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In this work, we have investigated several pure organic room temperature

phosphorescent materials with donor-methylene acceptor configurations with

relatively different quantum efficiency. The results show that the introduction of

methylene functional group in room temperature phosphorescent materials

based on donor-acceptor configuration is more favorable for obtaining higher

phosphorescent quantum efficiency in crystal phase environment. More

importantly, our calculations reveal the root cause of the excellent quantum

efficiency performance after the introduction of methylene groups. The results

show that the introduction of methylene can inhibit the structural deformation

of molecules during the excited state transition process and give them higher

interaction. Moreover, in the donor-acceptor configuration, the heavy atom

effect is more favorable to the formation of π-x (X = Br) interaction to accelerate

the occurrence of intersystem crossing and achieve a higher intersystem

crossing rate. Therefore, the donor-methylene-acceptor molecule is

expected to improve the quantum efficiency of room temperature

phosphorescence, and the addition of heavy atoms is more conducive to

prolong the life of room temperature phosphorescence. This work provides

a useful reference for rational design of room temperature phosphorescent

materials with high efficiency and long life.
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Introduction

Room temperature phosphorescence (RTP) is a luminescent phenomenon

different from fluorescence. It has attracted considerable interests due to their

fundamental importance and potential applications in optoelectronics, sensors as

well as bioimaging. (Baldo et al., 1998; Mi et al., 2010; You et al., 2011; Zhao et al.,

2011) It is well known that fluorescent materials can only have a maximum exciton

utilization rate of 25%.Therefore, people will turn their attention to phosphorescent

materials with higher utilization rate. Early phosphorescent materials were composed

of heavy metal complexes. (Ding et al., 2021; Liu et al., 2021; Zhang et al., 2021) Due to
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the disadvantages of heavy metal complexes such as high

toxicity, high price and instability, more and more

researchers turn to room-temperature phosphorescence

(RTP) materials with low cost, molecular diversity, high

energy utilization in excited state and long life. (Zhang

et al., 2016; Li et al., 2017; Cai et al., 2019a; Cai et al.,

2019b; Luo et al., 2019; Zhao et al., 2019; Zhao et al., 2020)

However, achieving efficient room temperature phosphorescent

SCHEME 1
The structure of studied molecules.

FIGURE 1
The dihedral Angle of studied molecules.
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emission in pure organic molecules is a huge challenge due to the

instability of triplet exciton and the inefficient intersystem

crossing (ISC) process caused by weak spin-orbit coupling

(SOC). (Xiong et al., 2018; Lin et al., 2020; Ma et al., 2021).

The ideal high efficiency and long life RTP materials can

be defined as:1) the molecular structure should have the ability

to promote intersystem crossing from the single excited state

to the triplet excited state, among which halogen and carbonyl

groups are the most commonly used; 2) the molecule has an

inherently rigid structure or is in a solid-state environment to

reduce non-radioactive decay rates, inherently rigid structure

usually means having conjugated aromatic rings; 3) Enhance

the stability of triplet excitons through intermolecular

coupling, face-to-face stacking structures with strong π-π
interactions are generally considered to be one of the most

favorable stacking methods. Compounds with carbonyl

groups and conjugated aromatic rings are often used in

room temperature phosphorescent materials because of

their rigid structures that facilitate efficient intersystem

crossing processes. For example, n-electron functional

groups (such as aldehyde and carbonyl groups) are

introduced in π -conjugated organic molecules to promote

the intersystem crossing. (Pan et al., 2018; Wang et al., 2019; Li

et al., 2020) These compounds have strong electron-coupled

donor-acceptor skeletons, which tend to cause structural

deformation during the excited state transition process,

resulting in limited inhibition of molecular motion, or even

inhibited by rigid environment. These rigid environments

include polymerization, (Su et al., 2020; Wu et al., 2020)

host-guest doping, (Lee et al., 2019; Zhang et al., 2019)

self-assembly, (Gu et al., 2020; Zhang et al., 2020)

crystallization, (Yang et al., 2020) etc. Therefore, the

development of organic RTP with high efficiency and long

life is a work worth exploring.

In the field of RTP materials, researchers have proposed a

RTP material which is connected by methylene. Zhang et al.

synthesized and characterized aggregation-induced emission

with long-lived room temperature phosphorescence from

methylene-linked organic donor–acceptor molecules. (Cai

et al., 2018) Due to methylene, the molecule has a

tetrahedron-like structure, which is conducive to the

formation of a strong intermolecular interaction in the crystal

FIGURE 2
Comparison of S state and T state geometry, RMSD values of the studied molecules.
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phase, and can break the electron delocalization between donor

and acceptor, and prevent the structural deformation of the

excited state transition. In the previous work, we discussed

room temperature phosphorescence of methylene linked

organic donor-acceptor molecules synthesized and

characterized by Zhang et al., under different environments.

(Zhao et al., 2021).

Recently, Zhongfu An et al. achieved a phosphorescent

quantum efficiency of 39.76% and a phosphorescent lifetime

of 220.24 ms by introducing methylene and halogen functional

groups into the donor-accepter structures to control structural

deformation. (Yin et al., 2020) In addition, halogenated receptors

can form intermolecular π-halogen interactions in crystals,

accelerating ISC transitions without shortening RTP lifetimes.

These experimental studies show that the introduction of

methylene between donor and recipient has a profound effect

on achieving efficient room temperature phosphorescence.

However, how methylene regulate the properties of long-lived

room temperature phosphorescence is not well understood.

To further understand the luminescence mechanism,

based on BB and CzBBr molecules synthesized by An et al.,

we designed B molecules without methylene and CzPBr

molecules containing halogens without methylene, as

shown in Scheme 1. In this work, we use density functional

theory to study the electronic structure properties of

molecules, ONIOM model to simulate the crystal phase

environment, and independent gradient model (IGM)

method to analyze the interaction between molecules,

hoping to clearly understand the essence of efficient room

temperature phosphorescence. The radiative rate, non-

radiative rate and intersystem crossing rate of all molecules

were evaluated by quantitative calculation. We hope that these

results can systematically elucidate the luminescence

mechanism of donor-methylene-receptor or donor-

methylene-halogenated receptor structures under solid

phase conditions, so as to provide theoretical guidance for

the preparation of efficient room temperature phosphorescent

materials in experiments.

FIGURE 3
The HOMO and LUMO orbital diagram and energy gap of studied molecules.
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Computational method

All molecules were structurally optimized at the ωB97XD/
6–31 g ** level. Based on the optimized geometry, the frequencies

of all molecules were calculated, and all frequencies had no virtual

frequency to confirm that these structures were the lowest point in

the potential energy surface. The crystal structure of molecule B

were predicted by universal force field (UFF) by Polymorph

module. (Rappe et al., 1993; Akkermans et al., 2013) We

selected the five most probable space groups (P21/C, P2121, P1,

P21, P1) and calculated by extracting the crystal structure of the

space group with the lowest energy. By comparing the calculation

results, we found that the space group of molecule B was P21/C, so

we randomly selected one of them as the central molecule to

construct ONIOM model. The crystal structures of other

molecules were extracted from the Cambridge Crystal Database.

The ONIOM model was used for QM/MM calculation, in which

the central molecule was defined as the QM part and regarded as

the high level, while the surrounding MM part was defined as the

low level, and the molecules in the MM region were frozen during

the frequency calculation. In the QM/MM calculation, the partial

charge of atoms generated by restricted electrostatic potential

(RESP) fitting method is used. The above calculation is

obtained by using Gaussian 16. (Bredas et al., 2004; Frisch

et al., 2016) The structural changes root-mean-square deviation

(RMSD) of S0 and T1 states, S0 and S1 states and S1 and T1 states

were calculated by VMD program. (Humphrey et al., 1996) The

donor-acceptor dihedral Angle was obtained by Mercury program

analysis. (Macrae et al., 2006) The spin orbit coupling (SOC)

matrix elements between T1 and S0 states and between T1 and

S1 are calculated using the quadratic response theory by Dalton

2016 program. (K et al., 2014; Vahtras et al., 1992) The Multiwfn

program was used to calculate the natural transition orbits, and

analyze the transition properties ofmolecules. (Lu andChen, 2012)

IGM method was used to visualize the interaction between

FIGURE 4
Schematic diagram of spin-orbit coupling constants.

FIGURE 5
The comparison of adiabatic energy levels for different
transition states.

TABLE 1 The excited state energy (eV) and energy gap (eV) of the
studied molecule.

BB B CzBBr CzPBr

S1 3.12 3.18 4.29 4.34

T1 3.05 2.81 3.38 3.75

△E (S1 -T1) 0.07 0.37 0.91 0.59
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molecules. (Lefebvre et al., 2017) Based on the data obtained above,

MOMAP program was used to perform frequency analysis and

calculate the intersystem crossing rate, radiative rate and non-

radiative rate. (Niu et al., 2018).

Results and discussion

Structure of ground state and excited state

The geometrical and electronic structures of molecules play

an important role in the photophysical properties, thus

determining the luminescence efficiency of organic molecules.

To investigate the effect of methylene and heavy atom effects on

molecular structure, we calculated the dihedral Angle between

donor and acceptor, as shown in Figure 1. In general, the dihedral

Angle can reflect the degree of structural distortion of the

material molecules. The dihedral angles of singlet S0 and first

excited triplet T1 of BB are 76.77° and 78.12°, and the variation

between them is less than that of molecule B (the dihedral angles

of S0 and T1 states of molecule B are 33.36° and 26.14°). This

indicates that the introduction of methylene is beneficial to

inhibit molecular structural deformation. However, the

dihedral angles of CzBBr and CzPBr are different. The

dihedral angles of CzBBr in S0 and T1 states are 70.14° and

78.06°, and the dihedral angles of CzBBr in S0 and T1 states are

50.91° and 51.23°, respectively. The variation of dihedral Angle

for S0 and S1 is consistent with that of S0 and T1. This indicates

that the introduction of heavy atoms and methylene group has

counteracting effect on the structural deformation. In order to

quantitatively characterize the structural deformation during

electron transition, we calculate the root mean square

displacement (RMSD).

RMSD �
�������������������������������������
1
N ∑natom

i
[(Xi −X′

i)2 + (Yi − Y′
i)2 + (Zi − Z′

i)2]
√

. The

changes and RMSD values between S0, S1 and T1 states of all

molecules are shown in Figure 2. RMSD values of S0 vs. S1, S1 vs.

T1 and S0 vs. T1 of molecular BB were 0.139, 0.052, 0.138,

respectively. The RMSD values of S0 vs. S1, S1 vs. T1 and S0 vs.

T1 states of molecule B are 0.149, 0.109 and 0.089 respectively,

FIGURE 6
The distribution diagram of electron and hole.

TABLE 2 The optical physical property parameters of studied
molecules.

S1→T1 T1→S0 ΦP (%)

kisc (s
−1) Kr (s

−1) knr (s
−1) calcd exptl

BB 1.87×108 52.6 1.20×103 4.2 3.5

B 1.32×105 1.66 9.07×103

CzBBr 3.29×108 0.16 1.12×102

CzPBr 8.87×104 0.26 0.51
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indicating that the degree of structural distortion of molecule B is

greater than that of molecule BB, which is consistent with the

change of dihedral Angle discussed above. From the above

analysis, it can be seen that the introduction of methylene and

heavy atoms can cause geometrical changes of molecules, which

may have a significant effect on the excited state properties of

molecules.

Energy level and transition properties

To explore the electrical properties of molecules, the HOMO

and LUMO levels of all molecules are calculated. As shown in

Figure 3, the HOMO level of both BB and CzBBr molecules

introduced with methylene is higher than that of B and CzPBr

molecules without methylene. The results indicate that the

introduction of methylene and heavy atom play an important

role in the transition properties of molecules. It can be clearly

seen from Figure 3 that the HOMO wave functions of BB and

CzBBr molecules are mainly distributed on the donor, while the

HOMO of B and CzPBr molecules are delocalized toward the

acceptor. For LUMO, BB and B molecules are mainly distributed

on the acceptor, while CzBBr and CzPBr molecules are mainly

distributed on the donor unit.

The SOC between S1 and T1 states and between S0 and

T1 states for studied molecules are illustrated in Figure 4. As

shown in Figure 4 the SOC value between S1 and T1 states of

CzBBr molecule (2.54 cm−1) was greater than CzPBr molecule

(0.23 cm−1). For BB molecule and B molecule, there is little

difference in SOC between them, which may be due to the

absence of heavy atom effect. This indicates that CzBBr

molecule has a faster ISC rate between S1 and T1 than CzPBr

molecule, while BB and B molecule have similar ISC rates.

Phosphorescent quantum efficiency and lifetime are two

important parameters to evaluate the performance of RTP

molecules. To calculate these two quantities, we optimized the

excited states and calculated ΔE(S1−T1). As shown in Figure 5 and

Table 1, the molecular BB, B, CzBBr and CzPBr were 0.07, 0.37,

0.91 and 0.59 eV, respectively.

It is worth noting that the energy difference of CzBBr

molecule is the largest, which indicates that CzBBr molecule

may have a small intersystem crossing rate, but this is contrary to

the experimental value. The reason is that the SOC value between

S1 and T1 states of CzBBr is large, which leads to a large

intersystem channelage rate. This is consistent with the

intersystem crossing rate calculated theoretically in the

following paper. Similarly, the trend of ΔE(T1−S0) is opposite to

that of ΔE(S1−T1), which may be caused by the different oscillator

strength of T1 → S0 (the oscillator strength of BB, B, CzBBr and

CzPBr are 1.67 × 10–8, 1.74 × 10–10, 9.64 × 10–11, 6.76 × 10–11,

respectively). In order to better explore the emission state

properties, the electron hole distribution based on the first

excited triplet state are calculated. As shown in Figure 6,

compared with molecules B and CzPBr without methylene

introduced, the T1 states of molecules BB and CzBBr are

locally excited in the donor unit, while molecule B is locally

excited in the acceptor unit, and the S1 states of molecules BB and

B are charge transfer states distributed in the whole molecule.

This shows that the nature of the excited states are changed along

with the introduction of methylene and heavy atoms. Therefore,

the introduction of methylene and heavy atoms is invaluable for

the construction of efficient RTP.

Radiative and nonradiative rates

In order to further explore the radiation situation, the

calculated photophysical parameter of all molecules are listed in

Table 2. As shown in Table 2, the intersystem crossing constants

kisc(S1→T1) of BB and CzBBr molecules with methylene group

introduced are larger than those of B and CzPBr molecules

without methylene group introduced, which is consistent with

the orbital coupling and energy difference discussed above. In

addition, the radiation rate constant (kr) of BB is increased from

1.66 to 52.6 s−1, and has the maximum value in selected molecules,

due to the enhanced spin coupling value HSOC. It is noteworthy

that the calculated phosphorescent quantum efficiency is in good

agreement with the experimental value, which also proves the

reliability of our calculation method.

Conclusion

In this work, we investigate two kinds of donor-methylene-

acceptor and donor-acceptor pure organic room temperature

phosphorescent materials with relatively different quantum

efficiency. The results show that the introduction of methylene

functional group in room temperature phosphorescent materials

based on donor-acceptor configuration is more favorable for

obtaining higher phosphorescent quantum efficiency in crystal

phase environment. The results show that the introduction of

methylene functional groups in room temperature phosphorescent

materials can inhibit the molecular structural deformation during

the excited state transition process, and can give it higher

intermolecular interaction, which is more conducive to obtain

higher phosphorescent quantum efficiency in crystal phase

environment. In addition, the heavy atom effect is more

favorable to the formation of π -x (X = Br) interaction in the

donor-acceptor configuration, resulting in higher intersystem

crossing rate. Therefore, the introduction of methylene and

heavy atoms into donor-acceptor materials is expected to

improve the quantum efficiency of room temperature

phosphorescence and prolong the life of room temperature

phosphorescence, which provides a new strategy for rational
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design of high efficiency and long life of room temperature

phosphorescence materials.
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