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Conventional quinazoline synthesis methods involve a highly multistep reaction, and
often require excess amounts of substrate to control the product selectivity, leading to
significant resource wastage. Hence, in this study, from the viewpoint of green chemistry,
we developed a novel metal-free synthetic method for 2-substituted quinazoline
derivatives by the 4,6-dihydroxysalicylic acid-catalyzed oxidative condensation of
o-aminobenzylamines and benzylamines using atmospheric oxygen. In this system, the
use of a catalytic amount of BF3·Et2O (10 mol%) as a Lewis acid successfully led to the
efficient oxidative condensation and intramolecular cyclization of these amines, followed by
aromatization to afford the corresponding 2-arylquinazolines in up to 81% yield with
excellent atom economy and environmental factor. Furthermore, to expand this green
oxidation method to gram-scale synthesis, we investigated the development of an
oxidation process using salicylic acid itself as an organocatalyst, and established a
method for the practical green synthesis of a series of nitrogen-containing
heterocycles. We expect that the findings will contribute to the development of
practical synthesis methods for pharmaceutical manufacturing and industrial
applications, along with further advancements in green chemistry.
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INTRODUCTION

In recent years, with advancements in pharmaceuticals and functional materials, the demand for a
higher purity of the basic molecules constituting these materials has increased (Kündig, 2006; Ojima,
2017; Blakemore et al., 2018; Campos et al., 2019; Garcia-Martinez, 2021). Further, to mitigate the
environmental impact of manufacturing processes, it is essential to develop resource-recyclable and
highly atom-economical synthetic methods (Horvάth and Anastas, 2007; Sheldon, 2012; Hayashi,
2016; Horvάth, 2018). In this context, we recently succeeded in constructing an environmentally
friendly metal-free oxidation catalyst system using oxygen (or air) at ambient pressure as an oxidant.
Briefly, using 4,6-dihydroxysalicylic acid as an organocatalyst, the oxygen oxidation of amines to
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imines was achieved under mild conditions (Dong et al., 2016,
eq 1). In this reaction, the catalyst can be recycled and used by
supporting this salicylic acid derivative on silica gel. In
addition, unstable imines can be easily prepared and used
directly for the one-pot synthesis of various functional
molecules, thus providing a series of innovative catalytic
oxidation processes. This metal-free imine synthesis method
not only enables the one-pot synthesis of important
heterocyclic compounds, but also the highly selective one-
pot reactions (e.g., the Ugi reaction) of multicomponent
linkages (Dong, et al., 2017; Kumazawa, et al., 2018; Dong
et al., 2019; Yamamoto et al., 2021). To further elucidate the
versatility of this metal-free imine synthesis method, we
attempted one-pot synthesis for reactions that are typically
multistep, and succeeded in the metal-free synthesis of
quinazoline derivatives (Wang and Gao, 2013; Faisal and
Saeed, 2021), which are one of the heterocycles forming the
basis of pharmaceuticals, agrochemicals, and functional
materials (eq 2).

This quinazoline synthesis method is a highly multistep reaction,
comprising four reactions: 1) oxidative imine synthesis, 2)
intermolecular condensation, 3) intramolecular cyclization, and 4)
aromatization, using o-aminobenzylamine and benzylamine as the

starting materials (Scheme 1). Since many byproducts could be
generated from this multistep synthesis of quinazolines, several
previous studies used an excess amount of benzylamine to
selectively obtain the desired products. From the viewpoint of
green chemistry, the development an eco-friendly synthesis
method for quinazolines with excellent environmental factor
(E-factor (%) � kg waste/kg product) and reaction mass efficiency
(RME (%) � kg product/kg all reactants × 100) remains challenging
(see the Supplementary Information, Han et al., 2011; Saha et al.,
2017; Yamaguchi et al., 2016; Yamaguchi et al., 2017; Gujjarappa
et al., 2018.). The availability of quinazolines for large-scale synthesis
under metal-free conditions is also an important factor in
pharmaceutical and industrial chemistry; however, previous
methods achieved synthesis only up to the 1mmol scale (Tiwari
and Bhanage, 2016; Gopalaiah, et al., 2017; Deshmukh and Bhanage,
2018). Thus, it is imperative to develop a practical synthesis method
that can be implemented on a larger scale and offers excellent E-factor
and RME.

MATERIALS AND METHODS

General Information
Unless otherwise stated, all starting materials were purchased from
commercial sources and used without further purification. All
solvents were distilled before use. Compound 1b was prepared
according to the previously reported procedure (Amberchan et al.,
2021). 1H NMR spectra were recorded in CDCl3 using the JEOL
JNM-ECX400 (400MHz) FT NMR, JEOL JNM-ECS400 (400MHz)
FT NMR, and the Bruker BioSpin Ascend 400 spectrometer
(400MHz) with Me4Si as the internal standard. 13C{1H} NMR
spectra were recorded in CDCl3 using the JEOL JNM-ECX400
(100MHz) FT NMR, JEOL JNM-ECS400 (100MHz) FT NMR,
the Bruker BioSpin Ascend 400 spectrometer (100MHz).

SCHEME 1 | Quinazoline Synthesis via the Green Oxidation of o-Aminobenzylamine and Benzylamine.
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General Procedure for the Synthesis of
2-Substituted Quinazolines via the
Oxidative Coupling of Two Kinds of
Benzylamines
2-Aminobenzylamine 1 (3.0 mmol), benzylamine 2 (3.0 mmol),
2,4,6-trihydroxybenzoic acid monohydrate (5 mol%), BF3·Et2O
(10 mol%), and DMSO (1.0 ml) were added to a 10 ml two-neck
flask equipped with an O2 balloon at 25°C and stirred at 90°C in
an oil bath under an O2 atmosphere for 48 h. After the reaction,
the resulting mixture was purified by column chromatography
using activated alumina as the column filler (eluent: AcOMe/iso-
hexane) to afford product 3.

2-Phenylquinazoline (3aa) (CAS no. 25855-20-3) (Yamaguchi
et al., 2016). Yellow solid, 392.9 mg, 64% yield; 1H NMR
(400 MHz, CDCl3): δ 9.47 (s, 1H), 8.62 (dd, J � 7.8, 1.8 Hz,
2H), 8.09 (d, J � 8.7 Hz, 1H), 7.93–7.89 (m, 2H), 7.61 (t, J �
7.6 Hz, 1H), 7.57–7.49 (m, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 161.2, 160.6, 150.9, 138.1, 134.2, 130.7, 128.74,
128.66, 127.4, 127.2, 123.7 (one carbon was overlapped to others).

2-(2-Methoxyphenyl)quinazoline (3ab) (CAS no. 27131-17-5)
(Gopalaiah et al., 2017). Yellow solid, 261.0 mg, 37% yield; 1H
NMR (400 MHz, CDCl3): δ 9.47 (s, 1H), 8.09 (d, J � 8.2 Hz, 1H),
7.88–7.83 (m, 2H), 7.80 (dd, J � 7.8, 1.8 Hz, 1H), 7.56 (t, J �
7.6 Hz, 1H), 7.44–7.40 (m, 1H), 7.09 (t, J � 7.3 Hz, 1H), 7.03 (d,
J � 8.2 Hz, 1H), 3.85 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ
162.5, 160.1, 157.8, 150.7, 134.2, 131.9, 131.0, 129.0, 128.6, 127.6,
127.1, 123.2, 120.9, 112.0, 56.1.

2-(3-Methoxyphenyl)quinazoline (3ac) (CAS no. 1208259-21-
5) (Wendlandt and Stahl, 2014). Yellow solid, 513.8 mg, 72%
yield; 1H NMR (400 MHz, CDCl3): δ 9.30 (s, 1H), 8.24–8.22
(m, 1H), 8.19–8.18 (m, 1H), 7.99 (d, J � 8.2 Hz, 1H), 7.76–7.70
(m, 2H), 7.44–7.38 (m, 2H), 7.04–7.01 (m, 1H), 3.87 (s, 3H); 13C
{1H} NMR (100 MHz, CDCl3): δ 160.9, 160.5, 160.1, 150.8, 139.6,
134.2, 129.7, 128.8, 127.4, 127.2, 123.7, 121.2, 117.4, 113.0, 55.5.

2-(4-Methoxyphenyl)quinazoline (3ad) (CAS no. 67205-04-3)
(Han et al., 2012). Yellow solid, 308.5 mg, 44% yield; 1H NMR
(400 MHz, CDCl3): δ 9.42 (s, 1H), 8.58 (dd, J � 6.8, 1.8 Hz, 2H),
8.04 (d, J � 8.6 Hz, 1H), 7.91–7.86 (m, 2H), 7.59–7.55 (m, 1H),
7.05 (dd, J � 6.8, 2.3 Hz, 2H), 3.90 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3): δ 161.9, 160.9, 160.5, 150.9, 134.1, 130.8,
130.3, 128.5, 127.2, 126.9, 123.4, 114.1, 55.5.

2-(2-Methylphenyl)quinazoline (3ae) (CAS no. 1208259-15-7)
(Ma et al., 2017). Yellow solid, 322.1 mg, 49% yield; 1H NMR
(400 MHz, CDCl3): δ 9.46 (s, 1H), 8.07 (d, J � 8.6 Hz, 1H),
7.94–7.86 (m, 3H), 7.59 (t, J � 7.5 Hz, 1H), 7.36–7.32 (m, 3H),
2.61 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 164.1, 160.2,
150.5, 138.7, 137.5, 134.2, 131.4, 130.8, 129.4, 128.6, 127.6, 127.2,
126.1, 123.0, 21.2.

2-(3-Methylphenyl)quinazoline (3af) (CAS no. 1208259-
19-1) (Chakraborty et al., 2019). Yellow solid, 398.2 mg, 60%
yield; 1H NMR (400 MHz, CDCl3): δ 9.40 (s, 1H), 8.42 (m,
2H), 8.05 (d, J � 8.8 Hz, 1H), 7.86–7.81 (m, 2H), 7.55–7.51 (m,
1H), 7.41 (t, J � 7.6 Hz, 1H), 7.30 (d, J � 7.5 Hz, 1H), 2.47 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3): δ 161.2, 160.4, 150.8,
138.3, 138.0, 134.1, 131.5, 129.2, 128.6, 127.2, 127.1,
123.6, 21.6.

2-(4-Methylphenyl)quinazoline (3ag) (CAS no. 80089-59-4)
(Ma et al., 2017). Yellow solid, 326.5 mg, 49% yield; 1H NMR
(400 MHz, CDCl3): δ 9.44 (s, 1H), 8.51 (d, J � 8.2 Hz, 2H), 8.06 (d,
J � 8.6 Hz, 1H), 7.91–7.86 (m, 2H), 7.60–7.56 (m, 1H), 7.34 (d, J �
8.2 Hz, 2H), 2.44 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ
161.2, 160.5, 150.9, 141.0, 135.4, 134.1, 129.5, 128.6, 128.2, 127.2,
127.1, 123.6, 21.6.

2-(4-tert-Butylphenyl)quinazoline (3ah) (CAS no. 1259300-
25-8) (Yamaguchi et al., 2016). Yellow solid, 608.7 mg, 77%
yield; 1H NMR (400 MHz, CDCl3): δ 9.33 (s, 1H), 8.56 (dd,
J � 8.2, 1.8 Hz, 2H), 8.01 (d, J � 8.2 Hz, 1H), 7.77–7.73 (m, 2H),
7.54 (dd, J � 8.6, 1.8 Hz, 2H), 7.43 (t, J � 7.5 Hz, 1H), 1.37 (s, 9H);
13C{1H} NMR (100 MHz, CDCl3): δ 161.1, 160.5, 154.0, 150.9,
135.5, 134.2, 134.0, 128.6, 127.2, 127.1, 125.7, 123.6, 35.0, 31.4.

2-(3-Fluorophenyl)quinazoline (3aj) (CAS no. 1596243-24-1)
(Wan et al., 2019). Yellow solid, 404.6 mg, 60%; 1H NMR
(400 MHz, CDCl3): δ 9.37 (s, 1H), 8.40–8.37 (m, 1H),
8.32–8.29 (m, 1H), 8.02 (d, J � 8.8 Hz, 1H), 7.86–7.82 (m,
2H), 7.56–7.53 (m, 1H), 7.48–7.42 (m, 1H), 7.19–7.14 (m,
1H); 13C{1H} NMR (100 MHz, CDCl3): δ 163.3 (d, JC–F �
243.4 Hz), 160.5, 159.7 (d, JC–F � 3.1 Hz), 150.6, 140.5 (d, JC–F
� 7.8 Hz), 134.2, 130.0 (d, JC–F � 7.9 Hz), 128.7, 127.6, 127.1,
124.2 (d, JC–F � 2.8 Hz), 123.7, 117.4 (d, JC–F � 21.3 Hz), 115.4 (d,
JC–F � 23.1 Hz).

2-(3-Chlorophenyl)quinazoline (3ak) (CAS no. 1353000-31-3)
(Wan et al., 2019). Yellow solid, 278.3 mg, 39%; 1H NMR
(400 MHz, CDCl3): δ 9.45 (s, 1H), 8.63 (m, 1H), 8.52–8.49 (m,
1H), 8.09–8.07 (m, 1H), 7.93–7.89 (m, 1H), 7.64–7.60 (m, 1H),
7.48–7.43 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 160.6,
159.7, 150.7, 139.9, 134.8, 134.3, 130.6, 129.9.128.70, 128.67,
127.7, 127.2, 126.7, 123.8.

2-(4-Fluorophenyl)quinazoline (3al) (CAS no. 1208259-07-7)
(Gopalaiah et al., 2017). Yellow solid, 374.2 mg, 56%; 1H NMR
(400 MHz, CDCl3): δ 9.36 (d, J � 0.6 Hz, 1H), 8.62–8.57 (m, 2H),
8.02–8.00 (m, 1H), 7.86–7.82 (m, 2H), 7.55–7.51 (m, 1H),
7.20–7.14 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 164.7
(d, JC–F � 248.6 Hz), 160.5, 160.0, 150.7, 134.2 (d, JC–F � 2.8 Hz),
134.1, 130.7 (d, JC–F � 8.6 Hz), 128.5, 127.2, 127.1, 123.5, 115.5 (d,
JC–F � 21.5 Hz).

2-(4-Chlorophenyl)quinazoline (3am) (CAS no. 80089-58-3)
(Yamaguchi et al., 2016). Yellow solid, 491.3 mg, 68% yield; 1H
NMR (400 MHz, CDCl3): δ 9.32 (s, 1H), 8.50 (d, J � 8.6 Hz, 2H),
7.98 (d, J � 8.6 Hz, 1H), 7.83–7.78 (m, 2H), 7.53–7.49 (m, 1H),
7.43 (d, J � 8.6 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ
160.5, 159.9, 150.6, 136.8, 136.6, 134.3, 130.0, 128.8, 128.6, 127.5,
127.2, 123.6.

2-(3,5-Difluorophenyl)quinazoline (3an) (CAS no. 2242488-07-7)
(Parua et al., 2018). Yellow solid, 497.9 mg, 69%; 1HNMR (400MHz,
CDCl3): δ 9.47 (s, 1H), 8.21–8.16 (m, 2H), 8.11–8.09 (m, 1H),
7.98–7.93 (m, 2H), 7.69–7.65 (m, 1H), 6.97–6.92 (m, 1H); 13C
{1H} NMR (100MHz, CDCl3): δ 164.5 (d, JC–F � 12.3 Hz), 162.1
(d, JC–F � 12.4 Hz), 160.6, 158.7 (dd, JC–F � 3.8, 4.0 Hz), 150.5, 141.6
(dd, JC–F � 9.6, 9.8 Hz), 134.4, 128.7, 127.9, 127.1, 123.9, 111.5–111.2
(m), 105.7 (dd, JC–F � 25.8, 25.4 Hz).

2-(3,4-Difluorophenyl)quinazoline (3ao) (CAS no. 1642143-
98-3) (Li et al., 2014). Yellow solid, 263.8 mg, 36%; 1H NMR
(400 MHz, CDCl3): δ 9.42 (s, 1H), 8.49–8.44 (m, 1H), 8.41–8.38
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(m, 1H), 8.06–8.04 (m, 1H), 7.93–7.89 (m, 2H), 7.64–7.61 (m,
1H), 7.32–7.25 (m, 1H); 13C{1H} NMR (100 MHz, CDCl3): δ
160.6, 159.0, 152.7 (dd, JC–F � 165.8, 13.3 Hz), 150.6, 150.1 (dd,
JC–F � 160.9, 13.0 Hz), 135.3 (dd, JC–F � 6.0, 4.4 Hz), 134.4, 128.6,
127.6, 127.2, 124.9 (dd, JC–F � 6.7, 3.4 Hz), 123.6, 117.5 (dd, JC–F �
34.9, 18.9 Hz).

4-(Quinazolin-2-yl)benzonitrile (3ap) (CAS no. 154221-01-9)
(Li et al., 2014). Light yellow solid, 381.7 mg, 55%; 1H NMR
(400 MHz, CDCl3): δ 9.48 (s, 1H), 8.75–8.73 (m, 2H), 8.12–8.09
(m, 1H), 7.98–7.93 (m, 2H), 7.82–7.79 (m, 2H), 7.70–7.66 (m,
1H); 13C{1H} NMR (100 MHz, CDCl3): δ 160.7, 159.1, 150.6,
142.1, 134.5, 132.4, 129.0, 128.8, 128.2, 127.2, 123.9, 118.9, 113.7.

2-(4-Nitrophenyl)quinazoline (3aq) (CAS no. 80089-57-2)
(Saadati et al., 2018). Yellow solid, 375.5 mg, 50%; 1H NMR
(400 MHz, CDCl3): δ 9.51 (s, 1H), 8.81 (m, 2H), 8.36 (m, 2H),
8.13 (m, 1H), 7.98 (m, 2H), 7.70 (m, 1H); 13C{1H} NMR
(100 MHz, CDCl3): δ 160.7, 158.9, 150.6, 149.2, 143.9, 134.6,
129.4, 128.8, 128.3, 127.2, 123.9, 123.8.

2-[4-(Trifluoromethyl)phenyl]quinazoline (3ar) [CAS no.
1208259-10-2] (Ye et al., 2013). Yellow solid, 553.0 mg, 67%
yield; 1H NMR (400 MHz, CDCl3): δ 9.39 (s, 1H), 8.69 (d, J �
8.2 Hz, 2H), 8.05 (d, J � 9.1 Hz, 1H), 7.90–7.86 (m, 2H), 7.74 (d,
J � 8.2 Hz, 2H), 7.59 (m, 1H); 13C{1H} NMR (100 MHz, CDCl3): δ
160.6, 159.6, 150.7, 141.3, 134.4, 132.2 (m), 128.9, 128.8, 127.9,
127.2, 125.5 (m), 123.8, 123.0.

2-(2-Thienyl)quinazoline (3as) (CAS no. 154221-04-2) (Chen
et al., 2013). Yellow solid, 461.0 mg, 72% yield; 1H NMR
(400 MHz, CDCl3): δ 9.28 (s, 1H), 8.14–8.13 (m, 1H), 7.95 (d,
J � 8.6 Hz, 1H), 7.82–7.78 (m, 2H), 7.50–7.46 (m, 2H), 7.18–7.15
(m, 1H); 13C{1H} NMR (100 MHz, CDCl3): δ 160.6, 157.9, 150.6,
144.0, 134.4, 130.1, 129.3, 128.5, 128.2, 127.3, 127.1, 123.4.

2-(Pyridin-3-yl)quinazoline (3at) (CAS no. 917224-71-6)
(Chakraborty et al., 2019). Yellow solid. 418.1 mg, 67%; 1H
NMR (400 MHz, CDCl3): δ 9.82 (dd, J � 2.2, 0.2 Hz, 1H),
9.46 (d, J � 0.7 Hz, 1H), 8.86 (dt, J � 8.0, 2.0 Hz, 1H), 8.74
(dd, J � 5.0, 1.7 Hz, 1H), 8.10–8.07 (m, 1H), 7.98–7.90 (m, 2H),
7.66–7.62 (m, 1H), 7.46–7.43 (m, 1H); 13C{1H} NMR (100 MHz,
CDCl3): δ 160.7, 159.2, 151.3, 150.6, 150.3, 135.8, 134.4, 128.7,
127.8, 127.2, 123.8, 123.4.

6-Bromo-2-phenylquinazoline (3ba) (CAS no. 1004997-72-1)
(Taylor et al., 2017). White solid, 190.3 mg, 22% yield; 1H NMR
(400 MHz, CDCl3): δ 9.39 (s, 1H), 8.61–8.59 (m, 2H), 8.08–8.08
(m, 1H), 7.96–7.96 (m, 2H), 7.57–7.52 (m, 3H); 13C{1H} NMR
(100 MHz, CDCl3): δ 161.4, 159.5, 149.5, 137.7, 137.7, 131.0,
130.5, 129.3, 128.8, 128.7, 124.6, 120.8.

Gram-Scale Synthesis of
2-Phenylquinazoline 3aa Based on
4,6-Dihydroxysalicylic Acid-Catalyzed
Oxidation System
2-Aminobenzylamine 1 (10mmol), benzylamine derivative
2 (10mmol), 2,4,6-trihydroxybenzoic acid monohydrate (5mol%),
BF3·Et2O (10mol%), andDMSO (2.5 ml) were added to a 20ml two-
neck flask equipped with an O2 balloon at 25°C and stirred at 90°C in
an oil bath under an O2 atmosphere for 48 h. After the reaction, the
resulting mixture was purified by column chromatography using

activated alumina as the column filler (eluent: AcOMe/iso-hexane) to
furnish product 3aa in 50% isolated yield (yellow solid, 1.0 g).

General Procedure for the Salicylic
Acid-Catalyzed Oxidation of Benzylamines
to Imines
Benzylamine derivative 2 (3.0 mmol), salicylic acid (5 mol%), 4A
MS (100 mg), and toluene (1.5 ml) were added to a 10 ml two-
neck flask equipped with an O2 balloon at 25°C and stirred at 90°C
in an oil bath under an O2 atmosphere for 16 h. After filtration of
the crude product with AcOMe using silica gel, distillation was
conducted to afford pure imine 4.

N-(Phenylmethylene)benzenemethanamine (4a) (CAS no.
780-25-6) (Dong et al., 2016). Yellow oil, 264.2 mg, 90% yield;
1H NMR (400 MHz, CDCl3): δ 8.35 (s, 1H), 7.78–7.75 (m, 2H),
7.39–7.38 (m, 3H), 7.33–7.32 (m, 4H), 7.27–7.23 (m, 1H), 4.80 (s,
2H); 13C{1H} NMR (100 MHz, CDCl3): δ 162.2, 139.5, 136.3,
130.9, 128.8, 128.7, 128.5, 128.1, 127.2, 65.2.

2-Methoxy-N-[(2-methoxyphenyl)methylene]-
benzenemethanamine (4b) (CAS no. 161723-67-7) (Dong et al.,
2016). Yellow oil, 286.2 mg, 75%; 1H NMR (400 MHz, CDCl3): δ
8.84 (s, 1H), 8.04 (dd, J � 7.5, 1.6 Hz, 1H), 7.37–7.29 (m, 2H),
7.24–7.19 (m, 1H), 6.98–6.90 (m, 2H), 6.86 (t, J � 8.8 Hz, 2H),
4.83 (s, 2H), 3.82 (s, 3H), 3.81 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 158.9, 158.4, 157.2, 131.9, 129.2, 128.3, 128.1, 127.6,
125.0, 120.9, 120.6, 111.1, 110.3, 59.8, 55.6, 55.5.

4-Methoxy-N-[(4-methoxyphenyl)methylene]-
benzenemethanamine (4c) (CAS no. 3261-60-7) (Dong et al.,
2016). Yellow oil, 268.1 mg, 70% yield; 1H NMR (400 MHz,
CDCl3): δ 8.27 (s, 1H), 7.70 (d, J � 8.6 Hz, 2H), 7.23 (d, J �
8.6 Hz, 2H), 6.91–6.87 (m, 4H), 4.70 (s, 2H), 3.79 (s, 3H), 3.76 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3): δ 161.8, 161.1, 158.7,
131.8, 129.9, 129.3, 114.1, 114.0, 64.5, 55.44, 55.37.

4-Methyl-N-[(4-methylphenyl)methylene]-
benzenemethanamine (4d) (CAS no. 71022-60-1) (Dong et al.,
2016). Yellow solid, 317.2 mg, 80% yield; 1H NMR (400 MHz,
CDCl3) δ 8.33 (s, 1H), 7.66 (d, J � 6.3 Hz, 2H), 7.21–7.14 (m, 6H),
4.76 (s, 2H), 2.37 (s, 3H), 2.33 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 161.8, 141.1, 136.6, 136.5, 133.7, 129.4, 129.3, 128.3,
128.1, 64.9, 21.6, 21.2.

General Procedure for the Synthesis of
Benzimidazoles Catalyzed by Salicylic Acid
Under Atmospheric Oxygen
Benzylamine derivative 2 (4.5 mmol), o-phenylenediamine 5
(3.0 mmol), salicylic acid (10 mol% based on 2), 4A MS
(100 mg), and toluene (1.0 ml) were added to a 10 ml two-
neck flask equipped with an O2 balloon at 25°C and stirred at
70°C in an oil bath under an O2 atmosphere for 24 h. After
the reaction, the resulting mixture was purified by silica-
gel column chromatography (eluent: AcOMe/iso-hexane
with 5% Et3N) to obtain benzimidazole 6 (the yield was
based on 5).

2-Phenylbenzimidazole (6a) (CAS no. 716-79-0) (Dong et al.,
2016). Yellow solid, 455.0 mg, 78% yield; 1H NMR (400 MHz,
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CD3OD): δ 8.09 (d, J � 7.2 Hz, 2H), 7.60 (s, 2H), 7.53–7.45 (m,
3H), 7.27–7.23 (m, 2H); 13C{1H} NMR (100 MHz, DMSO-d6): δ
151.8, 140.1, 130.6, 130.4, 129.5, 128.6, 127.7, 126.9, 122.7,
117.9, 115.6.

2-(2-Methoxyphenyl)benzimidazole (6b) (CAS no. 6528-85-4)
(Dong et al., 2016). Brown solid, 535.1 mg, 80% yield; 1H NMR
(400MHz, DMSO-d6): δ 12.15 (br, 1H), 8.35 (dd, J � 7.6, 1.8 Hz,
1H). 7.65 (m, 2H), 7.48 (m, 1H), 7.25–7.10 (m, 4H), 4.03 (s, 3H); 13C
{1H} NMR (100MHz, DMSO-d6): δ 157.2, 149.4, 143.2, 135.2,
131.7, 130.2, 122.5, 122.0, 121.3, 118.9, 118.5, 112.6, 112.4, 56.2.

2-(3-Methoxyphenyl)benzimidazole (6c) (CAS no. 36677-36-
8) (Dong et al., 2016). Yellow solid, 498.0 mg, 74% yield; 1H NMR
(400 MHz, CD3OD): δ 7.69–7.59 (m, 4H), 7.42 (t, J � 7.9 Hz, 1H),
7.27–7.23 (m, 2H), 7.06–7.03 (m, 1H), 3.88 (s, 3H); 13C{1H} NMR
(100 MHz, CD3OD): δ 160.4, 151.9, 130.8, 129.9, 122.6, 118.6,
116.0, 111.5, 54.5.

2-(4-Methoxyphenyl)benzimidazole (6d) (CAS no. 2620-81-7)
(Dong et al., 2016). Yellow solid, 520.1 mg, 78% yield; 1H NMR
(400 MHz, CD3OD): δ 8.02–7.98 (m, 2H), 7.58–7.52 (m, 2H),
7.25–7.21 (m, 2H), 7.04–7.01 (m, 2H), 3.82 (s, 3H); 13C{1H} NMR
(100 MHz, CD3OD): δ 161.5, 152.2, 128.0, 122.3, 122.0, 119.4,
116.4, 114.1, 54.5.

2-(4-Methylphenyl)benzimidazole (6e) (CAS no. 120-03-6)
(Dong et al., 2016). Yellow solid, 466.6 mg, 75% yield; 1H
NMR (400 MHz, CD3OD): δ 7.97 (d, J � 8.6 Hz, 2H), 7.59 (m,
2H), 7.35 (d, J � 8.2 Hz, 2H), 7.26–7.22 (m, 2H), 2.41 (s, 3H); 13C
{1H} NMR (100 MHz, CD3OD): δ 152.2, 140.6, 129.4, 126.9,
126.4, 122.4, 114.6, 20.1.

Salicylic Acid-Catalyzed Oxidative
Synthesis of 2-Phenylbenzothiazole
Benzylamine 2a (4.0 mmol), 2-aminothiophenol 7 (3.0 mmol),
salicylic acid (10 mol% based on 2a), 4A MS (100 mg), and
p-xylene (2.0 ml) were added to a 10 ml two-neck flask
equipped with an O2 balloon 25°C and stirred at 140°C in an
oil bath under an O2 atmosphere for 24 h. After the reaction, the
resulting mixture was purified by silica-gel column
chromatography (eluent: AcOMe/iso-hexane) to obtain 2-
phenylbenzothiazole 8 (the yield was based on 7).

2-Phenylbenzothiazole 8) (CAS no. 883-93-2) (Kumazawa
et al., 2018). White solid, 293.1 mg, 63% yield; 1H NMR
(400 MHz, CDCl3): δ 8.06–8.02 (m, 3H), 7.77 (d, J �
7.7 Hz, 1H), 7.43-7.38 (m, 4H), 7.28 (t, J � 7.5 Hz, 1H);

TABLE 1 | Optimization of reaction conditions for the synthesis of 2-phenylquinazoline 3aa.

Entry Solvent (ml) Temp. (°C) Cat. (mol%) Time (h) Additive (mol%) Yield 3aa
(%)a

1 Toluene (1.0) 90 10 24 — 48
2b Toluene (1.0) 90 10 24 — 41
3 Toluene (0.5) 90 10 24 — 30
4 Neat 90 10 24 — 11
5 Toluene (1.0) 90 15 24 — 21
6 Toluene (1.0) 110 10 24 — 42
7 Toluene (1.0) 90 10 24 BF3·Et2O (10) 56
8 Toluene (1.0) 70 10 24 BF3·Et2O (10) 23
9 DMSO (1.0) 90 10 24 BF3·Et2O (10) 63
10 DMF (1.0) 90 10 48 BF3·Et2O (10) 30
11 CH3CN (1.0) Reflux 10 48 BF3·Et2O (10) 25
12 DMSO (1.0) 90 15 24 BF3·Et2O (10) 58
13 DMSO (0.5) 90 10 24 BF3·Et2O (10) 55
14 DMSO (1.0) 90 10 48 BF3·Et2O (10) 71
15c DMSO (1.0) 90 10 48 BF3·Et2O (10) 42
16 DMSO (1.0) 90 10 48 BF3·Et2O (30) 58
17 DMSO (1.0) 90 5 48 BF3·Et2O (10) 81 (64)
18 DMSO (1.0) 90 1 48 BF3·Et2O (10) 54
19 DMSO (1.0) 90 5 48 — 44
20 DMSO (1.0) 90 — 48 BF3·Et2O (10) 14
21d DMSO (1.0) 90 10 48 BF3·Et2O (10) Trace

aYields were determined by 1H NMR spectroscopy (isolated yield).
b2a (6.0 mmol) was used.
c4A MS (100 mg) was added as an additive.
dUnder N2 atmosphere.
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13C{1H} NMR (100 MHz, CDCl3): δ 168.2, 154.3, 135.2, 133.7,
131.1, 129.1, 127.7, 126.5, 125.3, 123.4, 121.8.

Salicylic Acid-Catalyzed Oxidative
Synthesis of 2,4,6-Triphenylpyridine
Benzylamine 2a (1.5 mmol), acetophenone 9 (1.0 mmol),
salicylic acid (3.3 mol%), BF3·Et2O (6.7 mol%), and DMSO
(0.1 ml) were added to a 10 ml two-neck flask, and stirred at
100°C for 18 h under open air. The crude product was purified
by silica-gel column chromatography (eluent: AcOMe/iso-
hexane) to furnish 2,4,6-triphenylpyridine 10.

2,4,6-Triphenylpyridine (10) (CAS no. 580-35-8) (Dong et al.,
2019). Yellow solid, 88.6mg, 58% yield; 1HNMR (400MHz, CDCl3):
δ 8.19 (d, J � 6.9 Hz, 4H), 7.86 (s, 2H), 7.72–7.70 (m, 2H), 7.51–7.40
(m, 9H); 13C{1H} NMR (100MHz, CDCl3): δ 158.5, 151.2, 140.6,
140.0, 130.14, 130.10, 130.0, 129.8, 128.21, 128.19, 118.1.

Multi-Gram-Scale Synthesis of Imine 4a via
the Salicylic Acid-Catalyzed Green
Oxidation of Benzylamine 2a
Benzylamine 2a (110 mmol), salicylic acid (10 mol%), and 4A
MS (1 g) were added to a 30 ml two-neck flask equipped with

TABLE 2 | Reaction scope for the metal-free/oxidative synthesis of 2-substituted quinazolines.

aYields were determined by 1H NMR spectroscopy (isolated yields).
bReaction conditions: 1a (10.0 mmol), 2a (1.0 equiv.), 4,6-dihydroxysalicylic acid (5 mol%), BF3·Et2O (10 mol%), DMSO (2.5 ml), 90°C, 48 h, O2 (0.1 MPa). cReaction conditions: 1a
(3.0 mmol), 2a (3.0 mmol), salicylic acid (10 mol%), 4A MS (100 mg), DMSO (1.0 ml), 90°C, 5 days, O2 (0.1 MPa).
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an O2 balloon at 25°C and stirred at 90°C in an oil bath under
an O2 atmosphere for 72 h. After filtration with AcOMe using
silica gel, the crude product was purified by distillation to
afford pure imine 4a in 94% isolated yield (yellow oil, 10.1 g).

RESULTS AND DISCUSSION

Considering that the oxidation system used 4,6-
dihydroxysalicylic acid, we first investigated the reaction of
benzylamine 1a (3.0 mmol) with o-aminobenzylamine 2a in
the presence of the organocatalyst (10 mol%). Heating the
mixture at 90°C for 24 h in toluene (1.0 ml) under
atmospheric oxygen successfully afforded 2-phenylquinazoline
3aa in 48% yield (entry 1, Table 1). A further increase in the
amount of 2a to 6.0 mmol did not improve the yield of 3aa (entry
2). Conversely, a reduction in the amount of solvent resulted in a
low yield of 3aa, which contained oligomers that were insoluble in
the solvent (entries 3 and 4). The addition of 15 mol% of the
catalyst and increase in the reaction temperature to 110°C did not
improve the yield of 3aa (entries 5 and 6). Interestingly, the
addition of a catalytic amount of BF3·Et2O (10 mol%) under the
same conditions as in entry 1 accelerated the formation of 3aa,
which was obtained in 56% yield. Furthermore, when the reaction
solvent was optimized in the presence of BF3·Et2O (10 mol%),
DMSO was found to be the best solvent (entries 7–11).

A detailed study of the reaction conditions based on entry 9
showed that 3aa was successfully obtained in 81% yield by
loading 4,6-dihydroxysalicylic acid (5 mol%) and BF3·Et2O
(10 mol%), and extending the reaction time to 48 h (entries

12–18). This conversion proceeded even without the catalytic
amount of BF3·Et2O, giving 3aa in 44% yield (entry 19).
Therefore, the catalytic amount of BF3·Et2O may have an
accelerating effect on the reaction. In the absence of the
organocatalyst or under a N2 atmosphere, the yield of 3aa
significantly decreased (entries 20 and 21). These results
strongly suggest that the organocatalytic oxidation of
benzylamines using 4,6-dihydroxysalicylic acid as the catalyst
is one of the key steps in this oxidative cyclization reaction.
Notably, this quinazoline synthesis under optimal conditions
(entry 17) exhibits excellent E-factor of 2.7 and RME (� 73%).

Using the optimal conditions (Table 1, entry 17), we then
evaluated the substrate scope of the metal-free synthesis of 2-
substituted quinazolines (Table 2). Various benzylamine
derivatives such as m-methoxy, p-methoxy, o-methyl, m-
methyl, p-methyl, p-tert-butyl, m-fluoro, m-chloro, p-fluoro,
p-chloro, p-cyano, p-nitro, and p-trifluoromethyl-substituted
benzylamines (2c–2h, 2j–2m, and 2p–2r) were examined, and
the corresponding quinazoline derivatives (3ac–3ah, 3aj–3am,
and 3ap–3ar) were obtained in moderate to good yields. When
o-methoxy- and o-bromobenzylamine (2b and 2i) were used as
substrates, the yields of 3ab and 3ai were lower (37 and 17%
yields, respectively) due to steric hindrance. This method was also
applicable to fluorine-disubstituted benzylamines (2n and 2o),
and the corresponding quinazoline derivatives were obtained in
moderate to good yields, respectively (3an and 3ao). The use of 2-
thiophenemethylamine (2s) and 3-(aminomethyl)pyridine (2t)
were also examined, and product 3ak and 3atwere obtained in 72
and 67% yields, respectively. o-Aminobenzylamine derivatives 1b
could also be used in the reaction, and quinazoline 3ba was

SCHEME 2 | Proposed Reaction Pathways for the Organocatalytic Oxidative Formation of 2-Arylquinazoline.
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SCHEME 3 | Salicylic acid-catalyzed oxidation of benzylamines and its application in the construction ofN-Containing heterocycles. Yields were determined by 1H
NMR spectroscopy (isolated yields). (A) Salicyclic acid-catalyzed oxidation of benzylamines to imines. (B) Salicyclic acid-catalyzed oxidative synthesis of benzimidazoles.
(C) Application to construct other N-containing heterocycle scaffoids.

TABLE 3 | Optimization of multi-gram-scale synthesis of imines via the salicylic acid-catalyzed green oxidation of benzylamine.

Entry 2a (mmol) Cat. (mol%) 4A MS
(g)

Solvent (ml) Time (h) Yield 4a
(%)a

1 30 5 — Toluene (15) 16 29
2 30 5 — Neat 16 45
3 30 10 — Neat 16 72
4 100 10 — Neat 16 26
5 100 10 1 Neat 48 58
6 110 10 1 Neat 72 (94)

aYields were determined by 1H NMR spectroscopy (isolated yields).
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obtained in 44% yield. The reaction of o-aminobenzylamine 1a
with 1-hexylamine could not afford the corresponding product in
sufficient yield, due to the low conversion of 1-hexylamine to the
corresponding imine under the reaction condition. The
quinazoline synthesis could also be conducted on a Gram
scale, where 3aa was isolated in 50% yield (1.0 g). Note that
this quinazoline synthesis was carried out using salicylic acid itself
as an organocatalyst, and 3aa was obtained in 48% yield by
prolonging the reaction to 5 days.

To gain insights into the reaction mechanism for the oxidative
formation of 2-arylquinazolines from two kinds of benzylamines,
several control experiments were conducted. When imine 4a
(3.0 mmol), instead of 2a, was allowed to react with 1a (3.0 mmol)
under the optimal conditions for quinazoline synthesis, the
desired product 3aa was obtained in 13% yield (eq 3). This
indicates that imine 4a might not be an important
intermediate in this system. In addition, when the oxidation of
benzylamine 1a or 2-aminobenzylamine 2a was conducted
independently in the presence of 4,6-dihydroxysalicylic acid
(5 mol%) and BF3·Et2O (10 mol%) in DMSO, the resulting
imines 4a and 4b were obtained in 14 and 9% yields,
respectively (eq 4). Thus, 1a and 2a could be oxidized under
the reaction conditions, and active imine species might be initially
formed.

Based on the results of control experiments (entries 19–20 in
Table 1, and eqs 3–4) and our previous studies, a possible
reaction pathway for the organocatalytic oxidative formation
of 2-arylquinazolines from two kinds of benzylamines is
shown in Scheme 2.

First, benzylamine 2 reacts with 4,6-dihydroxysalicylic acid to
form salt A, which undergoes hydrogen abstraction by O2 to
generate aryloxy radical B and HOO•. The hydrogen abstraction
of the benzyl group occurs intramolecularly to form radical cation
C (Griller, et al., 1981; Nazran and Griller, 1983; Maclnnes, et al.,
1987; Salamone, et al., 2011), which in turn affords imine 29 under
the action of HOO•. The subsequent amino group exchange
reaction of 2’ with 2-aminobenzylamine 1 is smoothly proceeded
in the presence of BF3·Et2O to yield D. The intramolecular
cyclization of D is accelerated by BF3·Et2O to yield E. Finally,
the oxidative aromatization of E results in the corresponding 2-
arylquinazoline 3.

In the quinazoline synthesis from benzylamine and
o-aminobenzylamine, the most important point is the highly
selective conversion of benzylamine to the corresponding imine.
If o-aminobenzylamine undergoes imination, the resulting
product cannot be converted into quinazoline. To solve this

problem, quinazolines are typically synthesized by using excess
amounts of benzylamine as an imine precursor, and the yield of
quinazolines is calculated based on the lesser amount of
o-aminobenzylamine used. However, in such methods,
benzylidenebenzylamine (PhCH�NCH2Ph), which is formed
by oxidative dimerization of benzylamine, is often produced as
a byproduct, and the reaction system becomes complicated,
which not only makes it time-consuming to isolate the
quinazoline product, but also makes it difficult to scale up the
reaction. In fact, there are no reports of gram-scale synthesis of
related quinazolines reported so far. In contrast, in the present
salicylic acid-catalyzed quinazoline synthesis method, the
salicylic acid derivative predominantly forms a salt with
benzylamine, and the imination proceeds exclusively for
benzylamine. Therefore, the reaction could proceed with
equimolar amounts of benzylamine and o-aminobenzylamine
to give quinazoline derivatives in high yields. Noteworthy is
that this method is not only excellent in E-factor (� 2.7), but
also the best quinazoline synthesis method in terms of RME (�
73%). As shown in the 1H NMR spectrum of the unpurified crude
product after the reaction (see, Supplementary Information),
only quinazoline and solvent peaks could be detected in this
system, and the reaction system is extremely clean. In addition,
this is the only example of application of this method to the gram-
scale synthesis of quinazolines from benzylamine and
o-aminobenzylamine.

As shown in Table 2, the formation of 2-arylquinazoline
scaffolds was catalyzed even using salicylic acid. Salicylic acid
is a more common reagent compared to 4,6-dihydroxysalicylic
acid. In order to make the synthesis of nitrogen-containing
functional molecules industrially practical, it is necessary to
optimize the catalytic system using salicylic acid as an
organocatalyst. Therefore, we focused on using salicylic acid as
the organocatalyst for the oxidation of benzylamines and its
application to the practical synthesis of N-heterocycles. Our
previous work has revealed that the catalytic reactivity of
salicylic acid itself is somewhat lower than that of 4,6-
dihydroxysalicylic acid for the oxidation of benzylamines
(Dong et al., 2016). Therefore, we further optimized the
reaction conditions in order to construct an oxidation system
in which the salicylic acid catalyst works effectively (see the
Supplementary Information).

The oxidation of benzylamine proceeded well with 5mol% of
salicylic acid and 4A MS (to inhibit hydrolysis of the formed imine),
yielding the corresponding imines 4a–4e in 82–98% yields (Scheme
3A). In addition, the oxidative condensation of benzylamine 2 and
1,2-phenylenediamine 5 in the presence of salicylic acid (10mol%)
and 4AMS (100mg) afforded various benzimidazoles 6a–6e in good
yields (Scheme3B). Under similar conditions, 2-phenylbenzothiazole
8 was obtained from benzylamine 2a and 2-aminobenzenethiol 7 in
71% yield (eq 1, Scheme 3C). This salicylic acid-catalyzed oxidation
of benzylamines was also successfully applied to the one-pot synthesis
of 2,4,6-triphenylpyridine (eq 2, Scheme 3C). As described above, our
method was as effective as or more effective than the system using
4,6-dihydroxysalicylic acid for the construction of N-heterocycles.

As illustrated in Scheme 3, the key step was the organocatalytic
oxidation of benzylamines to imines. Considering bulk synthesis via
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these organocatalytic reactions, it is important that the oxidation of
benzylamines proceeds smoothly, even when scaled up for the
synthesis of practical N-containing functional molecules for
pharmaceutical and industrial applications. The salicylic acid-
catalyzed oxidation of benzylamine 2a could be successfully
conducted under the neat condition at the scale of 110 mmol,
and the corresponding imine 4awas isolated in 94% yield (Table 3).
Thus, this salicylic acid-catalyzed oxidative transformation of
benzylamines can be an environmentally friendly, useful, and
low-cost synthetic method in organic chemistry.

CONCLUSION

In this study, we developed a metal-free method for the synthesis
of 2-substituted quinazoline derivatives via the oxidative
condensation of o-aminobenzylamines with benzylamines
using 4,6-dihydroxysalicylic acid as the catalyst under
atmospheric oxygen. Since the construction of the quinazoline
scaffolds involves a highly multistep reaction, conventional
methods often required an excess amount of substrate to
control the product selectivity, resulting in a high amount of
wastage. In contrast, our method could be conducted under mild
conditions, and the corresponding quinazolines could be
obtained with excellent atom economy, an E-factor of 2.7, and
RME of 73%. Furthermore, this excellent eco-friendly system
could achieve the synthesis of quinazolines up to a scale of
10 mmol, for the first time. Interestingly, the organocatalytic
construction of quinazolines could be carried out using only
salicylic acid, and the salicylic acid-catalyzed oxidation system
could be applied to the green and practical synthesis of a series of
nitrogen-containing functional compounds. We expect that the
development of this environmentally friendly salicylic acid-
catalyzed oxidation system will provide practical synthesis

methods for pharmaceutical manufacturing and industrial
applications, and contribute to further development in green
chemistry.
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