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A hydrophilic TPE-based tetracationic cyclophane TPE-cyc was synthesized, which could
capture intracellular Nicotinamide adenine dinucleotide phosphate and fuel the
antioxidative ability of tumor cells to detoxify reactive oxygen species (ROS).
Meanwhile, upon the reduction by cellular GSH, TPE-cyc could light up tumor cells,
acting as a GSH-responsive fluorescent switch to image cells with high resolution.
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INTRODUCTION

Understanding the significance of molecular recognition in complex biological processes where
various nucleic acids, enzymes and nucleotides are involved, has helped chemists to develop
intelligent structures with fascinating properties (Meyer et al., 2003; Wu et al., 2017; Wu D
et al., 2021). Artificial molecular receptors specific to biomolecules have attracted increasing
attentions in recent years owing to their potential applications in medical and biological fields
(Jisha et al., 2006; Hariharan et al., 2007; Pluth and Raymond, 2007; Kuruvilla et al., 2008; Ojida et al.,
2008; Jisha et al., 2010; Alfonso and Sola, 2020; Escobar and Pablo, 2021). Nicotinamide adenine
dinucleotide phosphate (NADPH), a main cellular reductant, plays an important role in maintaining
glutathione in its reduced modality (GSH), which eliminates intracellular reactive oxygen species
(ROS), thus preventing cells from oxidative damage (Dröge, 2002; Ying, 2008; Celton et al., 2012;
Schulze and Harris, 2012; Fernandez-Marcos et al., 2016). Although the probable mechanisms of
NADPH-involved physiological processes have been proposed, deeper exploration is still needed due
to the complexity and uncertainty of the existing mechanisms. Therefore, a molecular recognition
system which can selectively recognize NADPH is urgently needed.

The discovery of crown ethers by Pedersen opened the way for supramolecular chemists to
design macrocyclic molecules that act as molecular receptors based on non-covalent interactions
or weak coordination (Pedersen, 1967). Since then, chemists have constructed various
macrocyclic hosts such as cyclodextrins (Liao et al., 2010; Crini, 2014; Prochowicz et al.,
2017; Chen et al., 2021), cucurbit [n]turils (Ong et al., 2002; Jeon et al., 2004; Lagona et al.,
2005; Das and Scherman, 2011; Francisco et al., 2019), calix [n]arenes (Ikeda and Shinkai, 1997;
Philip kaifer 2002; Sameni et al., 2009; Perret and Coleman, 2011; Li et al., 2020), cyclophanes
(Ariga et al., 2005; Si et al., 2014; Strutt et al., 2014; Liu et al., 2017; Sapotta et al., 2019; Neira et al.,
2020) and pillararenes (Cao et al., 2014; Li et al., 2014; Ogoshi et al., 2016; Sathiyajith et al., 2017;
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Guo H et al., 2020; .Cai et al., 2021). The discovery of “blue
box” by Stoddart et al. opened the new era of cationic
cyclophanes (Gong et al., 2010; Gong et al., 2011; Dale
et al., 2016). Cationic cyclophanes are good candidates for
molecular recognition because they not only possess multi-
cationic states but also display self-assembly behavior by
incorporating π-electron-rich guests (Trabolsi et al., 2010a;
Barnes et al., 2015; Cheng et al., 2015; Chen et al., 2016; Sun
et al., 2017). For example, tetracationic cyclophanes which are
constructed on the basis of π-electron-deficient 4,4’-
bipyridinium units, can selectively complex with π-electron-
rich guests to form 1:1 or 1:2 complexes (Bühner et al., 1988;
Philp et al., 1991; Trabolsi et al., 2010b). Recently,
tetraphenylethene (TPE) derivatives which are a classic
aggregation-induced emission (AIE) luminophores (Zhou
et al., 2018; Ding et al., 2021; Wu H et al., 2021), have been
utilized as building blocks to construct macrocyclic
compounds (Mei et al., 2015). Attributing to the AIE effect
and propeller structure, the TPE-based cyclophanes not only
display excellent photophysical properties but also possess
flexible and diversified cavity structures which can be
explored to capture biomolecules (Luo et al., 2012; Zhao
et al., 2012; Kwok et al., 2015). Although a number of TPE-
based cationic cyclophanes have been utilized for host–guest
recognition, the example of biomolecules recognition in
aqueous media by hydrophilic TPE-based cationic
cyclophanes is rare.

Here, we synthesized a hydrophilic TPE-based tetracationic
cyclophane (TPE-cyc), in which TPE and 4.4’-bipyridinium units
acted as building blocks. Attributing to the electrostatic
interactions and π-π stacking, TPE-cyc could specifically
recognize NADPH and complex it in a 1:1 manner. After

TPE-cyc being internalized by tumor cells, TPE-cyc could
capture cellular NADPH to partially break the equilibrium of
NADPH-generating reaction (NADH + NADP+→NADPH +
NAD+) and eventually fuel the NADPH-dependent
antioxidative ability to detoxify ROS. Meanwhile, the high
concentration of GSH in tumor cells could reduce the 4,4’-
bipyridinium (MV) units of TPE-cyc into radical cation state
and disrupt the photo-induced electron transfer (PET) effect
between electron-rich TPE and electron-deficient bipyridinium
units, thus recovering the fluorescence of TPE units and lighting
up tumor cells (Scheme 1). Hence, TPE-cyc acts as a GSH-
responsive fluorescent switch to image cells with high resolution.

MATERIALS AND METHODS

Materials
NADPH was purchased from Sigma. TPE-cyc was synthesized
according to literature procedures (Cheng et al., 2019). 1H NMR
and 13C NMR spectra were recorded on a Bruker AvanceⅢ-400
spectrometry. The 2D NOESY NMR spectra were recorded on a
Bruker Avance DMX 600 spectrophotometer with TMS as the
internal reference. UV-vis-NIR spectra were taken on a Shimadzu
UV-3150 spectrophotometer. The fluorescence experiments were
measured on an RF-5301 spectrofluorophotometer (Shimadzu
Corporation, Japan). The isothermal titration calorimetry (ITC)
experiments were performed on a VP-ITC micro-calorimeter
(Microcal, United States). The cell images were taken by a
confocal laser scanning microscopy (CLSM, Radiance2100,
Bio-Rad) with a 100 × oil immersion lens. Flow cytometry
measurements were conducted using a FACSCalibur flow
cytometer (BD FACSCalibur).

SCHEME 1 | Schematic illustration of the changes of cellular metabolic function regulated by TPE-cyc⊃NADPH.
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METHODS

Synthesis of Compound 3
37.1 ml n-butyllithium (1.6 M) was added into a solution of 1
(10 g, 59.4 mmol) in dry THF (100 ml) at 0°C under N2

atmosphere. The orange-red solution was stirred for 0.5 h at

0°C. Then, 2 (6.3 g, 29.7 mmol) was dissolved in dry THF and
dropwise added to the above mixture. The resulting solution was
allowed to warm to room temperature and still stirred for 8 h. At
last, saturated ammonium chloride solution was added to quench
the reaction. The mixture was extracted with DCM three times.
The organic phase were combined and dried over anhydrous
Na2SO4. The solvent was removed by rotary evaporation and the
acquired crude product was dissolved in toluene with the 4Å
molecular sieve dehydration unit. After addition of catalytic
p-toluenesulphonic acid (342 mg, 1.8 mmol), the toluene
solution was refluxed for 5 h and the generated H2O was
separated. The organic layer was washed with 10% NaHCO3

aqueous solution and dried over anhydrous Na2SO4. After
removal of toluene, the obtained mixture was purified by
column chromatography (silica gel; petroleum ether) to obtain
3 as a white solid (9.0 g, 85%).

Synthesis of Compound 4
Under a N2 atmosphere, 3 (1.1 g, 2.83 mmol) was first dissolved
in CCl4 (20 ml), then dibenzoyl peroxide (50 mg, 0.2 mmol) and
NBS (1.5 g, 8.49 mmol) were added. The mixture was heated to
reflux for 12 h. After reaction, the solution was filtered to remove
solid impurity and the CCl4 solution was washed with brine three
times. The organic phase were collected and dried by anhydrous
Na2SO4. The CCl4 was evaporated and the crude product was
purified by a silica gel column chromatography (silica gel;
petroleum ether) to obtain 4 as a white solid (0.9 g, 60%).

Synthesis of Compound 5
4,4’-bipyridine (2.0 g, 12.8 mmol) was dissolved in CH3CN
(20 ml)and was heated to reflux. Next, compound 4 (1.2 mg,
2.3 mmol) was dissolved in CH3CN (5 ml) and dropwise added to
the bipyridine solution. The resulting mixture was refluxed for

FIGURE 1 | (A) Partial 1H NMR spectra (D2O, room temperature,
400 MHz): (Ⅰ) NADPH (1.00 mM). (Ⅱ) TPE-cyc⊃NADPH [TPE-cyc (1.00 mM)
and NADPH (1.00 mM)]. (Ⅲ) TPE-cyc (1.00 mM). (B) Chemical structures of
TPE-cyc and NADPH.

FIGURE 2 | (A) Partial NOESY NMR spectra (600 MHz, D2O, room temperature) of TPE-cyc (1.0 mM) and NADPH (1.0 mM). (B)Microcalorimetric titration of TPE-
cyc (2.00 mM, 10 µl per injection) with NADPH (0.100 mM) in water at 298.15 K.
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3 days. The formed precipitate was filtered and washed with
CH3CN three times, and compound 5 was obtained after dry
under high vacuum (1.7 g, 90%).

Synthesis of Compound 6
Tetrabutylammonium iodide (TBAI, 35 mg, 0.095 mmol), 4
(220 mg, 0.42 mmol) and 5 (400 mg, 0.42 mmol) were
dissolved in dry CH3CN (100 ml) and was heated at 85°C for
72 h. After reaction, the orange product was acquired by
centrifuge and dried under high vacuum. After NH4PF6 anion
conversion in water, six was obtained as a pale yellow solid
(250 mg, 37%).

Synthesis of Compound TPE-Cyc
Tetrabutylammonium chloride (TBACl, 205.66 mg, 0.74 mmol)
and 6 (100 mg, 0.074 mmol) were dissolved in CH3CN and
stirred overnight. After reaction, the orange terreous product

was acquired by centrifuge and washed with CH3CN three times.
TPE-cyc was obtained after dry in high vacuum (61 mg, 90%).

RESULTS AND DISCUSSION

Investigation of Host–Guest Complexation
Between TPE-Cyc and NADPH
TPE-cyc was synthesized via a two-step SN2 reaction as shown in
Scheme 1. To investigate the host–guest interaction between
TPE-cyc and NADPH, 1H NMR spectroscopy was conducted
in D2O. As shown in Figures 1A,B, when an equimolar amount
of NADPH and TPE-cyc were mixed in D2O, apparent chemical
shift changes of the protons on TPE-cyc were observed. For
instance, the signals of protons H1, H2 and H3 on TPE-cyc were
divided into multiple sets of sharp signals with obvious chemical
shift changes, which may be induced by the electrostatic

FIGURE 3 | (A) UV/vis spectra of TPE-cyc in the presence of different amounts of NADPH. (B) The plots of UV absorption maximum of TPE-cyc in the presence of
different amounts of NADPH. Cytotoxicity of (C) HeLa and (D) U87 cells incubated with different concentrations of TPE-cyc for 4 and 24 h (E) UV/vis spectra of TPE-cyc
with or without Na2S2O4. (F) Fluorescence spectra of TPE-cyc with or without Na2S2O4.
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interaction between the pyridinium unit and tetraphosphate unit
of NADPH. Meanwhile, the signals of protons H4-8 disappeared
completely after complexation. All these results provided
compelling evidence for the host–guest interactions between
TPE-cyc and NADPH (Cheng et al., 2019). In addition, the
signals of protons on NADPH also displayed obvious peak
broadening effect, further indicating the occurrence of
host–guest complexation. On the other hand, there were H1-
Hd-k and H2-Hd-k inter-correlation between TPE-cyc and
NADPH in nuclear overhauser effect spectroscopy (NOESY)
spectrum (Figure 2A), confirming the formation of TPE-
cyc⊃NADPH.

Isothermal titration calorimetry (ITC) experiment was carried
to provide the thermodynamic energy information for the
complexation. As shown in Figure 2B, the Ka value of TPE-
cyc⊃NADPHwas calculated to be (6.18 ± 1.56) × 106 M−1 and the
stoichiometry was 1:1. The acquired information of entropy and
enthalpy changes (ΔH° < 0; TΔS° > 0) from ITC data
demonstrated that this supramolecular complexation was
promoted by a beneficial entropy-assisted enthalpy change.
The driving forces of the molecular recognition were the
synergistic effect of hydrophobic interaction, electrostatic
interaction and π-π stacking interaction. Furthermore, there
was a fragment peak m/z � 948.3 [corresponding to (TPE-
cyc‧NADPH-3Cl-H)2+] in electrospray ionization mass
spectrometry (Supplementary Figure S9), which further
demonstrated the formation of a 1:1 TPE-cyc⊃NADPH
complex. The UV-vis absorption was also conducted to
investigate the complexation between TPE-cyc and NADPH.
As shown in Figure 3A, by the continual addition of NADPH
into TPE-cyc solution, the maximum absorbance of TPE-cyc at
250 nm gradually decreased and moved to 258 nm, and the
maximum decrease occurred when 1.0 equiv. of NADPH was

added (Figure 3B), supporting a 1:1 stoichiometry of TPE-
cyc⊃NADPH.

Investigation of Cell Viability Regulated by
TPE-Cyc
NADPH is known as a crucial co-enzyme in the event of cellular
electron transfer which drives the biosynthesis of amino acids,
DNA, phospholipids, fatty acids and steroids. Another important
function of NADPH originating from the powerful reducibility of
NADPH is to fuel the activities of various enzymes, such as
glutathione peroxidase (GSHPx), catalase and superoxide
dismutase, which play an important role in permitting
microorganisms to survive in aerobic environment. Hence,
breaking the balance of NADPH in living system can induce
severe damage for cells, even death. Considering the strong
complexing ability of TPE-cyc for NADPH, we investigate the
impact of TPE-cyc on biological functions of cells.

The cell viability was firstly assessed by a 3-(4′,5′-
dimethylthiazol-2′-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay, wherein U87 and HeLa cells were incubated
with different concentrations of TPE-cyc for 4 or 24 h. As
shown in Figures 3C,D, cell viability maintained nearly 100%
survival rate in the range of 0.063–1.0 μM, suggesting this
concentration range of TPE-cyc could not disrupt the NADPH
balance. However, the survival rate decreased with the further
increase of concentration. For example, when the concentration
reached 4 μM, the survival rate fell by half (Figures 3C,D),
indicating this concentration of TPE-cyc could capture enough
intracellular NADPH and eventually induce cell death. In
addition, the cytotoxicity of six was similar to TPE-cyc,
suggesting tetracationic macrocyclic structure was the key of
cytotoxicity against cells (Supplementary Figure S11).

FIGURE 4 | (A) Flow cytometry results of ROS fluorescence signals in HeLa cells incubated with TPE-cyc for different time periods. (B) Confocal images of HeLa
cells incubated with TPE-cyc for different time periods (Nuclear Green LCS1 was used to stain nuclei of living HeLa cells).
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Investigation of Antioxidative Ability of
Tumor Cells Regulated by TPE-Cyc
NADPH has an important ability to keep glutathione in its
reduction form GSH, which eliminates ROS and transforms
harmful hydrogen peroxide into water under the help of
GSHPx (Margis et al., 2008). Therefore, NADPH plays a vital
role in resisting cellular oxidative stress. We utilized 2′,7′-
dichlorofluorescin diacetate (DCF-DA) as a fluorescence probe
to monitor the intracellular ROS level (Li et al., 2018; Ren et al.,
2020). DCFH-DA itself does not emit fluorescence, but the
intracellular ROS can oxidize the non-emissive DCF-DA into
emissive DCF. As shown in Supplementary Figure S12, with the
increase of incubation time, the level of ROS in TPE-cyc group
decreased, suggesting the antioxidative ability of cells was
enhanced. Flow cytometry (FCM) was also applied to
quantitatively analyze the level of intracellular ROS. Similar to
the result of fluorescence imaging, ROS production significantly
decreased with the extension of time (Figure 4A). The reason
may be ascribed that the capture of intracellular NADPH by TPE-
cyc broke the equilibrium of NADPH-involving redox process
and triggered the generation of reducing substances which can
detoxify ROS.

Investigation of Cell Imaging Ability of
TPE-Cyc
Owing to the PET effect between TPE and bipyridinium units,
water-soluble TPE-cyc is a quencher-type host and it has an
intense UV absorption but no fluorescence (Hayashida and
Kaku, 2013), which severely limits its expansion and
application. In the reductive condition, MV2+ can be
reduced into MV·+ and the PET effect between TPE and
bipyridinium units is disrupted (Jiao et al., 2019; Guo Q. H
et al., 2020; Zhang et al., 2020), which may be used to initiate
the fluorescence of TPE-cyc. As shown in Figure 3E, there was
a characteristic peak of MV·+ in the range of 450–750 nm after
addition of Na2S2O4, indicating MV2+ was reduced into MV·+

with the help of reducing agent (Lomoth et al., 2002). As
expected, there was a new fluorescence emission within the
range of 300–550 nm in the TPE-cyc + Na2S2O4 group,
suggesting the fluorescence of TPE-cyc was initiated. In
tumor cells, the concentration of GSH is high, which can be
utilized to light up TPE-cyc. Confocal laser scanning
microscopy (CLSM) was utilized to study the
internalization behavior of TPE-cyc. As shown in
Figure 4B, after 2 h incubation, apparent blue fluorescence
arising from TPE-cyc was observed in the cytoplasm,
indicating that TPE-cyc was easily internalized by HeLa
cells. With the incubation time increased to 8 h, the
intensity of blue fluorescence significantly increased,
suggesting the endocytosis of TPE-cyc occurred in a time-
dependent mode and intracellular reducing environment
ensured continuous luminous of TPE-cyc, which provided a

crucial advantage for TPE-cyc to be applied in fluorescence
imaging.

CONCLUSION

In summary, a hydrophilic tetracationic cyclophane was
constructed based on TPE and 4,4’-bipyridinium units.
Attributing to the large and flat rectangle-like cavity, TPE-
cyc could specifically recognize NADPH and form a 1:1
host–guest complex. TPE-cyc was not only easily
phagocytized by tumor cells but also able to selectively
capture cellular NADPH, thus breaking the equilibrium of
NADPH-involving redox process and improving the
antioxidative ability to eliminate ROS. Meanwhile, the
sufficient intracellular reducing environment such as the high
concentration of GSH reduced MV2+ unit of TPE-cyc into
MV·+ to forbid the PET effect between TPE and MV units,
realizing the fluorescence recovery of TPE-cyc and eventually
fluorescence imaging of tumor cells with high resolution. This
current study opens a door for cationic cyclophanes to broaden
their biological applications in recognizing biomacromolecules
and imaging tumor cells, which has a great potential to diagnose
and treat difficult miscellaneous diseases of humans in the
future.
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