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The application of desorption electrospray ionization mass spectrometry (DESI-MS) and
dried blood spot (DBS) sampling has been successfully implemented several times.
However, the difficulty of combining DBS sampling with DESI-MS is still the carrier
material used for the blood samples. In this study, a new, easily obtained, and cost-
effective carrier substrate for dried plasma spot (DPS) sampling and DESI-MS analysis and
its application in phospholipidomics studieswas described. First, the effects of several carrier
materials, including cellulose-based materials (31 ET paper and filter paper) and non-
cellulose-based materials (PARAFILM and its shape-modified material, PTFE-printed
glass slide and polyvinylidene fluoride film), were tested. Second, a method combining
DPS sampling with DESI-MS for phospholipidomics analysis was established, and
parameters affecting compound signal intensities, such as sample volume and sprayer
solvent system,were optimized. In conclusion, the total signal intensity obtained from shape-
modified PARAFILM was the strongest. The suitable plasma sample volume deposited on
PARAFILM carriers was 5 μl, and acetonitrile (ACN) was recommended as the optimal spray
solvent for phospholipid (PL) profiling. Repeatability (87.5% of compounds with CV < 30%)
and stability for data acquisition (48 h) were confirmed. Finally, the developed method was
applied in phospholipidomics analysis of schistosomiasis, and a distinguished classification
between control mice and infected mice was observed by using multivariate pattern
recognition analysis, confirming the practical application of this new carrier material for
DPS sampling and DESI-MS analysis. Compared with a previously reported method, the
rapid metabolomics screening approach based on the implementation of DPS sampling
coupled with the DESI-MS instrument developed in this study has increased analyte
sensitivity, which may promote its further application in clinical studies.
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INTRODUCTION

Phospholipids (PLs), as the major components of the cell
membrane, exist in both eukaryotic and prokaryotic
organisms (Hanahan, 1997); PLs play important roles in
controlling and regulating cellular function and participate in
many cellular biological processes (Subramaniam et al., 2011).
Recent studies have shown that the concentrations of PLs in
blood are associated with the progression of multifarious
diseases, such as cancer (Viswanathan et al., 2017),
Alzheimer’s disease (Bazinet and Laye, 2014), obesity,
diabetes mellitus and cardiovascular disease (Meikle and
Summers, 2017). Over the past few decades, PLs have
generally been obtained through liquid-liquid extraction
methods (Bligh and Dyer, 1959) or protein precipitation
methods (Sarafian et al., 2014) to detect the metabolic
fluctuation in PLs in vivo. These methods both include
deproteinization, solvent extraction, centrifugation, and other
preprocessing steps, followed by time-consuming
chromatographic separation. However, these procedures limit
sample throughput and inevitably lead to the loss of metabolites.
Thus, it is necessary to develop a high-throughput
phospholipidomics method to profile the changes in PLs in
organisms.

Desorption electrospray ionization (DESI), an ambient
technique applied in mass spectrometry (MS), allows for in
situ analysis with little to no sample pretreatment (Takats
et al., 2004). Owing to these compelling advantages, direct
surface sample analysis in phospholipidomics (Eberlin et al.,
2011; Gross, 2017) has received a great deal of attention. The
electrospray ionization (ESI) mechanism of DESI has been
reported primarily by Cooks and coworkers and was
previously suggested to follow the “droplet pickup” model,
in which droplet pickup of analytes by charged droplets
impacts the sample surface (Venter et al., 2006). In detail,
highly charged microdroplets in the atmosphere form a thin
layer of solvent on the sample surface by bombardment, and
analytes dissolve into a “solvent thin layer”, which can be
extracted (Costa and Cooks, 2008). Subsequent collisions of
droplets occur, second-generation microdroplets are formed,
and analytes desorb via momentum and transfer from the
sample surface into the gas phase during impact (Kebarle and
Verkerk, 2009).

Blood is one of the most significant body fluids for the
research of various diseases; however, because liquid samples
should be spotted on a substrate and dried before DESI-MS
analysis, new sampling approaches are being developed to
satisfy the direct analysis of body fluids. To date, dried
blood spot (DBS) sampling has been the most suitable
technique. DBS sampling was first reported as an alternative
blood sample collection approach in 1963 and was then
successfully introduced to neonatal screening for inborn
errors of metabolism (Guthrie and Susi, 1963). The obvious
advantage of DBS sampling is the small collection volume of
blood. Thus, the invasion of DBS sampling is minimal and
painless. On the other hand, DBS sampling is more convenient
for sample processing and storage than liquid biological

matrices. As mentioned above, DBS sampling has become a
very useful tool for metabolic disorder diagnosis at present,
especially in biochemistry studies (Li and Tse, 2010),
pharmacokinetics (Saini et al., 2018), toxicokinetics (Raju
et al., 2016), therapeutic drug monitoring (Gaissmaier et al.,
2016; Zheng et al., 2016), and newborn screening for inborn
errors of metabolism (Wilcken and Wiley, 2008). However,
since blood with a relatively high haematocrit (HCT) level will
spread less than that with a low HCT level, the HCT level is one
of the factors that must be considered in DBS sampling. The
distinction of spot diffusion leads to a substantial difference in
DBS area, which in turn results in discrepant sample
proportions during DESI-MS scanning. To date, it is quite
challenging to eliminate the variance caused by HCT since the
HCT level is affected by many factors. Therefore, using plasma
instead of whole blood for the generation of dried matrix spots
could be more reasonable, which led to the development of
dried plasma spot (DPS) sampling (Barfield and Wheller,
2011).

Another challenge of DESI-MS analysis with DBS is the
choice of carrier substrate. Various attempts have been made
to produce the highest signal and the least ionization
suppression (Leuthold et al., 2006; Wiseman et al., 2010).
An increasing number of commercial or homemade
substrates, including silicon-based materials, such as glass
slides (Pasilis et al., 2007; Manicke et al., 2008) and glass
slides coated with heavy Teflon coating (HTC) material
(Mattarozzi et al., 2012), and thin-layer chromatographic
plates (Kauppila et al., 2006), porous silicon chips (Schwab
et al., 2014), and carbon-based materials, such as polymethyl
methacrylate (Volny et al., 2008), PTFE (Manicke et al., 2008;
Volny et al., 2008), PTFE-printed glass (Manicke et al., 2008),
paper (Manicke et al., 2008) and porous Teflon membranes
(Rosting et al., 2013; Sero et al., 2015), have been investigated
for DESI-MS analysis. From these studies, we have concluded
that an electrically nonconductive material could enhance the
response of DESI-MS since the material preserves charges by
avoiding neutralization of the incoming ion plume at the
surface. In addition, charges can be better focused with a
nonconductive material than with a conductive material,
along with higher gas pressure and less spray tip-to-surface
distance (Bianchi et al., 2020). More importantly, a non-
cellulose-based material with a porous or rough surface
could also improve ionization efficiency due to a reduction
in sample spread and absorption.

To the best of our knowledge, applying DESI-MS analysis in
DPS sampling to analyse metabolites directly, especially in
biomarker discovery and early clinical diagnosis, has rarely
been investigated. Therefore, the aim of this study was to
determine a suitable carrier material for DESI-MS to increase
the application reach of DESI-MS. In this study, easily
obtained and cost-effective carrier materials for DPS,
including cellulose-based and noncellulose-based materials,
were evaluated. Then, a method for PL profiling by DESI-
MS with DPS sampling was established, and parameters
affecting the signal intensities of PLs in DPS, such as
sample volume and sprayer solvent, were optimized.
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Ultimately, the optimal method was applied to investigate the
changes in PLs in mice infected by Schistosoma japonicum (S.
japonicum) to assess the feasibility of the method.

MATERIALS AND METHODS

Materials and Samples
Acetonitrile (ACN), methanol (MeOH) and isopropanol (IPA) of
LC-MS grade were obtained from Fisher Corporation (Hampton,
NH, United States). Leucine enkephalin (LE) and MS-grade
formic acid (FA) were obtained from Sigma-Aldrich (St. Louis,
MO, United States).

The cellulose-based materials included 31 ET papers and
double ring quantitative filter papers (Whatman, Piscataway,
NJ, United States). The non-cellulose-based materials included
PARAFILM® M film (PM-996) (Bemis, Neenah, WI,
United States), polyvinylidene fluoride (PVDF, 0.45 μm)
film (Merck Millipore, Bedford, MA, United States) and
PTFE-coated glass slides (Prosolia, Zionsville, IN,
United States).

Ten specific-pathogen-free 8-week-old female BALB/c mice
were provided by the Animal Experiment Center at Sun Yat-
sen University (Guangzhou, China) and were divided equally
into two groups. After the mice acclimated to the new
environment, five were infected with 30 ± 2 S. japonicum
cercariae per individual, while the other mice were left
uninfected and served as controls. At 42 days post-infection
(dpi), all mice were sacrificed by chloral hydrate asphyxiation
and cervical dislocation. For each mouse, whole blood was
drawn from orbital veins, transferred to a vacuum blood
collection tube containing EDTA-K2, transferred into
Eppendorf tubes, centrifuged at 1,500 rpm for 5 min at 4°C
to collect the plasma, and frozen subsequently at -80°C. All
animal experiments were approved by the local ethical
committee.

Preparation of Substrate Holders and DPS
Samples
Six types of substrate holders, including modified PARAFILM,
original PARAFILM, PVDF film, PTFE-printed glass slides,
31 ET, and filter papers, were fixed on microscope glass slides
(76 mm*26 mm) using double-sided tapes (Supplementary
Figure S1). The modified PARAFILM was created by
imprinting a certain number of circular grooves with 4 mm in
diameter and 0.1 mm in depth on the surface. The spacing of each
groove was 4 mm (Supplementary Figure S2).

Three different volumes of plasma samples (2, 5 and 10 μl)
were deposited on the different carrier materials using a
calibrated 1–10 μl range micropipette (Eppendorf, Hamburg,
Germany). It was ensured that the same volume of sample
covered the carrier materials uniformly. Afterwards, the blood
spots were dried at room temperature in a desiccator for 24 h.
Each experimental condition was performed in triplicate, and the
average peak intensity was used to assess the effectiveness of the
sample preparation method.

Instrumentation
All experiments were performed on a SYNAPT G2-Si high-
definition mass spectrometer (Waters, Milford, MA,
United States) coupled with a Waters modified two-
dimensional DESI stage source (Prosolia, Zionsville, IN,
United States).

DESI-MS experiments were carried out with an applied
voltage of 5 kV in positive ion mode, and the operating
conditions were set at a flow rate of 10 μl/min using a
Harvard syringe pump. Nitrogen as nebulizing gas was
delivered at 8 bars. The source temperature was set at 150°C,
and the cone voltage was 45 V. Rhodamine-6G (a red marker,
with a mass/charge (m/z) of 443 in positive mode) was used to
determine the initial geometrical parameters of DESI-MS:
horizontal distance from the MS inlet to the TaperTipTM
emitter, 4–5 mm; vertical distance from the TaperTipTM
emitter to the sample surface, 2–3 mm; vertical distance
between the bottom of the MS inlet and sample surface,
0–1 mm; and angle of the sprayer incidence, 55°.

Data Acquisition, Processing and Analysis
Data acquisition, processing and reconstruction of imaging were
performed using Masslynx 4.1 and High Definition Imagine
(HDI) software (Waters, United States). Raw data were
acquired within an m/z range of 100 to 1,200. The scan rate
was 200 μm/s in both the horizontal direction (X) and vertical
direction (Y) with one mass spectral scan per second in resolution
mode. The pixel resolution was set by using a single value for the
X and Y pixel size option of 200 μm. For 2D-MS imaging
reconstruction, peak picking selected 1,000 of the most
intensive peaks in the DESI experiment with an m/z range
from 400 to 1,000 for PL profiling. The m/z window and
resolution were the default settings of a 0.02 bin width and
20,000 resolution, respectively. To compare the imaging
effectiveness acquired, the peak intensity was normalized by
the internal standard LE (m/z 556.2720) at a concentration of
400 pg/μl and a flow rate of 5 μl/min continuously.

To obtain data containing m/z and peak intensity, region of
interest (ROI) tool in HDI software was used to generatedWaters
.raw file. Then, Progenesis Bridge was utilized to transform
Waters .raw file into direct sample data format. Subsequently,
the direct sample data were imported into Progenesis QI version
2.3 (Nonlinear Dynamics, Waters, United Kingdom) for data
preprocessing, including peak picking, and normalization as well
as putative identification. The sensitivity of peak picking
algorithm was set at automatic sensitivity method using noise
estimation algorithm. Finally, normalized datasets containing
sample description and peak intensity were imported SIMICA-
P version 13.0 (Umetrics, Umea, Sweden) and Metaboanalyst1 to
carry out statistical analyses, such as principal component
analysis (PCA) and orthogonal partial least squares-
discriminatory analysis (OPLS-DA) (Trygg et al., 2007).
Putative identification from the PL database of detected
features was performed on the basis of accurate mass (Fahy

1https://www.metaboanalyst.ca/
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et al., 2005). Precursor tolerance was set at 5 ppm and fragment
search method was selected with theoretical fragmentation at
mass errors below 10 ppm. Moreover, the cleavage pattern of PLs
from relevant published literatures (Hsu and Turk, 2009; Xia and
Jemal, 2009; Pi et al., 2016) were used to corroborate the
identification.

Univariate statistical analysis was carried out by Origin software
(OriginLab, Northampton, MA, United States). Statistical
significance was assessed by one-way analysis of variance
(ANOVA) followed by Fisher’s least significant difference (LSD)
test, and a p-value < 0.05 was considered significant.

RESULTS AND DISCUSSION

Carrier Material
To assess the effects of carrier materials mentioned above, a
number of PLs with relatively high signal-to-noise ratios were
used. Further identification information is given in
Supplementary Table S1. In this part of the experiment, a
10 μl volume of plasma was used for DPS preparation. ACN
was used as the sprayer solvent with a flow rate of 10 μl/min.
Plasma samples were analysed by scanning across each DPS with
the aid of a 2D-moving stage.

As the mass spectra acquired from the strongest scan point on
total ion chromatography of each material showed in Figure 1A,
we observed that the whole signal intensities of compounds in
non-cellulose-based carrier materials were commonly higher
than those in cellulosed-based carrier materials. Thus, the
accumulation of mass spectra of 10 scans were operated in
order to detect the intensity easily (Figure 1B). However, once
filter paper and DBS card were used as the carrier materials, the
signal-to-noise of selected PLs still could not be detected
effectively as well. This could be explained by the compounds
being absorbed by the cellulose-based materials during the
sampling procedure and obstructing their desorption. In
addition, with the increase in pore size of the paper-based
carrier, the diffusion rate increased, which in turn led to a

decrease in the effective concentration per unit resolution area.
In fact, when using non-cellulose-based carrier material, blood
samples with a certain spatial volume were easily detached and
sprayed away by nebulizing gas during DESI-MS operation;
hence, it was difficult to acquire the complete analytes’ signal
intensities from these DPSs. This “wash effect” (Pasilis et al.,
2007) actually limited the application of non-cellulose-based
materials in DESI-MS. To overcome this difficulty, we
modified the shape of PARAFILM due to its extensibility; that
is, we imprinted a certain number of circular grooves with
0.1 mm in depth and 4 mm in diameter in PARAFILM, on
which DPSs could be fixed firmly in the course of DESI-MS
analysis. As a result, the modified PARAFILM showed excellent
signal enhancement compared with the other materials, which
indicated that gas-phase analytes generated inside the grooves
may have more adequate secondary extraction and ionization
with highly charged microdroplets than those on the planar
surface. Based on the above results, the modified PARAFILM
was selected as the new carrier base for DPS sampling due to its
weak sample−material interactions and optimal compound
detective power.

FIGURE 1 | (A)Mass spectra obtained fromDPSs on the six types of carrier materials (B) Total signal intensities of selected PLs on the six types of carrier materials.
Abbreviations: LPE, lysophosphatidic ethanolamine; LPC, lysophosphatidylcholine; SM, sphingomyelin; PA, phosphatidic acid; PC, phosphatidylcholine.

FIGURE 2 | (A) Bar chart of PLs signal intensities in three different
volumes of plasma samples: 2, 5 and 10 μl (B) Two-dimensional distribution
diagram of SM (d33: 2) of DPSs in three different sample volumes.
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Sample Volume
In this section, the influence of the plasma droplet volume (2, 5
and 10 μl) on PARAFILM was studied. As shown in Figure 2A,
there was no significant difference in signal among the sample
volumes applied, which was consistent with previous reports (Fan
et al., 2011; Richardson et al., 2018), and the reason was that the
sample volumes were all relatively small (<20 μl). However, when
the volume reached 10 μl, the distribution of plasma in the two-
dimensional direction became obviously uneven, and SM(d33:2)
was chosen to show the phenomenon of homogenization
(Figure 2B). Normally, the greater the plasma volume is, the
higher the concentration of compounds in the droplet. Therefore,
the recommended sample volume used for further PL profiling
was set to 5 μl in this work.

Optimization of the Sprayer Solvent System
Another critical factor for successful DESI-MS experiments in
bioanalysis is the solvent system, including sprayer solvents
and their additives. To date, various solvent systems
(Manikandan et al., 2016) have been used for biological
DESI-MS analysis, commonly containing various ratios of
MeOH, ACN and water. For PL profiling, three different
solvent systems, MeOH, ACN, and IPA-ACN (1:1, V/V),
were tailored in our experiment based on the properties of
PLs. The Venn diagram in Figure 3A summarizes the coverage
of PLs in each sprayer solvent system and shows that ACN
exhibited maximum PL coverage. Furthermore, as
demonstrated in Figure 3B, a remarkable increase in total
signal intensity was observed when using ACN instead of IPA-
ACN (1:1, V/V) in this experiment. These results might be due
to the high viscosity of IPA (0.310 mPa·s), and the “pickup” of
PLs in those groups containing IPA was less than that in
groups containing only ACN (-0.467 mPa·s) (Kauffman and
Jurs, 2001; Venter et al., 2006). In addition, the PLs selectivity
was decreased when employing ACN with 0.1% FA as the
sprayer solvent, indicating that the presence of FA may inhibit
the ionization of some PLs (Figure 3C). According to the
acquired results, we selected ACN as the sprayer solvent in

DESI-MS since it provided the best coverage and overall signal
intensity for PLs in this study.

Thus far, a PL profiling method with DPS sampling and a
DESI-MS instrument has been established based on the results
obtained above. Namely, a 5-μl volume of plasma was deposited
on a modified PARAFILM substrate and then desorbed by using
ACN as the sprayer solvent for DESI-MS analysis.

Stability and Repeatability
To achieve accurate phospholipidomics analysis, it is important
to ensure that the DESI-MS system is robust against variation in
certain parameters such as signal intensity during operation.
However, systematic deviation of ion intensity will occur in
the course of acquisition due to slight changes in the spray
conditions. Hence, LE was utilized as an internal standard to
correct this variation. DESI-MS analysis requires samples to be
stable at room temperature and atmospheric pressure (Ganz et al.,
2012). Therefore, the stability of PLs in the DPSs on modified
PARAFILM was assessed in the following experiment. We
selected several time points (6, 24, 48, 72 and 168 h) after
dried spots formed at room temperature in a desiccator for
24 h to perform the stability tests. All samples were kept in a
desiccator during the storage period at room temperature.

The differences in signal among groups were obvious at the
0.05 level (one-way ANOVA), indicating that the total signal of
PLs dynamically changed during the specified time period (from
6 to 168 h). The overall mean PL was significantly lower at 72 and
168 h than at 6, 24 and 48 h (p < 0.05). Additionally, there was no
significant difference between the 6, 24 and 48 h groups (p > 0.05,
Figure 4A). Therefore, we suggest the operating time of DESI-MS
analysis should less than 48 h to ensure the reliability of the data.

Furthermore, six repeated dried spots (each spot containing
5 μL of plasma) were pipetted onto modified PARAFILM and
allowed to dry for 24 h in the desiccator at room temperature. The
coefficient of variation (CV) of PLs calculated from the above
DPS samples was used to evaluate the repeatability of the method
(Figure 4B). The CV distribution of PLs in this study showed that
the DESI-MS system and DPS samples were consistent over the

FIGURE 3 | Venn diagram (A) shown the selectivity of PLs among ACN, MeOH and IPA-ACN � 1:1 and (C) shown the influence of addictive during DESI-MS
analysis. Bar chart (B) showing the overall peak intensities of the putatively identified PLs. Abbreviations: MeOH, methanol; ACN, acetonitrile; IPA-ACN � 1:1,
isopropanol-acetonitrile (1:1, V/V); FA, 0.1% formic acid.
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analysis duration. Indeed, we observed that the percentage of PLs
was 87.5% (CV% < 30), proving that applying modified
PARAFILM as a DPS sampling carrier for phospholipidomics
was feasible (Gika et al., 2007).

Method Application
The above fit-for-purpose, optimized experiments demonstrated the
promising combination of PARAFILM-based DPS sampling and
DESI-MS analysis. Therefore, an S. japonicum infection model was
established and employed to evaluate the classification potential of
DPS sampling DESI-MS with optimal conditions in a
phospholipidomics study. The procedural blank control sample
containing system noise and impurity data from the carrier and
instrument, but without a plasma sample, was also acquired to
eliminate system deviation.

The PCA score plot (Figure 5A) and OPLS-DA score plot
(Figure 5B) showed well-distinguished clusters between the
control group and infected group, indicating that S. japonicum
infection led to PL alterations in the plasma samples of mice. PCA
is an unsupervised multivariate pattern recognition analysis
method focusing on the overall clustering patterns and trends
in a data set, while OPLS-DA is a supervised model for biomarker
finding (Trygg et al., 2007). For supervised methods, it is very

important to avoid overfitting of the data, so we applied the
goodness of fit (R2Y) and the predictive ability (Q2Y) of the model
to evaluate its quality. Normally, Q2Y values >0.5 are considered
good for biological models (Broadhurst and Kell, 2006). In our
OPLS-DA model, the values of R2Y and Q2Y were 0.994 and
0.693, respectively, demonstrating excellent fitness and
predictability. Moreover, a permutation test (n � 1,000) was
performed, and the p-value of Q2Y was less than 0.05. Above
all, both the R2Y and Q2Y values and the permutation test
illustrated the high reliability of this OPLS-DA model.
Furthermore, LysoPC (22:3) (m/z 546.3) was selected as a
discriminated metabolite between healthy mice and S.
japonicum-infected mice, based on the variable importance in
projection (VIP) score that taken from comparison in OPLS-DA
model >2 and p-value from student’s t-test < 0.05. The mass
spectral image, depending on DESI-MS imagine technology,
reconstructed by HDI software showed that the concentration
of LysoPC (22:3) (VIP � 5.6, p � 0.009) in the plasma of mice
increased significantly at 42 dpi compared to 0 dpi (Figure 5C).
LysoPC plays an important role in regulating the immune
response, and a high level of LysoPC in the plasma is regarded
as a marker for cell membrane injury (Hu et al., 2020). These
results indicated that PARAFILM-based DPS sampling with

FIGURE 4 | (A) Several time points (6, 24, 48, 72 and 168 h) were used to evaluate the stability of PLs in DPSs on modified PARAFILM (B) Histogram of the
coefficient of variation (CV) demonstrating the repeatability of the established method.

FIGURE 5 | PCA (A) andOPLS-DA (B) score plots obtained from the Schistosoma japonicum (S. japonicum)-infected group (42 dpi) and control group (0 dpi) using
DPS sampling with DESI-MS analysis (C) A DESI-MS image of the concentration status of LysoPC (22:3) (m/z 546.3) in different groups.

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 8010436

Chen et al. Imprinted PARAFILM for DPS DESI-MS

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


DESI-MS technology is promising for rapid untargeted
lipidomics screening. More meaningfully, as discussed in
Kauppila et al. (2007), selectivity in the DESI-MS platform for
different kinds of analytes depended on the spray solvent
composition. Therefore, based on the property of polar
metabolites, a combination of water with MeOH would be the
better solvent system, which indicated that this study also lay the
foundation for rapid metabolomics screening research.

CONCLUSION

To date, using DESI-MS to analyse DPS directly is relatively rare
because there is no proper carrier substrate for blood samples. In
this study, to overcome the obstacle of combining DPS with
DESI-MS, six types of materials, including non-cellulose-based
(modified PARAFILM and original PARAFILM, PVDF, and
PTFE-printed glass slides) and cellulose-based (Whatman
31 ET and filter paper) materials were evaluated. Due to the
strong absorption of 31 ET and filter paper, the PLs were not
sufficiently detected. Furthermore, we overcame the challenge
of the “wash effect” using a modified PARAFILM, which
exhibited excellent signal enhancement. Based on this result,
the modified PARAFILM was selected as a new carrier
base for DPS sampling. Then, a rapid phospholipidomics
approach was successfully established by evaluating the
sampling volume and sprayer solvent system. Therefore, 5 μl
of plasma samples were deposited on the PARAFILM carriers
with ACN as the sprayer solvent in DESI-MS analysis. This
method performed quite well in stability and repeatability
tests and could be employed in the untargeted metabolomics
study of schistosomiasis.

The PARAFILM-based DPS sampling and DESI-MS
analytical method we developed and validated not only
exhibited sufficiently high signal intensities of compounds but
also had great advantages in terms of simplicity, cost, and
acquisition. The described method presented a high-
throughput analytical means for PL profiling of blood samples
compared to conventional liquid chromatography coupled
with mass spectrometry. In summary, the promising results
of this study lay the foundation for rapid metabolomics
screening research and are amenable to clinical studies.
Nevertheless, further investigations on the benefit of PL
profiling with the PARAFILM-based DPS sampling and DESI-
MSmethod should be initiated to determine whether this method
could achieve the required precision of medicinal and population
health studies.
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