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Editorial on the Research Topic

Interfacial Structures and Their Properties

Structure-property relationships of interfaces are immensely relevant not least because they affect
our everyday lives crucially (Erdemir, 2005; Rosenberg, 2005). Interface and surface science rapidly
develops in many directions currently, both at the fundamental and applied levels. Life sciences
(Kumar, 2010), heterogeneous catalysis (Bell, 2003; Freund et al., 2011; Franco et al., 2020; Hanikel
et al., 2021), electrochemistry (Gohda et al., 2008; Schnur and Groß, 2009; Zhang et al., 2018; Tang
et al., 2020), battery technology (Wang et al., 2018), metallurgy (Seah, 1975; Marchand et al., 2020;
Debroy et al., 2021), and organic chemistry (Ma et al., 2010; Li et al., 2014; Delville and Taubert,
2018) are representative examples for active fields, but this list must remain vastly incomplete by
obvious reasons. From a fundamental science perspective, however, it is a formidable task to develop
clear-cut relationships between actual atomic interfacial structures and related physicochemical
properties. The present research topic attempts to collect some of the latest research results
associated with the above-mentioned themes. It has been intended to bridge experiment—theory
gaps and foster potential collaborations. The editorial is convinced that this represents a viable way to
make substantial progress in the domain of interface science.

It is understood that the distribution of reactants affects reactivities. This can be exploited in preparing
nano- or micro-structured droplets of solvents. These can be readily monitored by mass-spectrometry.
From an experimental point of view, microdroplet reactions appear to have great potential in efficient
screening of parameters such as the yield of chemical reactions (Yang et al.). Examined these possibilities
for the synthesis of quinoxaline derivatives recently. The synthesis via a microdroplet technique offers
substantially shorter reaction times, simpler operation, significantly enhanced yields, and this technique is
also environmentally friendlier, because one can go for the reaction without the catalyst. These points
represent clear advantages over traditional bulk-phase synthetic strategies.

Central to applications in metallurgy is the atomic-level understanding of melts. There exists
consensus in the community that (high temperature) metallic melts contain atomic clusters, but how
these clusters evolve under given conditions like temperature and pressure is still unclear (Lou et al.,
2013). Along these lines (Song et al.), carefully examined the atomic structure of Al and Cu cluster by
virtue of thermodynamic Wulff constructions (based on density functional theory results) and the
average cluster size (by pair-distribution functions of observed high-temperature X-ray diffraction
(HTXRD) results). Theoretical XRD pattern matched the experimental ones quantitatively in terms
of peak positions and widths including relative intensities. This represents a showcase in terms of
developing fundamental understanding of a complex network of processes such as the ones
occurring in metallic melts.

The electrochemical interface, most often the interface between aqueous solutions and metal
surfaces, is at the heart of electrocatalytic applications (Gossenberger et al.). Applied a grand-

Edited and reviewed by:
Zhuhua Zhang,

Nanjing University of Aeronautics and
Astronautics, China

*Correspondence:
Joachim Paier

joachim.paier@chemie.hu-berlin.de

Specialty section:
This article was submitted to

Physical Chemistry and Chemical
Physics,

a section of the journal
Frontiers in Chemistry

Received: 01 November 2021
Accepted: 22 November 2021
Published: 07 December 2021

Citation:
Paier J, Broqvist P and Lin X (2021)
Editorial: Interfacial Structures and

Their Properties.
Front. Chem. 9:807066.

doi: 10.3389/fchem.2021.807066

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 8070661

EDITORIAL
published: 07 December 2021

doi: 10.3389/fchem.2021.807066

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.807066&domain=pdf&date_stamp=2021-12-07
https://www.frontiersin.org/articles/10.3389/fchem.2021.807066/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.807066/full
https://www.frontiersin.org/researchtopic/11921
https://www.frontiersin.org/articles/10.3389/fchem.2020.00789/full
https://www.frontiersin.org/articles/10.3389/fchem.2020.00607/full
https://www.frontiersin.org/articles/10.3389/fchem.2020.00634/full
http://creativecommons.org/licenses/by/4.0/
mailto:joachim.paier@chemie.hu-berlin.de
https://doi.org/10.3389/fchem.2021.807066
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.807066


canonical approach (Groß, 2021) to study the stabilities of sulfate
and bisulfate ions in water adsorbed on the (111) surfaces of Pt
and Au. The study shows that quantum chemical calculations
based on the computational hydrogen electrode, which includes
the electrochemical environment in an appropriate way, can
reliably predict the stable adsorbate phases at electrochemical
electrode/electrolyte interfaces as a function of electrochemical
control parameters.

Artificial intelligence or machine learning is expected to push
frontiers in the modelling of complex structures and their
corresponding properties (Li et al.). studied the transferability
and performances of machine-learned force fields of complex
metal oxides like magnetite (Fe3O4) and water adsorbed on the (1
× 1)-(111) surface containing up to four water molecules per unit
cell. Approximations involved in the construction of the
machine-learned force fields, i.e., missing long-range and
incomplete many-body short-range interactions, as well as the
electronic structure method underlying the training runs, will

critically affect accuracy. They concluded that more work must be
spent to relieve these limitations of machine-learned force fields
when applied to complex, hydrogen-bond interactions on
reducible oxides.

The editors of the present research topic are convinced that it
represents an outline of important contributions from the various
fields indicating the great interest in related developments and
collaborations between experimentalists and theorists.
Furthermore, they believe that many more developments will
appear in upcoming years triggering important technical
applications, including, e.g., catalysis and energy-related
applications.
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