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Recently, quasi-two-dimensional (Q-2D) perovskites have received much attention due to
their excellent photophysical properties. Phase compositions in Q-2D perovskites have
obvious effect on the device performance. Here, efficient green perovskite light-emitting
diodes (PeLEDs) were fabricated by employing o-fluorophenylethylammonium bromide
(o-F-PEABr) and 2-aminoethanol hydrobromide (EOABr) as the mix-interlayer ligands.
Phase compositions are rationally optimized through composition and interlayer
engineering. Meanwhile, non-radiative recombination is greatly suppressed by the
introduction of mix-interlayer ligands. Thus, green PeLEDs with a peak
photoluminescence quantum yield (PLQY) of 81.4%, a narrow full width at half
maximum (FWHM) of 19 nm, a maximum current efficiency (CE) of 27.7 cd/A, and a
maximum external quantum efficiency (EQE) of 10.4% were realized. The results are
expected to offer a feasible method to realize high-efficiency PeLEDs.

Keywords: quasi-two-dimensional perovskites, mix-interlayer, phase compositions, interlayer engineering,
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INTRODUCTION

Metal-halogen perovskites are emerging as potential candidates for light-emitting diodes due to their
high color purity (insensitive to crystal size), high photoluminescence quantum yield (PLQY), facile
adjustable photoelectronic properties, and solution processability (Wang et al., 2018a; Miao et al.,
2019; Quan et al., 2019; Han et al., 2021). Impressive electroluminescence efficiency of perovskite
light-emitting diodes (PeLEDs) has been demonstrated in recent years (Meng et al., 2020; Liu et al.,
2021a; Liu et al., 2021b; Hassan et al., 2021; Zhu et al., 2021). Currently, numerous research efforts
focused on development of perovskite electroluminescent materials with high PLQY, good film
quality, and efficient carrier injection.

Three-dimensional (3D) perovskites with continuous octahedral frameworks generally feature in
a weak exciton binding energy (Miyata et al., 2015; Yang et al., 2016). Excitons in 3D perovskites tend
to separate into free carriers which induce non-radiative recombination. Q-2D perovskites with a
multiple quantum-well structure are another approach to achieve efficient electroluminescence (He
et al., 2019; Guo et al., 2021; Jiang et al., 2021; Yang et al., 2021). The multiple quantum-well structure
of Q-2D perovskites is beneficial to exciton formation and reducing the possibility of exciton
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dissociation. In addition, Q-2D perovskites are a strongly bound
system due to the strong quantum and dielectric confinement
effects (Blancon et al., 2017; Xing et al., 2017; Zhang et al., 2018;
Cheng et al., 2020). These effects contribute to improving the
exciton binding energy, adjusting the photoelectric properties,
and inhibiting the non-radiative recombination. There exists an
ultrafast energy transfer process from the large bandgap phases
(small n values) to the lowest bandgap phase (larger n values) in
Q-2D perovskites, which promises efficient radiative
recombination (Liu et al., 2017; Panuganti et al., 2021; Yin
et al., 2021). Hence, Q-2D perovskites are considered good
candidate materials for efficient PeLEDs. This unique emission
behavior of Q-2D perovskites is strongly dependent on the
perovskite phase compositions. Up to now, it is still difficult to
obtain the Q-2D perovskites with single n phase (n ≥ 2), and the
Q-2D perovskite films are usually a mixture with different n
phases (Tsai et al., 2018; Yang et al., 2018; Yang et al., 2019).
Previous studies have shown that enhanced phase purity has a
significant effect on charge transfer between different n phases
and eventual device performance (Wang et al., 2018b; Yang et al.,
2018; Yu et al., 2019). Organic interlayer ligands in Q-2D
perovskites can directly affect the phase compositions (purity).
The subtle structure change in organic interlayer ligands might
lead to a big difference in perovskite phase compositions.
Therefore, selecting suitable organic interlayer ligands to
regulate the phase compositions in Q-2D perovskites is
expected as a feasible strategy to further improve the device
efficiency.

In this work, o-F-PEABr and EOABr were employed as the
mix-interlayer ligands to fabricate Q-2D PeLEDs. Phase
compositions and energy levels can be effectively regulated by
the o-F-PEABr ligand. On combining with the EOABr ligand, the
non-radiative recombination channels in these Q-2D perovskites
are greatly suppressed. Efficient green PeLEDs based on mix-
interlayers were realized with an emission peak at 509 nm, a
maximum CE of 27.7 cd A−1, and a maximum EQE of 10.4%. The
results demonstrated here offer a simple path to realize efficient
PeLEDs.

RESULTS AND DISCUSSION

Perovskite precursor solutions were prepared by dissolving o-F-
PEABr, lead bromide, and cesium bromide in dimethyl sulfoxide
solvent according to the Q-2D perovskite general formula o-F-
PEA2Csm-1PbmBr3m+1 with various m values (the Experimental
section). Perovskite emitters were prepared by the one-step spin-
coating method. To study the effect of phase compositions on
PeLED performance, a group of devices with a configuration of
ITO (100 nm)/polyvinylcarbazole (PVK):N,N′-bis(4-
butylphenyl)-N,N-bis(phenyl)-benzidine (TPD) (30 nm)/
perovskite emitters (60 nm)/3,5-Tris(1-phenyl-1H-
benzimidazol-2-yl)benzene (TPBI) (35 nm)/LiF (1 nm)/Al
(150 nm) were fabricated. PVK:TPD acted as a hole-
transporting layer, and TPBI was used as an electron-
transporting layer. The perovskite emitters with m � 1, 2, 3, 4
were employed as the light-emitting layers. PeLEDs based on the

perovskite emitters with m � 1 were also fabricated; however,
device performance could be hardly observed. As previously
reported, this should be attributed to their poor film
morphology, large hole-injection barrier, and serious traps
assisting non-radiative recombination (Era et al., 1994; Xing
et al., 2017).

The electroluminescence (EL) performance of these PeLEDs is
shown in Supplementary Figure S1 and Supplementary Table
S1. All these PeLEDs show green emission from 511 to 502 nm
(Supplementary Figure S1A). The EL peaks show a slightly red
shift with the m values increased. The m � 3 (o-F-
PEA2Cs2Pb3Br10) PeLEDs show optimum device performance
with a peak luminance of 7,290 cd/m2, a maximum CE of
14.2 cd A−1 (Supplementary Figure S1C), and a maximum
EQE of 5.1% (Supplementary Figure S1D). The turn-on
voltage (Von) at 3.0 V certifies the carriers were effectively
injected into the perovskite emitters (Supplementary Figure
S1B), which can be proved by the smaller hole-injection
barrier (Supplementary Figure S2). Therefore, the m � 3
perovskite was used as the optimal condition for further study.

As the ultraviolet–visible (UV–Vis) absorption spectra shown
in Supplementary Figure S3A, the phase compositions of o-F-
PEA2Csm-1PbmBr3m+1 Q-2D perovskite can be effectively
regulated by changing the m values. The single absorption
peak at 396 nm of m � 1 (o-F-PEA2PbBr4) perovskite is
attributed to the n � 1 phase. The absorption peaks of m � 2
(o-F-PEA2CsPb2Br7) perovskite at 396, 428, and 456 nm are
attributed to n � 1, 2, 3 phases, respectively. The n � 1, 2
phases could be greatly inhibited as the m � 3 (o-F-
PEA2Cs2Pb3Br10) and 4 (o-F-PEA2Cs3Pb4Br13) perovskites.
The PLQY of m � 1, 2, 3, 4 is 1.1%, 6.8%, 58.7.1, and 46.8%,
respectively.

The morphology of these perovskites was studied through the
scanning electron microscopy (SEM) test. As shown in
Supplementary Figure S4, the m � 1 perovskite films show a
rough and wrinkle morphology. The film quality showed notable
improvement with the m values increased from 2, 3 to 4. Thus,
the improved PeLED performance of m � 3 perovskites comes
from the combination of improved phase purity, higher film
quality, efficient carrier injection, and higher PLQY.

The employment of mix-interlayer ligands with synergistic
effects is an effective way to improve the device performance.
Here, mix-interlayer perovskites were fabricated by introducing
the EOABr ligand with the general formula of (EOA x o-F-PEA
y)2Cs2Pb3Br10 (x + y � 1). The phase compositions were further
engineered by tuning the mix-interlayer ligandmolar ratio with x:
y � 1:8, 2:8 toward efficient quasi-2D perovskites. UV–Vis
absorption and photoluminescence (PL) spectra of these
samples are exhibited in Figure 1A; the m � 3 sample is also
included for comparison. The m � 3 and 1:8 samples show weak
excitonic absorption peaks of low-n phases (n ≤ 4). As the molar
ratio of x:y increased to 2:8, excitonic absorption peak intensity at
430, 462, and 478 nm is slightly enhanced, corresponding to the n
phases of 2, 3, and 4, respectively. With the increasing
concentration of EOABr, the excitonic absorption peaks of
large-n phases (n ≥ 5) around 503 nm show a minor blue
shift. Meanwhile, gradually blue-shifted PL spectra were also

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 8258222

Wang et al. Mix-Interlayer Engineering for Efficient PeLEDs

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


found from 508, 507 to 505 nm with the increased EOABr molar
ratio (Figure 1B). These trends can be interpreted by the increase
of n ≤ 4 phases together with the reduction of n ≥ 5 phases with
more EOABr added.

PLQYs of these samples are shown in Figure 2A. The PLQYs
of 1:8 and 2:8 samples are 81.4 and 79.1%, respectively, which are
much larger than that of m � 3 perovskite. Figure 2B shows the
corresponding time-resolved PL decay kinetics spectra. The PL
decay curves are fit with a tri-exponential decay model
(Supplementary Table S3) (Sun et al., 2016; Yang et al., 2017;
Li et al., 2018). The 1:8 perovskites show the highest average PL
lifetime (τave) of 57.6 ns, which is larger than that of m � 3
(47.1 ns) perovskites, demonstrating that excitons in the mix-
interlayer perovskites can live for a longer time. Supplementary
Equations S1, S2 in the Supporting Information are used to
calculate the radiative (kr) and non-radiative (knr) transition
rates. The m � 3 perovskite shows a moderate kr:knr ratio of
1.43. The 1:8 and 2:8 perovskites show significantly increased kr:
knr ratios of 4.36 and 3.78, respectively. Therefore, non-radiative
channels in mix-interlayer Q-2D perovskites are suppressed
through more effective interlayer ligand passivation.

The X-ray diffraction (XRD) test was carried out to analyze the
crystal structures of these mix-interlayer perovskites
(Supplementary Figure S5). The diffraction pattern of
CsPbBr3 (stand PDF# 18-0364) was also included for
comparison. The 2θ diffraction peaks at 15.24° and 30.71° are

observed from all the perovskite films, which ascribe to the (100)
and (200) planes of the large-n phase (n ≥ 5) perovskite similar to
CsPbBr3. The stronger XRD peak intensity of 1:8 and 2:8 samples
indicated more dominant crystal orientation.

The film morphology of these samples was examined using
SEM (Supplementary Figure S6). The SEM images show
smoother film morphology with the addition of EOABr. The
high-quality perovskite films of (EOA x o-F-PEA y)2Cs2Pb3Br10
can restrain leakage current and facilitate the realization of highly
efficient PeLEDs.

Encouraged by the excellent optical and physical properties,
the performance of these mix-interlayer perovskites was tested
with the same device configuration of ITO (100 nm)/PVK:TPD
(30 nm)/perovskite emitters (60 nm)/TPBI (35 nm)/LiF (1 nm)/
Al (150 nm). Figure 3 shows the electroluminescence (EL)
performance of these PeLEDs. All the devices show green
emission with a single peak. The EL spectra exhibit a small
blue shift from 510 to 507 nm (Figure 3A) with the increase
in the molar ratio of EOABr ligand, which are well in keeping
with that of the PL spectra. The FWHM value of mix-interlayer
PeLEDs is about 19 nm, which shows excellent color purity.

The energy levels of perovskite emitters are exhibited in
Supplementary Figure S7. The valence band of m � 3, 1:8, 2:
8 is 5.47, 5.46, and 5.45 eV, respectively. Subtraction by the optical
bandgaps gives the corresponding valence band of 3.09, 3.07, and
3.05 eV, respectively. Thus, efficient carrier injection between

FIGURE 1 | (A) UV–Vis absorption spectra and (B) PL spectra of the corresponding Q-2D perovskite films with different interlayers.

FIGURE 2 | (A) PLQY and (B) time-resolved PL decay curves of the corresponding Q-2D perovskite films with different interlayers.
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transporting layers and perovskite emitter layers could be
achieved. The lowest unoccupied molecular orbital of PVK:
TPD (−2.3 eV) can confine the electron current within the
perovskite emitting layers. The hole current can also be
restricted within the perovskite emitting layers via the deep
highest occupied molecular orbital of TPBI (−6.2 eV).
Furthermore, this device structure can realize effective carrier

injection and confinement in perovskite emitting layers.
Figure 3B shows the current density (J)–voltage
(V)–luminance (L) spectra. Here, the decreased Von of mix-
interlayer perovskites comes from the slightly reduced hole
carrier injection barrier.

All the EL performance parameters are summarized in Table 1
and Supplementary Table S3. With the employment of EOABr,

FIGURE 3 | (A) EL spectra at 1 mA cm−2, (B) current density (J) and luminance (L) vs voltage, (C) current efficiency (CE) vs current density, and (D) external
quantum efficiency (EQE) vs current density characteristics of the devices based on the corresponding Q-2D perovskite films with different interlayers.

TABLE 1 | Summary of the device performance with different interlayers as the light-emitting layers.

Light-emitting
layers

Von (V) CEmax (cd/A) EQEmax (%) Lmax (cd/m2) Peak (nm)

m � 3 3.0 14.2 5.1 7,290 510
EOA:OFP (1:8) 2.9 27.7 10.4 8,000 509
EOA:OFP (2:8) 2.9 18.3 7.0 6800 507

FIGURE 4 | (A) EL spectra of EOA:OFP (1:8) PeLEDs with the operating voltage from 3.4 to 6.6 V and (B) T50 lifetime measurements for EOA:OFP (1:8) PeLEDs at
an initial luminance of 100 cd m−2.
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the device performance is significantly improved (Figures 3C,D).
At the ratio of 1:8, the PeLEDs show best performance with peak
CE and EQE values of 27.7 cd A−1 and 10.4%, respectively. The
improved EQE can be explained by the higher PLQY, larger kr:
knr, and better film quality owing to the mix-interlayer ligands.

The device stability is one of the key parameters of PeLEDs.
The spectra stability of 1:8 PeLEDs was first studied to investigate
the device stability. As shown in Figure 4A and Supplementary
Figure S9, all PeLEDs exhibit good spectra stability as the driving
voltage increased from 3.4 to 6.6 V. In addition, the long-term
device lifetime was also measured. The device lifetime was carried
out in constant current mode with an initial luminance of about
100 cd/m2. The half-lifetime (T50) amounts to the time it takes to
decrease the luminance to 50% of its initial value. As shown in
Figure 4B and Supplementary Figure S10, the T50 lifetime of the
m � 3, 1:8, and 2:8 PeLEDs is 34.6, 48.5, and 7.2 min, respectively.
The good device stability of 1:8 PeLEDs is probably due to the
better film quality, matched energy levels, and efficient carrier
injection. Statistical EQE performance of the 1:8 perovskite for 30
devices is shown in Supplementary Figure S8. The average EQE
was 9.1% with a relative standard deviation of 9.5%. Therefore,
the 1:8 PeLEDs also show good reproducibility.

CONCLUSIONS

In summary, efficient green PeLEDs have been realized by
introducing o-F-PEABr and EOABr as the mix-interlayer ligands.
The phase compositions, defect passivation, and film quality can be
easily adjusted through composition andmix-interlayer engineering.
Under the optimization of optical and electric properties, efficient
green PeLEDs based on 1:8 mix-interlayers were obtained with a
peak CE of 27.7 cd/A, a maximum EQE of 10.4%, and a T50 lifetime
of 48.5 min. This work can provide a simple and feasible strategy for
improving the performance of Q-2D PeLEDs.

EXPERIMENTAL SECTION

Materials. Cesium bromide (CsBr, 99.5%), lead bromide (PbBr2,
99.5%), o-F-PEABr (99.5%), TPD (99.5%), and EOABr (99.5%)
were purchased from Xi’an p-OLED Corp. Dimethyl sulfoxide
(DMSO, 99.8%) was purchased from Acros, PVK (average Mw
∼1100000) was purchased from Sigma-Aldrich, and TPBI
(99.5%) was purchased from Luminescence Technology Corp.
All materials were used as received without further purification.

Preparation of Perovskite Precursor
Solution
The o-F-PEABr Q-2D perovskite precursor solution of m � 1, 2,
3, and 4 was prepared by dissolving o-F-PEABr, CsBr, and PbBr2
in the molar ratios of 2:0:1, 2:2.4:2, 2:3.6:3, and 2:4.8:4 in DMSO
under continuous stirring for 6 h at 50°C, respectively. The mix-
interlayer Q-2D perovskite precursor solution of 1:8 and 2:8 was
prepared by dissolving o-F-PEABr, EOABr, CsBr, and PbBr2 in
the molar ratios of 1.78:0.22:3.6:3 and 1.6:0.4:3.6:3 in DMSO

under continuous stirring for 6 h at 50°C, respectively. The Pb2+

concentration in perovskite precursor solution is 0.15 M.

Fabrication andCharacterization of PeLEDs
The PeLEDs were fabricated following a well-established
procedure. First, the ITO substrates were ultrasonically cleaned
with detergent and deionized water. After baking at 120°C, the
ITO substrates were treated with UV-O3 for 30 min and
transferred into a nitrogen-filled glove box. 30 nm of PVK:
TPD (4:1, w/w, chlorobenzene) was spin-coated and then
baked at 130°C for 20 min. 1,4-Dioxane was spin-coated onto
PVK:TPD at 3,000 rpm to increase the surface wettability. Then,
perovskite emitters were spin-coated from the precursor solution
and annealed at 95oC for 20 s. Finally, TPBI (35 nm), LiF (1.0 nm),
and Al (150 nm) were evaporated under a pressure of 1 × 10–4 Pa.
The thickness of the evaporatedmaterials wasmonitored by a quartz
crystal thickness monitor (SQM-160, Inficon). Deposition rates of
TPBI, LiF, and Al were 1.5 Å s−1, 0.1 Å s−1, and 4 Å s−1, respectively.
The emission area of these PeLEDs was 2 mm * 2mm. All the
fabrication processes were accomplished inside a nitrogen dry box.
The oxygen and moisture of nitrogen dry box were less than 1 ppm.
Current density (J)–voltage (V) curves were measured by using a
dual-channel Keithley 2400 instrument. The EL spectra, CE, and
EQEsweremeasured by using an integrating sphere, amulti-channel
analyzer PMA-12, and an external quantum efficiencymeasurement
system (C9920-12, Hamamatsu Photonics, Japan) (Mo et al., 2016).
Before the measurement in the atmosphere, all the devices were
encapsulated with a UV-cured epoxy resin.

Measurement and Characterization
UV–Vis absorption spectra were collected by a SHIMADZU/UV-
3600 PLUS spectrophotometer. XRD spectra were measured by a
multipurpose X’Pert PRO system. SEM images were taken with a
ZEISS/SIGMA500 system. PL spectra were measured using an
Edinburgh FL980 fluorescence spectrophotometer with a 375 nm
xenon lamp as the excitation light source. Time-resolved PL
decay spectra were measured with an Edinburgh FL980
fluorescence spectrophotometer with a 371.6 nm ps diode laser
as the excitation light source. PLQYs of the perovskite films were
measured by a commercialized PLQY measurement system from
Ocean Optics with a 375 nm LED as the excitation light source.
The energy level values were measured by atmospheric ultraviolet
photoelectron spectroscopy (Riken Keiki AC-3).
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