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A practical method to synthesize N-heteroaryl esters from N-heteroaryl methanols with
acyl cyanides via C–C bond cleavage without using any transition metal is demonstrated
here. The use of Na2CO3/15-crown-5 couple enables access to a series of N-heteroaryl
esters in high efficiency. This protocol is operationally simple and highly environmentally
benign producing only cyanides as byproducts.
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INTRODUCTION

Heteroaryl esters and their derivatives could serve as interesting building blocks for the preparation
of various functionalized products including bioactive natural products, pharmaceuticals, dyes, and
flavors (Otera, 2010; Trotier Faurion et al., 2013; Armani et al., 2014; Liu B. et al., 2015; Xu et al., 2018;
Bayout et al., 2020; Xu et al., 2022). Therefore, methodologies for the synthesis of these molecular
architectures have experienced huge developments in recent years. The conventional syntheses
include interesterification and oxidative carbonylation of ethers (Zhao et al., 2014; Lu et al., 2015),
and the reactions of alcohols with methanol (Zhang and Wang, 2019), carboxylic acids (Teruaki
et al., 2003; Saeed et al., 2008), aldehydes (Tang et al., 2014; Huang et al., 2016; Chun and Chung,
2017), ketones (Huang et al., 2014; Rammurthy et al., 2021), aliphatic amides (Hie et al., 2016;
Bourne-Branchu et al., 2017), carbonates (Chen et al., 2014), and acid halides (Tamaddon et al., 2005;
Akhlaghinia et al., 2010), respectively. In the last decade, direct activation and functionalization of
the C–H bond has emerged as a powerful method in the field of organic synthesis and witnessed
significant progress (McMurray et al., 2011; Huang et al., 2012; Wencel-Delord and Glorius, 2013;
Chen et al., 2015; Liu C. et al., 2015; Dong et al., 2017). For example, successful benzylic C (sp3)-H
acyloxylations of alkyl N-heteroarenes were achieved using simple aldehydes and acids via a copper
or palladium catalysis (Scheme 1A) (Jiang et al., 2010; Chen et al., 2018; Cheng et al., 2019).
Moreover, Soulé and coworkers achieved oxidative esterification of aldehydes with prefunctionalized
2-alkylheterocycle N-oxides via copper catalysis (Scheme 1B) (Wang et al., 2017).

In recent years, the process of carbon–carbon (C–C) bond cleavage of ketones under transition
metal (Fe, Cu, or Ru) catalysis has provided various ester compounds (Yan et al., 2014; Huang et al.,
2016; Arzumanyan, 2017).

Recently, a simple and direct aerobic oxidative esterification reaction of arylacetonitriles with
alcohols/phenols is achieved in the presence of a copper salt and molecular oxygen (Dong et al.,
2021). On the other hand, Song and Plietker groups reported aerobic oxidative C–CN bond cleavage
of arylacetonitriles leading to various esters with catalysis of Fe and Ru, respectively (Scheme 1C)
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(Kong et al., 2016; Eisele et al., 2019). In general, ester compounds
could be achieved using acylcyanides as acylating agents. Cu-
catalyzed esterification using acyl cyanides with alcohols to yield
the corresponding cyano-substituted esters is also reported
(Scheme 1D) (Chen et al., 2020).

Furthermore, esterification reactions could proceed using
photochemical strategies, in which reaction mechanisms
involve mainly single electron transfer, energy transfer, or
other radical procedures (Deng et al., 2021). A novel and
metal-free method for the synthesis of α-ketoesters from β-
ketonitriles and alcohols was reported, but under visible light
irradiation conditions (Xu et al., 2018). Besides, the
acyloxycarbonyl compounds could be obtained by TBAI-
catalyzed acyloxylation of ketones (Uyanik et al., 2011; Guo
et al., 2014), which the excess TBHP was required for the
reaction process (Scheme 1E). Very recently, Subaramannian
et al. reported t-BuOK catalyzed esterification using acyl cyanides
with alcohols (Scheme 1F); however, their applicability was
limited to N-heteroaryl methanols (Subaramanian et al., 2020).
In addition, transition metal-free activation of amides by cleavage
of C–Nbond to obtain the aryl esters is well known (Li et al., 2018;
Li and Szostak, 2020). Therefore, these reported esterification
protocols involve the metal catalysts, lack of step efficiency,
conditions of light irradiation, limited substrate scope of
N-heterocyclic compounds, and need of oxidants. In our
continuous effort in the construction of N-heteroaryl
compounds (Lai et al., 2018; Zhai et al., 2018), we disclose
herein an efficient and new protocol for the base-promoted

esterification of N-heteroaryl methanols via C–C bond
cleavage of arylacetonitriles acyl cyanides as acylating sources
(Scheme 1G). The present protocol is simple to handle and does
not involve any metal catalyst detrimental to environmental
safety.

RESULT AND DISCUSSION

Our initial optimization using 2-pyrazinylmethanol 1a and
benzoylacetonitrile 2a as the model substrates revealed
that the reaction proceeded as anticipated with 1 equiv of
t-BuOK in toluene according to the reported conditions
(Roy et al., 2019; Subaramanian et al., 2020), affording the
desired product 3a in 10% yield (Table 1, entry 1). No product
was detected in the absence of base (Table 1, entry 2), which
suggests that it played a crucial role. Further screening of other
bases indicated that Na2CO3 was obviously superior to the
others, providing the desired product 3a in 25% isolated yield
(Table 1, entries 3–9 vs. entry 1). Interestingly, an improved
yield (61%) was obtained when the reaction was conducted in
the presence of 15-crown-5 (Table 1, entry 10).The role of
crown ether in the reaction is increasing the solubility of base in
solvent and known to be effective for trapping the potassium
and sodium ions (Liotta et al., 1974; Lutz et al., 1988; Hay et al.,
1993; Reuter et al., 1999). Subsequently, the evaluation of
additives was conducted, and the results indicated that none
of the screened additives (PPh3, 1,10-Phen, and TMEDA)

SCHEME 1 | Strategies toward the synthesis of esterification products.
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benefited the outcome (29%–32%, Table 1, entries 11–13 vs.
10). Thus, 15-crown-5 was selected as the additive to assess
the effect of solvents, including 1,4-dioxane, DMF, DMSO,
DCE, and THF (Table 1, entries 14–18). All of the attempts
did not show any improvement on the reaction yield
compared with toluene (Table 1, entry 10). Then, we
explored the other reaction parameters including the
reaction temperature, the mol ratio of 1a and 2a, and the
amount of additive. The yield was not much improved
compared with the yield of 140°C (51%) when the reaction
was conducted at 150°C (62%, Table 1, entry 20 vs. 10).
Therefore, the reaction temperature remains unchanged.
Gratifyingly, when the mole ratio of 1a and 2a was
modified from 1:1 to 2.5:1, the reaction provided the best
yield (85%) of 3a (Table 1, entry 22 vs. entry 10). Then, the
effect of the amount of additive and reaction time was
examined; unfortunately, no better results were obtained
(Table 1, entries 23–25). Finally, the optimal reaction
conditions were identified as follows: The mixture of 1a

(0.5 mmol), 2a (0.2 mmol), Na2CO3 (0.2 mmol), and 15-
crown-5 (0.2 mmol) was stirred in toluene at 140°C under
N2 atmosphere for 24 h.

With the optimized reaction conditions in hand, we next
sought to generalize the protocol on a range of diverse
substrates. As shown in Scheme 2, various commercially
available N-heteroaryl methanols and benzoylacetonitrile
were exposed to the standard reaction conditions, and the
desired heteroarenemethyl benzoates were successfully
afforded with good yields. Initially, pyrazinylmethanol was
substituted by an electron-donating group such as Me− or
MeO−, and we obtained the desired products with moderate
to good yields (3b, 85%) and (3c, 76%), respectively, while, the
electron-withdrawing substituent Cl− also gave the
corresponding ester 3d at a moderate yield of 77%. 2-
pyridinylmethanols with 3-methyl, 6-methyl, 6-methoxy, 4-
Br, 5-Br, 6-Cl, and 6-Br groups were converted to the
corresponding products with lower yields (3e-3l, 62%–80%
yields). It was worth mentioning that the yields were slightly

TABLE 1 | Optimization of reaction conditionsa.

Entry Base Additive Solvent T (°C) Yields of 3a (%)b

1 t-BuOK - Toluene 140 10
2 - - Toluene 140 0
3 KOH - Toluene 140 11
4 K2CO3 - Toluene 140 12
5 KHMDS - Toluene 140 10
6 NaOH - Toluene 140 18
7 t-BuONa - Toluene 140 16
8 NaOAc - Toluene 140 15
9 Na2CO3 - Toluene 140 25
10 Na2CO3 15-Crown-5 Toluene 140 61
11 Na2CO3 PPh3 Toluene 140 32
12 Na2CO3 1,10-Phen Toluene 140 29
13 Na2CO3 TMEDA Toluene 140 30
14 Na2CO3 15-Crown-5 1,4-Dioxane 140 40
15 Na2CO3 15-Crown-5 DMF 140 Trace
16 Na2CO3 15-Crown-5 DMSO 140 42
17 Na2CO3 15-Crown-5 DCE 140 0
18 Na2CO3 15-Crown-5 THF 140 41
19 Na2CO3 15-Crown-5 Toluene 120 50
20 Na2CO3 15-Crown-5 Toluene 150 62
21c Na2CO3 15-Crown-5 Toluene 140 56
22d Na2CO3 15-Crown-5 Toluene 140 85
23d,e Na2CO3 15-Crown-5 Toluene 140 83
24d,f Na2CO3 15-Crown-5 Toluene 140 69
25d,g Na2CO3 15-Crown-5 Toluene 140 81

aNote. 2-Pyrazinylmethanol 1a (0.2 mmol), Benzoylacetonitrile 2a (0.2 mmol), base (1.0 eq), additive (1.0 eq), and toluene (1 ml) for 24 h, under N2 atmosphere.
bIsolated yields.
c1a/2a ratio = 0.2/0.5.
d1a/2a ratio = 0.5/0.2.
eAdditive (1.5 eq) was used.
fAdditive (0.5 eq) was used.
g48 h.
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decreased by the presence of different substituents on the 2-
pyridinylmethanols. However, 3- and 4-pyridinylmethanol
exhibited good reactivity obtaining the esterification products
3m and 3n in 90% and 83% yield, respectively. 4-
Pyridinylmethanol bearing electron-withdrawing substituent
(2-Br) revealed the lower yield of desired product (3o, 73%).
The reactions of benzoylacetonitrile with furanmethanols,
thiophenemethanols, and 4-quinolylmethanol also smoothly
afforded the corresponding products 3p–3t in yields of
77%–85%. As we expected, both α-methyl-2-
pyrazinemethanol, 2-pyrazinylethyl alcohol, and 2-
pyridinylethyl alcohol worked well to give the corresponding
products 3u–3w in 78%–83% yield. Interestingly, simple
alcohols such as benzyl and aliphatic (1v–1y) could be used
as substrates under the present conditions, and the desired
products (3x–3z) were obtained at the yields of 81%, 92%,
and 88%, respectively. The results indicated that the simple

unhindered aliphatic alcohols show the excellent nucleophilic
activity.

Next, the scope of the reaction was evaluated on various
benzoylacetonitrile derivatives under the optimized reaction
conditions, and the results are summarized in Scheme 3.
Benzoylacetonitrile containing electron-donating groups
methoxy (2b, 2g) and methyl (2f) were successfully
transformed to the corresponding esters to give the products
(4a, 4e, and 4f) at good yields of 76%–81%. Slight lower yields
were obtained when electron-withdrawing groups 4-F, 4-Cl, 4-
Br, 3-Cl, and 3-CF3 substituted benzoylacetonitriles with 2-
pyrazinylmethanol were subjected to this transformation
(4b–4d, 4g–4h, 64%–78% yields). Interestingly, 2- and 4-
pyridinylmethanol bearing the OMe group and halogen atom
(Cl, Br, and CF3) at the para or meta position are well tolerated,
as the products of pyridin-2-ylmethyl and -4-ylmethyl
substituted benzoates, 4i–4t were obtained in 73%–85%

SCHEME 2 | Substrate scope of heteroaryl methanols for the acylation reactions. a,bReaction conditions: aheteroaryl methanols 1 (0.5 mmol), benzoylacetonitrile 2
(0.2 mmol), Na2CO3 (0.2 mmol), 15-crown-5 (0.2 mmol), and toluene (1 ml) at 140°C for 24 h, under N2 atmosphere. bIsolated yields.
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SCHEME 3 | Substrate scope of benzoylacetonitriles for the acylation reactions. a,bReaction conditions: aheteroaryl methanols 1 (0.5 mmol), benzoylacetonitrile
derivatives 2 (0.2 mmol), Na2CO3 (0.2 mmol), 15-crown-5 (0.2 mmol), and toluene (1 ml) at 140°C for 24 h, under N2 atmosphere. bIsolated yields.

SCHEME 4 | Substrate scope of benzoyl cyanides for the acylation reactions. a,bReaction conditions: aheteroaryl methanols 1 (0.5 mmol), benzoyl cyanides 2
(0.2 mmol), Na2CO3 (0.2 mmol), 15-crown-5 (0.2 mmol), and toluene (1 ml) at 140°C for 24 h, under N2 atmosphere. bIsolated yields.
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yields. The reactions of benzoylacetonitriles substituted at the
para ormeta position by various groups (OMe, Cl, and Br) with
2-furanmethanol and 2-thiophenemethanol underwent a
smooth reaction to provide the products 4u–4b′ in good to
excellent yields. Moreover, pyvaolylacetonitrile displayed the
good reactivity, as 4c′ was isolated in 89% yield.

Finally, we also briefly set out to evaluate the scope of aryl
cyanides (Scheme 4). As expected, these reactions proceeded
smoothly when 2-pyrazinylmethanol and pyridinylmethanols with
benzoyl cyanides served as the substrates, leading the corresponding
products 5a–5h in moderate to good yields (41%–80%). 3-
furanmethanol and 3-thiophenemethanol could undergo the
expected acylation with 2-methoxy-α-oxo-benzeneacetonitrile (2m)
inmoderate yields (5i–5j, 51%–60%).Wewere pleased to observe that
α-oxo-1-naphthaleneacetonitrile was readily reacted with 1a in
moderate yield (5k, 60%). It was satisfying to discover that the
protocol was amenable for most benzoyl cyanides substrates, which

is different from thework of Subaramannian et al. involving the single-
electron transfer (SET) in the catalytic transformation (Subaramanian
et al., 2020). This was probably because the nature of reaction
mechanism of these two methods is distinct.

The gram-scale reaction of 1a (16mmol, 1.761 g) and 2k (6.4
mmol, 0.801 g)was carried out to demonstrate the practicability of this
protocol, which could give the desired product 4c′ in 84% yield
(Scheme 5). As shown in Scheme 6, radical trapping experiments
were performed through the addition of TEMPO, BHT,
p-benzoquinone, and 1,1-diphenylethylene to the reaction system
in the standard conditions, and the formation of 3a was not
suppressed. These results inferred that this transformation did not
occur via a radical mechanism.

A tentative mechanism was proposed and is shown in
Scheme 7 on the basis of the results presented above and
previous reports (Xie et al., 2014; Kong et al., 2016). The
reaction initiated with Na2CO3 associated with 15-crown-5

SCHEME 5 | Gram-scale reaction of 1a and 2k.

SCHEME 6 | Mechanistic experiments.

SCHEME 7 | Plausible reaction mechanism.
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induced deprotonation of 2-pyrazinylmethanol 1a to form 2-
pyrazinyl alkoxy anion A. Then anion A undergoes a
nucleophilic attack to the carbonyl group of
benzoylacetonitrile 2a and affords intermediate B.
Moreover, by abstracting a proton from the in situ formed
NaHCO3, the thermodynamic favorable C–C bond cleavage
of B would provide the desired product 3a, in which the side
product CH3CN is released.

CONCLUSION

In summary, Na2CO3/15-crown-5 couple-mediated direct
acylation of N-heteroaryl methanols with acyl cyanides via C–C
bond cleavage is reported. This new synthetic protocol proceeds
under metal-free conditions and offers broad substrate scope in
high efficiency. A variety of N-heteroaryl esters including
pyrazines, pyridines, quinolines, furans, and thiophenes,
which are key molecules in pharmaceuticals, natural
products, dyes, or flavors, have thus been efficiently
synthesized with good yields.
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