al., 2020). The network
comprises of ∼21,300 nodes (inorganic compounds) with each
node able to connect to ∼3,850 edges, which represents the
number of two phase equilibria (thermodynamic equilibrium)
between phases, and highlights the dense nature of the network.
The comprehensive mapping of this materials network allows a
top down approach to tackling material stability, as a material’s
nobility is measured as a function of the count (or number of
edges) of materials it has no reactivity against. As more data is
added this network has the scope to evolve and verify itself. Holes
in the network may identify materials yet to be discovered, and
subsequent topological analysis may offer an approach to realize
them starting with adjacent structures in the network. Their
discovery and synthesis will lead to the validation of the
network model and wide scale acceptance of network theory
as a strategy in materials discovery. In essence similar to the gaps
or holes in the periodic table predicted by Mendeleev in 1869,
with the first such hole filled with the discovery of gallium in 1875
validating Mendeleev’s periodic law.

The progressive development of network analysis may well
guide experimentalists to decipher which stable predicted
structures can indeed be synthesised. As an alternative to
determining synthesizability from thermodynamic
considerations, a novel time analysis approach combined with
machine learning has given a glimpse of how networks could be
utilized in this direction (Aykol et al., 2019). To reduce the size of
the network a subsample is taken, considering only materials that
share an edge with at least one physically stable material in the
same chemical space. An analysis of the network reveals some
interesting insights; the network is determined to be scale-free:
some nodes have a significantly larger number of edges and are
thus referred to as hubs. This has two implications; materials
missing from the database will not hinder the discovery of others,
but missing hubs imply materials yet to be discovered and
identifying new hubs will accelerate the discovery in those
spaces. Using a machine-learning model based on certain
network properties of materials Aykol et al. (2019) determine
the likelihood of a predicted material in the network to actually be
synthesised but do not give an insight on their synthesis pathway.
In this respect the combination of a series of networks seems
natural. First, a directional network approach to determine the
probability of synthesis of a new material. Subsequently, a
directed reaction network approach to identify low-cost and
plausible reaction pathways for its fabrication. Ideally, such an
approach would employ optimized pathfinding algorithms
similar to those in car navigation systems where one starts at
point A (the reactant) and finishes at point B (the product) whilst
choosing the quickest routes dependent on the traffic (kinetics),
but also considering intermediates, radicals, and ions, which will
have different stabilities dependent on their phase and synthesis
conditions, all whilst maintaining stoichiometric constraints.
This complexity is a significant challenge that limits the size of

such a reaction network (Unsleber and Reiher, 2020). In this
regard neural networks have shown promise in navigating the
huge network space in organic molecular systems. Recently, a
three layered neural network has been able to uncover
retrosynthetic routes through the use of Monte Carlo tree
search algorithms (Segler et al., 2018) based on reactions
found in the Reaxys database, and we refer the reader to a
recent review on machine-learning methods for more
information (Meuwly, 2021). Compared to molecular
synthesis, inorganic synthesis prediction is more complex,
given the sheer number of elements, metastability and the
possibility of new unchartered materials. However, materials
networks have made progress, interdependencies between
materials have now been implemented in a directional
network that estimates the cost of going from reactant to
product ensuring stoichiometry is preserved along the path
(Blau et al., 2021). To ensure stoichiometry the network space
is continually expanded to ensure all the costs of producing or
removing the additional reactants required in the network are
accounted for. The network determines the cost solely on
thermodynamic considerations, but as databases expand, other
parameters such as kinetics, experimental reaction yields, or the
cost of precursors and their toxicity could also be included.
Indeed this has been demonstrated in subsequent work
expanding their network to include local chemical potential
(Todd et al., 2021). The success of the network is illustrated
by its ability to identify both proposed and novel-pathways in the
formation of lithium ethylene dicarbonate that forms at the solid
electrolyte interphase at the anode of lithium ion batteries.
Despite 6,000 species being needed with the analysis of over
4.5 million reactions the complete network was deduced on a
laptop in less than a day, highlighting the power of such a tool.
The 5 “shortest pathways” or most likely synthesis routes are
identified, two of which have previously been purported in the
literature (Blau et al., 2021). The omission of kinetics in the
network may lead to certain reaction pathways being omitted or
identified but unfeasible. One way to incorporate kinetics is their
subsequent manual consideration once a set of lowest cost
pathways is identified. This approach is employed to
determine whether lithium ethylene monocarbonate or
dicarbonate forms at the solid electrolyte interphase (Xie et al.,
2021). After construction of the graph reaction network and
elimination of duplicate pathways, the predominant pathways are
analysed, leading to the conclusion that paths without the
presence of water are kinetically unfeasible due to large energy
barriers. The requirement of water in the reaction pathway limits
the formation of lithium ethylene monocarbonate and also
suggests varying the water content at the interface could
control the ratio of formation of lithium ethylene
monocarbonate or dicarbonate. Such an insight is clearly
invaluable for experiments.

A somewhat simpler graph-based network that considers only
the thermodynamics of solid-state reactions built up from the
Material Project database and utilizes machine learning has
shown promise in predicting complex reaction pathways
(McDermott et al., 2021). Again, only taking into account
thermodynamic considerations both negative and positive free
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energies are mapped as positive costs using the softplus function
(Dugas et al., 2001). This is a standard practise to ensure standard
pathfinding algorithms can be used. Without kinetic
considerations this network is sufficient to predict the complex
reaction pathways reported in the literature for YMnO3,
Y2Mn2O7, Fe2SiS4, and YBa2Cu3O6.5. Derived reaction routes
may well include hypothetical intermediates; in the case of
YMnO3, the hypothetical compound Li3MnO3 is identified
and ignored in the study. In the case of Fe2SiS4, a system of
only three elements less stringent constraints on metastability
above the hull of 0.5 eV per atom can be incorporated. This
highlights that even with relatively straightforward
thermodynamic network models trade-offs are still required.
Indeed, the maximum number of reaction pathways
(pathfinding processes) and reaction combinations in reaching
the final product are also of consideration and are set as
parameters in the network. The power of this network model
is demonstrated by the possibility of “synthesis by design”, with
the suggested synthesis routes for a hypothetical material
MgMo3(PO4)3O that has been predicted to have superior

Mg2+ mobility (Rong et al., 2017). It is now also possible to
visualize certain available database online (maps.matr.io) through
the MaterialNet interactive map (Choudhury et al., 2020). In
Figure 2 we take Na2MnO3, an undiscovered hypothetical
material reported in the literature (Gao et al., 2019) and use
the Materials Stability Network to identify other similar materials
in its chemical space and find its expected synthesis probability to
be 99.4%. The next step in this top down approach would be to
identify possible synthesis pathways followed by experimental
validation. The identification of possible synthesis routes would
help experimentalists reduce the number of reactions pathways to
consider even if ultimately the network failed to predict the
optimal reaction pathway.

DISCUSSION

Advances in network models complemented with the recent
explosion of materials databases presents an opportunity to
develop a new pioneering research area in materials discovery

FIGURE2 | Visualization of a local network for the hypothetical (undiscovered) material Na2MnO3 (Gao et al., 2019) generated using theMaterialNet web application
(Choudhury et al., 2020) and expected to have a 99.4% probability of synthesis. To illustrate the local network environment Na and NaO derivedmaterials are also added
to the chemical subspace. A reaction network (McDermott et al., 2021) could then be employed to identify the most likely synthesis pathways. In the structural model Na
atoms are shown in yellow, Mn atoms in purple and O atoms in red.
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and synthesis. Holes or gaps in networks may help identify
materials yet to be discovered and predictive synthesis routes
identified. To ensure the network representations are an accurate
representation of the chemical space, one must ensure the data is
complete, accurate and with no inherent bias. From a
computational perspective network models are highly
dependent on their original data and the difficulty in standard
density functional theory approaches in dealing with correlated
systems raises questions on the validity of the f-block (and to a
lesser extent later d-block) thermodynamic data, and how to
accurately include them in the network. From an experimental
perspective anthropogenic biases in the choice of reagents and
reaction conditions in experimental synthesis may lead to skewed
networks (Jia et al., 2019). The immense chemical space; for
example, 1010 combinations of possible materials for the
quaternary compounds formed from the first 103 elements
are proposed (Davies et al., 2016), leads to a trade-off between
network size and detailed synthesis prediction. While, the
complete Materials Project network can be analysed to
predict the probability of a hypothetical structure being
synthesized, a much more detailed network is needed to
suggest a synthesis pathway, especially if molecular
precursor reactions are incorporated. Further development
of materials databases and/or machine learning approaches
will also be needed to incorporate kinetic costs or take into
account other considerations such as reaction yields, toxicity,
and configurational disorder or to predict the space group of a
material. Whilst the omission of kinetics and other
considerations, may lead to an incorrect hierarchy of
predicted pathways, the number of synthesis pathways
trialled could be dramatically reduced, maximising an

experimentalist`s research time. As this research area
evolves it will no doubt be an extremely powerful technique
to add to the arsenal available to the material-science
community.
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