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Reactive oxygen species (ROS) are significant active species in living organisms,

and their coordinationmaintains the function of organelles to resist the invasion

of foreign substances. Hypochlorous acid (HClO) is not only an eventful

signaling species but also a kind of ROS, which plays an irreplaceable role in

the immune system. However, its abnormal levels can cause cell damage or

even apoptosis, which in turn leads to the onset of a series of diseases such as

inflammation, neurological diseases, and even cancer. Based on this, we

designed a near-infrared fluorescent probe with a large Stokes shift for

ultrafast response to HClO. Furthermore, the probe exhibits excellent

sensitivity and selectivity toward HClO over other species. The probe was

successfully applied to visualize endogenous and exogenous HClO in living

cells and in zebrafish. This unique study is the key to providing a trustworthy tool

for imaging based on the in vitro and in vivo imaging of endogenous HClO,

which possesses great potential for the use in future studies of HClO-related

biology and pathology.

KEYWORDS

fluorescent probe, HClO, near-infrared, living cells, zebrafish

Introduction

Talking about the factors of living organisms, reactive oxygen species (ROS) are

significant molecules that play a critical role in cellular homeostasis and information

transfer. (Valko et al., 2007; Dickinson and Chang, 2011; Yang et al., 2019). It fights

viruses and bacteria from invading the immune system, thereby protecting the human

body from harm (Nicodeme et al., 2010; Prokopowicz et al., 2010; Lu et al., 2022).

Hypochlorous acid (HClO) is considered to be a highly oxidative ROS, that has

attracted much attention due to its important antibacterial properties in living

organisms (Hampton et al., 1998; Fan et al., 2022). The oxidation of chloride ions

in neutrophils by overexpressed myeloperoxidase produces HClO (Li et al., 2012).

Although it is closely linked to cell metabolism, abnormal amounts can lead to

rheumatoid arthritis, cardiovascular illness, neurological disease, and other

conditions (Winterbourn and Kettle, 2000; Pattison and Davies, 2001; Fang, 2004).
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Furthermore, HClO is the main component of bleaching

powder, and washing hands with it can reduce gynecological

infection and maternal fever. Thus, it is considered to be a

double-edged sword in biological systems (Kantarci et al.,

2000). Therefore, it is necessary to develop a reliable

analytical method to detect fluctuations in the level of HClO

in order to study its relationship with related diseases and its

mechanism of action.

Over the decades, for the detection of HClO, a variety of

approaches have been developed, including high-performance

liquid chromatography, electrochemical analysis,

chemiluminescence, and luminescent/fluorescent methods.

(Li et al., 2018; Yan et al., 2019; Luo P. et al., 2021).

Fluorescence imaging combined with the small molecule

method has received extensive attention because of its great

spatiotemporal resolution, in situ monitoring, and ease of

visualization (Kobayashi et al., 2010; Kumar et al., 2015;

Zhang et al., 2020; Luo X. et al., 2021; Cheng et al., 2021).

Therefore, it is possible to monitor individual compounds in

biological systems in real time by fluorescence imaging.

Currently, fluorescent probes for HClO have been

developed for both in vitro and in vivo imaging (Zhou

et al., 2012; Mao et al., 2018; Zhang et al., 2018; Ren et al.,

2019; Wei et al., 2019; Wu et al., 2019; Lin et al., 2020; Shi et al.,

2020; Xu et al., 2020; Fang et al., 2022). Unfortunately, there

are more or less certain defects for some developed probes,

including a slow reaction rate, short emission wavelength, and

a small Stokes shift, which limit their capabilities for imaging

and detecting HClO in living cells. Near-infrared (NIR)

fluorescence dye displays particular virtues with deeper

tissue penetration, minimum photodamage, and low

background interference, which facilitates its application in

biological systems (Yuan et al., 2013; Bonacchi et al., 2016;

Hong et al., 2017; Luo et al., 2020; Wang et al., 2022).

Furthermore, strong Stokes shift can be affective and

preventive toward emission and excitation bands. As a

result, developing a suitable fluorescence probe with a

significant Stokes shift and NIR emission wavelength for

imaging and detecting HClO in live systems is critical,

which would be helpful for understanding the relationship

between HClO and inflammation.

Herein, an easily obtained NIR fluorescent probe was

proposed for the imaging and monitoring of HClO in a

physiological environment. Initially, the probe emits

negative fluorescence, while N, N-dimethylthiocarbamate is

separated, and the probe releases significant NIR fluorescence

upon reaction with HClO. Importantly, the probe responds

quickly (10 s) and has a strong selectivity for HClO over other

ROS molecules. The probe provides a large Stokes shift,

avoiding crosstalk between the excitation and emission

spectra in the existence of HClO. Furthermore, the probe

was successfully used to detect HClO in living cells and

zebrafish under oxidative stress conditions. We believe this

probe shows powerful potential for imaging and

understanding the relationship between HClO and

inflammatory diseases.

Section of experiments

Instruments and reagents

Sigma-Aldrich provided cyclohexanone, propylene glycol,

phosphorus tribromide (PBr3), cesium carbonate (Cs2CO3), 4-

methylsalicylaldehyde, N, N-dimethylthiocarbamoyl chloride,

boron tribromide (BBr3), 4-fluoro-2-hydroxybenzaldehyde,

piperidine, and 4-chlorosalicylalde (St. Louis, United States).

Macklin supplied lipopolysaccharide (LPS), uric acid (UA),

and aminoguanidine hydrochloride (AG) (Shanghai, China).

A Bruker Avance II NMR spectrometer was used to acquire
1H and 13C NMR spectra (Germany). The UV–vis and

fluorescence spectra were collected while correlating with the

with the F-7000 spectrophotometer (Japan). Moreover, the

images were observed with the Olympus FV1000 microscope

(Japan).

Fluorescence detection for hypochlorous
acid

In DMSO, a stock solution of the NIR fluorescent probe

HDCX-HClO (1 mM) was produced. Other stock analyte

(10 mM) solutions of amino acids, ROS/RNS, various anions

and cations such as NO2
−, H2O2, HNO, tBuOO., NO, ONOO−,

and OH, common anions such as S2O8
2-, C2O4

2-, S2O7
2-, HSO4

−,

SO4
2-, CO3

2-, HS−, NO3
−, HCO3

−, AcO−, HSO3
−, F−, Cl−, and Br−,

metal ions such as Ba2+, Hg2+, Mg2+, Fe2+, Fe3+, Cu2+, and Zn2+,

and amino acids and biothiols such as methionine (Met),

tryptophan (Trp), valine (Val), serine (Ser), lysine (Lys),

aspartic acid (Asp), threonine (Thr), alanine (Ala), arginine

(Arg), and isoleucine (Ile) were prepared in ultra-pure water.

All the spectral experiments were carried out at physiological pH.

Fluorescence imaging in living cells and
zebrafish

RAW 264.7 cells were grown in DMEM with 10% FBS and

penicillin (100 units/mL)-streptomycin (100 g/ml) liquid. The

cells were placed in a 95 % environment with 5% CO2 at 37°C.

The cytotoxicity of the probe was determined via the Cell

Counting Kit-8 (CCK-8) test. The fluorescent image was

recorded on the Olympus FV1000 microscope. Before imaging

experiments, the cells were seeded in a culture dish and then

incubated for 24 h. After washing with PBS, the cells were stained

with the probe (10 μM) and further incubated for 20 min.
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The zebrafish was cultured with E3 embryo medium at

around 28.5°C. For control, 4-day-old zebrafish was incubated

in E3 embryo medium and stained by HDCX-HClO for 30 min

and then washed with the culture medium before imaging

experiments. For imaging exogenous and endogenous HClO

in zebrafish, 4-day-old zebrafish was treated in E3 embryo

medium containing HClO or LPS for 10 min or 12 h and then

cultured with the probe HDCX-HClO for 30 min, respectively.

These zebrafish were washed with the medium three times and

then mounted on a microscope stage. Confocal fluorescence

emission collection window: 690–770 nm.

Synthesis of compound HDCM-
hypochlorous acid

Compounds HDCX-OH (0.418 g, 1 mmol) and N,

N-dimethylthiocarbamoyl chloride (0.25 g, 2 mmol) were

added in a three-necked flask with 10 ml anhydrous ethanol.

The mixture was vigorously agitated and refluxed for

approximately 12 h in a N2 atmosphere. 1H NMR (500 MHz,

CDCl3) δ (ppm) 8.09 (d, J = 15.5 Hz, 1H), 7.77–7.68 (m, 1H), 7.62

(d, J = 8.1 Hz, 1H), 7.48–7.36 (m, 2H), 7.22–7.10 (m, 2H), 6.89 (d,

J = 8.2 Hz, 1H), 6.78 (d, J = 4.2 Hz, 2H), 6.52 (s, 1H), 3.48 (s, 3H),

3.40 (s, 3H), 2.62–2.57 (m, 2H), 2.51–2.46 (m, 2H), and 2.03 (d,

J = 5.4 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ (ppm) 161.7,

153.2, 152.9, 134.6, 133.7, 130.9, 128.8, 128.7, 126.1, 123.7, 118.7,

116.6, 115.5, 114.4, 111.4, 110.4, 105.5, 68.2, 45.0, 44.1, 31.4, 29.7,

and 20.5. HR-MS: calcd for C30H23N3O3S
+, 505.1460; found, [M

+ Na]+, 528.1364.

Results and discussion

Probe synthesis and designing the
rationale

We committed to developing a large Stokes shift and near-

infrared fluorescence probe (HDCX-HClO, Φ = 2.1%) to

monitor and image HClO in biological systems. The

chemical structure and proposed reaction mechanism of

HDCX-HClO toward HClO are illustrated in Figure 1. We

selected HDCX-OH (Φ = 13%) as a fluorophore that is

composed of electron-withdrawing and electron-donating

groups. It showed a near-infrared emission peak and a

significant Stokes shift (Qi et al., 2017). Furthermore,

several reports reveal that N, N-dimethylthiocarbamate acts

as an excellent acceptor of HClO in its place of other ROS. We

guessed that the introduction of N, N-dimethylthiocarbamate

would render HDCX-HClO non-fluorescent. However, in the

presence of HClO, the hydroxyl group of the probe was

released, which in turn exhibited a dramatic NIR

fluorescence emission. Moreover, mass spectrometry

analysis was further performed to prove the proposed

response mechanism. As shown in Supplementary Figure

S1, for HDCX-HClO, the peak was at m/z = 528.1345.

However, a new peak at m/z = 441.1229 was observed, and

the peak at m/z = 528.1345 (corresponding to HDCX-OH)

declines in the presence of ONOO− (Supplementary Figure

S1). Meanwhile, the proposed mechanism was verified by DFT

theoretical calculations (HOMO and LUMO orbitals of

HDCX-OH and HDCX-HClO ) (Supplementary Figure S2).

FIGURE 1
Sensing mechanism of HDCX-HClO to HClO.

Frontiers in Chemistry frontiersin.org03

Li et al. 10.3389/fchem.2022.1009186

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1009186


FIGURE 2
Synthesis route of compound HDCX-HClO.

FIGURE 3
(A) Absorption spectra of HDCX-HClO (10 μM) in presence or absence HClO (30 μM). (B) Fluorescence spectra of HDCX-HClO toward various
levels of HClO (0–30 μM). (C) ProbeHDCX-HClO versus HClO concentrations. (D) Fluorescence intensity of HDCX-HClO (10 μM) for other analytes:
1. blank; 2. HClO; 3. NO2

−; 4. ·OH; 5. tBuOO.; 6. ONOO−; 7. NO; 8. H2O2; 9. HNO; 10. O2·-. The spectrumwas obtained in PBS solution containing 40%
DMSO (10 mM, pH 7.4) at room temperature. λex = 590 nm.

Frontiers in Chemistry frontiersin.org04

Li et al. 10.3389/fchem.2022.1009186

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1009186


Motivated by this rationale, HDCX-HClO was synthesized,

and the detailed structure and route of the goal substance are

outlined in Figure 2. Furthermore, the characterization of the

probe (1H NMR, 13C NMR, and HR-MS) was described

accordingly.

Spectroscopic properties

It has been observed that the absorption and fluorescence

spectral peculiarities of HDCX-HClO in the presence or absence

of HClO were discretely investigated in 10 mM PBS buffer

FIGURE 4
(A) Response rate and (B) pH effect of HDCX-HClO for HClO.

FIGURE 5
Imaging of HClO in RAW 264.7 cells using a confocal microscope with the HDCX-HClO probe (10 μM). (A) RAW 264.7 cells serve as the control
group. Before imaging that is shown in (B–D), the cells were pre-incubatedwithin half an hour concerning HDCX-HClO and followed by the addition
of HClO (10, 20, and 30 μM) for 10 min in each of the three groups. Fluorescent images were recorded with excitation at 561 nm and emission at
690–770 nm. Scale bar = 20 μm.
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solution (pH 7.4, with 40%DMSO). As depicted in Figure 3A, the

probe HDCX-HClO displayed an absorbance at around 560 nm.

Upon reaction with HClO, there was a red shift of the absorption

maximum to center at 605 nm. It should have the emergence of

intramolecular charge transfer (ICT) and further release the

initial fluorophore (HDCX-HClO). Furthermore, the

fluorescence titration experiment of HDCX-HClO toward

HClO was performed. As we expected, the free HDCX-HClO

FIGURE 6
Fluorescence microscopic images of exogenous HClO with HDCX-HClO in RAW 264.7 cells. (A) Control group: The RAW 264.7 cells were
incubated with the probe for 30 min before being imaged with the probe. (B) Cells were treated with LPS (100 ng/ml) and PMA (100 ng/ml) in a
continuous fashion for 24 h before being treated with HDCX-HClO. LPS/PMA (100 ng/ml), (C) ABAH (200 ng/ml), (D) NAC (1 mM), and then
incubated with HDCX-HClO were all used to treat the cells in this experiment and the 561 nm and emission at 690–770 nm correlated with it.
Scale bar = 20 μm.

FIGURE 7
Imaging of HClO in zebrafish with the probe HDCX-HClO (10 μM). (A) Zebrafish blank without dealing with the probe; (B) zebrafish was
incubated with HDCX-HClO for 30 min before imaging; (C) zebrafish loaded with the probe HDCX-HClO and 30 μM HClO; (D) zebrafish was
stimulated with LPS/PMA and then stained by HDCX-HClO for 30 min before imaging.
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had a negligible fluorescence signal at 750 nm. However,

significant fluorescence intensity was found to be concentrated

at 750 nm after the addition of HClO, which would be attributed

to the specific response of the probe’s responsive group N,

N-dimethylthiocarbamate to HClO and further caused the

release of the fluorophore (HDCX-OH). Notably, a significant

Stokes shift (>100 nm) was observed, which is beneficial for

reducing self-quenching. The fluorescence of HDCX-HClO

enhanced with the contents of HClO gradually increased in

the range of 0–30 μM (Figure 3B). The HDCX-HClO had a

great linear relation with the levels of HClO ranging from 0 to

30 μM (Figure 3C). The associated regression equation was fitted

to F750 nm = 160.6417 + 24.0578 (HClO) and (R2 = 0.9881).

Furthermore, the detection limit (LOD, 3σ/k) for HClO was

determined to be 26 nM. These results revealed that the probe

HDCX-HClO could quantitatively monitor HClO with high

sensitivity and shows potential to be applied to trace amounts

of HClO in cells. Subsequently, the pH (3–10) on the fluorescence

signal of the probe HDCX-HClO for HOCl was assessed in the

absence or presence of HOCl. In Figure 4A, the probe HDCX-

HClO was largely unaffected by pH, while the probe displayed

excellent fluorescence intensity when the pH ranged from

7–9 under the presence of HClO. The results indicated that

HDCX-HClO could sensitively detect HClO under physiological

conditions and be employed to image HClO in biological

systems, principally.

Next, the response rates of HDCX-HClO toward HClO were

investigated via the fluorescence intensity change of HDCX-

HClO at different levels of HClO in real time. As shown in

Figure 4B, there was an apparent enhancement of fluorescence

intensity in the presence of varied HClO, which reached the peak

almost simultaneously within 10 s. In order to apply the probes to

complex biological systems, we first verify whether the probes are

sensitive to specific reactions to the detection substances. We

studied the selectivity of the probe HDCX-HClO for HClO by

recording the fluctuation of the fluorescence emission intensity.

A series of analytes were evaluated, such as NO2
−, ·OH, tBuOO.,

ONOO−, NO, H2O2, HNO, and O2·-, common anions such as

S2O8
2-, C2O4

2-, S2O7
2-, SO3

2-, HSO4
−, SO4

2-, CO3
2-, HS−, NO3

−,

HCO3
−, AcO−, HSO3

−, F−, Cl−, and Br−, metal ions such as Ba2+,

Hg2+, Mg2+, Fe2+, Fe3+, Cu2+, and Zn2+, and amino acids and

biothiols such as Met, Trp, Val, Phe, Glu, Ser, Lys, Asp, Thr, Ala,

Arg, Ile, Tyr, GSH, Hcy, and Cys. As illustrated in Figure 3D,

HClO could lead to significantly enhanced fluorescence signal,

while negligible fluorescence intensity was observed for other

species containing ROS/RNS. The result suggested that HDCX-

HClO was highly selective for HClO. Furthermore, as depicted in

Supplementary Figure S1, S2, even when these analytes co-

existed with HClO, the probes still displayed strong

fluorescence, which further demonstrated the powerful anti-

interference ability of HDCX-HClO in response to HClO.

Overall, the probe could quickly and specifically respond to

HClO under physiological conditions, which may be applied

for the detection of HClO in biological systems. In general, the

probes exhibit great potential in the specific and rapid detection

of HClO under physiological conditions.

Fluorescence imaging of hypochlorous
acid in living cells

The HDCX-HClO probe was used to image HOCl in living

systems and evaluate its ability to denote RAW264.7 cell lines. Prior

to the imaging applications of the probe, we evaluated the

cytotoxicity of HDCX-HClO on RAW 264.7 cells by a CCK-8

assay. As shown in Supplementary Figure S3, the cell viability

remained above 80% even after incubation with high

concentrations of HDCX-HClO, demonstrating excellent

biocompatibility with a clinically permissible dose of

approximately 10 μM. With excellent sensitivity and low

cytotoxicity, the probe can be used to detect the presence of

HClO in living cells. We then investigated the feasibility of

detecting cellular HClO using the probe HDCX-HClO. As

illustrated in Figure 5A, the RAW 264.7 cells displayed a bright

fluorescence signal when incubated with the probe. However, the

HDCX-HClO-loaded RAW264.7 cells concerning different statuses

of HClO (10, 20, and 30 μM) for around 20 min, with significant

fluorescence enhancement, were observed. Moreover, the probe

exhibited a distinct fluorescence response for various levels of

HClO with high sensitivity, which provided the possibility to

visualize the quantitative detection of HClO in cells.

To further study the performance of HDCX-HClO for the

monitoring of endogenousHClO, the potential imaging of HDCX-

HClO was assessed via RAW 264.7 cells stimulated with

lipopolysaccharide (LPS) and phorbol-12-myristate-13-acetate

(PMA). The release of high levels of HClO in cells and animals

under the treatment with LPS/PMA is well documented. (Gordon

et al., 1987). First and foremost, there is a faint fluorescence signal

after the RAW 264.7 cells were cultured with HDCX-HClO

(Figure 6A). Then, the RAW 264.7 cells were treated with LPS/

PMA, and it was discovered that there was a significant increase in

the fluorescence signal. (Figure 6B). This was attributed to LPS/

PMA-induced intracellular oxidative stress, resulting in an increase

in endogenous HClO levels, suggesting that this probe could be

applied to the detection of endogenous HClO in cells. 4-

Aminobenzoic acid hydrazide (ABAH) was used to reduce the

levels of HClO due to its ability to inhibit the activity of

myeloperoxidase. As expected, when compared with the LPS/

PMA group, signals obtained when RAW 264.7 cells were

simultaneously incubated with ABAH and LPS/PMA were

reduced, which suggested that the level of HClO decreased

(Figure 6C). Similarly, the experimental phenomenon was

negative (Figure 6D). All the aforementioned results clearly

revealed that HDCX-HClO could be suitable for monitoring

and imaging of the variations of endogenous and exogenous

HClO in biological systems.
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Zebrafish and mapping hypochlorous acid

In order to evaluate the biological application of the probe

HDCX-HClO in vivo, we used a 4-day-old zebrafish as a research

model to collect further data (Figure 7); the zebrafish was not

dealing with any, and no fluorescence signal was observed.

Subsequently, the zebrafish was stained with 10 μM probe

HDCX-HClO for 30 min, and an inert fluorescence was found

(Figure 7B). The zebrafish, on the other hand, was treated with

HClO for 10 min after being incubated with HDCX-HClO for

another 30 min. The fluorescence images showed a definite

progression in color over time, which directly reveals

fluctuations in HClO levels in vivo (Figure 7C). Interestingly,

the fluorescence image result displayed HClO in the liver and

intestine was relatively greater than that in the other organs when

the zebrafish was treated with HClO. It could be attributed to the

basic physiological functions of the liver and intestine to

eliminate toxic substances (Hao et al., 2021). To discuss the

feasibility of HDCX-HClO, the zebrafish was exposed with LPS

in E3 embryo medium for about 6 h and stained with the probe.

Eventually (Figure 7D), a light red fluorescence image was

obtained that demonstrated the native HClO could be gauged

viaHDCX-HClO. Taken together, HDCX-HClO can be used as a

tool to detect and image HClO both exogenously and

endogenously in vivo.

Conclusion

Overall, as concluding remarks, we developed a novel near-

infrared fluorescent probe, HDCX-HClO, to track and image

exogenous and endogenous HClO in living cells and zebrafish. In

comparison to previous ROS/RNS, the probe exhibits greater

specificity and sensitivity to HClO. Because of the ICT

mechanism, there was a rapid increase in fluorescence within 10 s

of the addition of HClO to the reaction mixture. The fact that

HDCX-HClO has a low detection limit (26 nM) and is extremely

stable is worth emphasizing as it provides a reliable foundation for the

application of HClO in biological systems. Moreover, the probe

HDCX-HClO was demonstrated for its ability to observe and

monitor both exogenous and endogenous HClO in a variety of

conditions. The probe can also detect alterations in HClO levels in

living cells and zebrafish when they are subjected to LPS-induced

oxidative stress, making it a helpful tool for studying the relationship

between inflammatory illnesses and HClO levels in the body.
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