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In this study, we demonstrated the highly sensitive detection of alpha-

fetoprotein (AFP) by electrochemiluminescence (ECL) and electrochemistry

(EC) based on the gated transport of the bifunctional probe (tris(1,10-

phenanthroline) ruthenium (II) chloride, Ru (phen)3Cl2) into the

nanochannels of vertically ordered mesoporous silica films (VMSFs). Due to

the negatively charged surface and ultrasmall pore size, VMSF displays a signal

amplification effect on Ru (phen)3Cl2 and is suitable for the construction of

sensors with excellent sensitivity. With the linkage of (3-glycidyloxypropyl)

trimethoxysilane, the anti-AFP antibody could covalently bind to the external

surface of VMSF, generating a highly specific recognized sensing interface

toward AFP. When AFP is presented, the formed immunocomplex hinders

the diffusion of Ru (phen)3Cl2 to the underlying electrode surface, resulting

in a decreased ECL or EC response. The dual-mode detection of AFP is achieved

with a relatively low limit of detection (0.56 fg/ml for ECL and 4.5 pg/ml for EC)

and awide linear range (10 fg/ml~1 μg/ml for ECL and 10 pg/ml~1 μg/ml for EC).

Moreover, owing to the inherent anti-fouling property of VMSF, satisfactory

results in the analysis of human serum were obtained, showing the great

potential of the designed strategy in clinical diagnosis.
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1 Introduction

Cancer has become the first or second leading cause of death

before the age of 70 in 61% of countries, according to an

investigation from the World Health Organization (Sung

et al., 2021). Hepatocellular carcinoma (HCC) is one of the

most common malignant tumors with high malignancy and

poor prognosis (Suriapranata et al., 2010). Alpha-fetoprotein

(AFP), synthesized by fetal hepatocytes and yolk sac with a

molecular weight of approximately 70 kDa, has been

considered a critical biomarker for HCC (Zhang et al., 2016).

Generally, the AFP content in the serum of newborns ranges

from 10 to 50 μg/ml and decreases gradually after birth. As the

AFP could not be produced in mature and healthy hepatocytes,

the AFP level in the serum of a healthy adult is below 20 ng/ml

(Dutta et al., 2021). Abnormal AFP levels (usually higher than

500 ng/ml) are highly relative to HCC, metastatic cancers of the

liver, or many other cancers (e.g., germ cell tumors, pancreatic

tumors, and carcinoma of the gallbladder) (Dai et al., 2012; Kal-

Koshvandi, 2020). Therefore, it is crucial to develop accurate and

sensitive detection methods for AFP to facilitate the early

diagnosis and the evaluation of treatment effectiveness.

To date, numerous methods have been reported for the

detection of AFP and have achieved satisfactory results, such

as enzyme-linked immunosorbent assay (Liu et al., 2021), surface

plasmon resonance (Teramura and Iwata, 2007), fluorescence

immunoassay (Ma R. et al., 2019), colorimetry (Ma F. et al., 2019;

Li et al., 2022), surface-enhanced Raman scattering (Ma et al.,

2017), and chemiluminescence immunoassay (Yang et al., 2008).

However, these techniques often require complex operations,

expensive instruments, professional technicians, and long

detection time. With the advantages of high sensitivity, rapid

responses, simple operations, and easy portability,

electrochemiluminescence (ECL) (Wang et al., 2018; Zheng

et al., 2021) and electrochemistry (EC) (Liao et al., 2021;

Gong et al., 2022a; Zhou et al., 2022a; Yan et al., 2022; Zhang

et al., 2022) have been successfully applied to construct

biosensors. The combination of ECL and EC to construct

ECL/EC dual-mode sensors is able to greatly improve the

reliability and accuracy and has aroused considerable

attention (Gong et al., 2022b). To the best of our knowledge,

the utilization of ECL/EC dual-mode sensors for AFP detection

has not been reported yet.

Porous materials have played important roles in the

construction of the sensing interface (Liu et al., 2018; Cui

et al., 2020; Zhang et al., 2021; Cui et al., 2021; Liu et al.,

2022; Su et al., 2022). Vertically ordered mesoporous silica

films (VMSFs) consisting of perpendicular nanochannels,

uniform and ultrasmall pore size, negative surface charge, and

high porosity show high molecular permeability, charge

permselectivity, and anti-fouling capacity, which have been

widely used as a modified layer for the prominent

improvement of electrode performance (Zhou et al., 2019;

Walcarius, 2021; Zhou et al., 2022b; Zheng et al., 2022; Zhu

et al., 2022). VMSF has been proven to preconcentrate the

cationic ECL probe [(tris(2,2′-bipyridyl)] ruthenium [Ru

(bpy)3
2+)] in the aqueous solution through the electrostatic

effect, greatly reducing the amount of Ru (bpy)3
2+ and

simultaneously enhancing the ECL intensity by two orders of

magnitude (Zhou et al., 2015; Luo et al., 2022; Wei et al., 2022).

Moreover, by tailoring recognitive molecules on the inner

channel walls or outer surface, VMSF-based ECL or EC

sensors have been designed to detect a variety of targets, such

as ions (Cheng et al., 2018; Yan et al., 2020), small biological

molecules (Ma et al., 2022a; Zhou et al., 2022c;Wang et al., 2022),

DNA (Saadaoui et al., 2016), antibody (Gong et al., 2022c),

antigen (Ma et al., 2022b), and cancer cell (Wu et al., 2015).

Therefore, VMSF is very suitable for the construction of ECL/EC

dual-mode sensors and shows great potential in the direct

analysis of complex real samples without tedious sample

pretreatments.

In this work, highly sensitive and low-cost detection of AFP

was realized by both ECL and EC modes based on the amplified

effect of VMSF. VMSF grown onto the indium tin oxide (ITO)

electrode with negative surface charge was able to electrostatically

preconcentrate the cationic bifunctional probe (tris(1,10-

phenanthroline) ruthenium (II) chloride, Ru (phen)3Cl2),

leading to the remarkably enhanced ECL intensity and

simultaneously decreasing the amount of Ru (phen)3Cl2. The

anti-AFP antibody was covalently modified onto the external

surface of VMSF, and this was performed by using a (3-

glycidyloxypropyl) trimethoxysilane linker, exhibiting good

specificity toward AFP recognition. Because the formed

immunocomplex hinders the diffusion of Ru (phen)3Cl2 to the

underlying electrode surface, decreased ECL or EC response was

recorded, and the quantitative determination of AFP was

achieved. Furthermore, the detection of AFP in human serum

has also been studied using the proposed dual-mode sensor.

2 Materials and methods

2.1 Chemicals and materials

AFP, anti-AFP antibody, carcinoembryonic antigen (CEA),

and carcinoma antigen 199 (CA199) were purchased from

Beijing KEY-BIO Biotech Co., Ltd. (China). Serum amyloid A

(SAA) protein was bought from Nanjing Okay Biotechnology

Co., Ltd. (China). S100 calcium-binding protein β (S100β) was

purchased from Proteintech (China). Potassium ferricyanide (K3

[Fe(CN)6]), potassium ferrocyanide (K4 [Fe(CN)6]), potassium

hydrogen phthalate (KHP), bovine serum albumin (BSA),

potassium chloride (KCl), tetraethoxysilane (TEOS),

cetyltrimethylammonium bromide (CTAB), sodium hydroxide

(NaOH), sodium phosphate monobasic dihydrate

(NaH2PO4·2H2O), sodium phosphate dibasic dodecahydrate
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(Na2HPO4·12H2O), hexaammineruthenium (III) chloride

(Ru(NH3)6Cl3), (3-glycidyloxypropyl) trimethoxysilane

(GPTMS), fetal calf serum, and tripropylamine (TPA) were

obtained from Aladdin Biochemical Technology Co., Ltd.

(China). Ethanol (99.8%), acetone, sodium nitrate (NaNO3),

and hydrochloric acid were purchased from Hangzhou

Gaojing Fine Chemical Co., Ltd. (China). Tris (1,10-

phenanthroline) ruthenium (II) chloride dihydrate (Ru

(phen)3Cl2·2H2O) was purchased from Shanghai Yien

Chemical Technology Co., Ltd. (China). All the chemicals

were of analytical grade and used without further purification.

Ultrapure water (18.2 MΩ cm) was used to prepare all aqueous

solutions throughout the work. ITO glasses (< 17Ω/square,

thickness: 100 ± 20 nm) were purchased from Zhuhai Kaivo

Optoelectronic Technology, and washed with 1 M NaOH

aqueous solution overnight followed by subsequent treatment

with acetone, ethanol, and deionized water under ultrasonic for

30 min.

2.2 Measurements and instrumentations

The morphology of VMSF/ITO was investigated using a

transmission electron microscope (TEM, JEM-2100, JEOL,

Japan) and scanning electron microscope (SEM, SU8010,

Hitachi, Japan) with an acceleration voltage of 200 kV and

10 kV, respectively. All the electrochemical procedures

containing cyclic voltammetry (CV), differential pulse

voltammetry (DPV), and electrochemical impedance

spectroscopy (EIS) were performed on an Autolab

electrochemical workstation (Metrohm, PGSTAT302N,

Switzerland). Electrochemiluminescence (ECL) measurements

were conducted on an MPI-E II ECL analytical system (Xi’an

Remax Electronic Science and Technology Co., Ltd.). The voltage

of the photomultiplier tube (PMT) was set at 500 V. A

conventional three-electrode system was applied for both ECL

and EC measurements, where a bare or modified ITO electrode

was used as the working electrode, a platinum wire was used as

the counter electrode, and an Ag/AgCl electrode (saturated with

KCl) was used as the reference electrode.

2.3 Preparation of the VMSF/ITO electrode

Modification of VMSF on the ITO electrode surface is

realized by using an electrochemically assisted self-assembly

(EASA) method as previously reported (Walcarius et al.,

2007). Briefly, a precursor solution was obtained by mixing

2.833 g of TEOS and 1.585 g of CTAB with 20 ml ethanol and

20 ml 0.1 M NaNO3 with pH adjusted by HCl to 2.6 and further

stirring for 2.5 h to pre-hydrolyze. A clean ITO electrode was

immersed into the precursor solution as a working electrode, and

a constant cathodic current density (–0.70 mA cm−2) was applied

to the ITO with Ag/AgCl (saturated KCl) as the reference

electrode and a platinum plate (2 cm × 4 cm) as the counter

electrode. Then, the as-prepared electrode was rapidly taken out

and washed with a great deal of ultrapure water, and dried in a

nitrogen stream. After further aging at 120°C overnight, the

obtained electrode was denoted as SM@VMSF/ITO, since

there existed CTAB surfactant micelles (SMs) inside the

nanochannels. SM can be removed by simply stirring the

SM@VMSF/ITO electrode in 0.1 M HCl–ethanol solution for

5 min. To discriminate, this electrode was named VMSF/ITO.

Prior to use, VMSF/ITO electrodes were treated with Scotch tape

SCHEME 1
Illustration of the fabrication of the immunosensing interface based on the VMSF/ITO electrode (A-E) and the following label-free ECL and EC
detection of AFP (E,F).
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to remove aggregates on the surface of VMSF (Moehl et al.,

2022).

2.4 Preparation of an ECL/EC dual-mode
immunosensor

As shown in Scheme 1, the VMSF/ITO electrode is used as

the supporting substrate for the construction of the

immunosensors. VMSF possesses abundant silanol groups and

can offer easy modification with silane-coupling reagents

containing reactive groups. GPTMS was covalently linked on

the outer surface and the entry of nanochannels by treating SM@

VMSF/ITO with 2.26 mM GPTMS–ethanol solution for 1 h.

Then, the resulting electrode was rinsed thoroughly with

ultrapure water. By immersing in 0.1 M HCl–ethanol solution

and stirring for 5 min, epoxy-functionalized VMSF/ITO with

open channels was obtained, termed O-VMSF/ITO. The

FIGURE 1
Top-view TEM (A) and section-view SEM (B) images of VMSF. The inset in (A) corresponds to themagnified image. CV curves of ITO, VMSF/ITO,
and SM@VMSF/ITO obtained in (C) 0.05 M KHP containing 50 μM Fe(CN)6

3– (adjusting pH to 7.4) and (D) 0.05 M PBS (pH=7.4) containing 50 μM
Ru(NH3)6

3+. ECL (E) and DPV (F) curves of bare ITO and VMSF/ITO electrodes obtained in 0.01 M PBS (pH = 7.4). The detected solution in (E) contains
10 μM Ru (phen)3

2+ and 3 mM TPA and that in (F) contains 0.5 mM Ru (phen)3
2+.
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immunorecognitive interface was fabricated by drop-coating

anti-AFP antibody (AbAFP, 50 μl and 10 μg/ml) on the

O-VMSF/ITO electrode surface and incubation at 37°C for

90 min through the nucleophilic reaction between aminos of

the antibody and epoxy groups on the electrode surface, followed

by thorough rinsing with PBS (0.01 M, pH 7.4) to remove the

unbound antibodies. After blocking the non-specific sites with

BSA (1%, wt%) for 60 min, the as-prepared immunosensor was

denoted as AbAFP/O-VMSF/ITO.

2.5 Detection of AFP

Determination of AFP was achieved by ECL and EC

methods. Typically, the AbAFP/O-VMSF/ITO sensor was

incubated with different concentrations of AFP at 37°C for

60 min. After being thoroughly washed with PBS (0.01 M,

pH = 7.4), AFP/AbAFP/O-VMSF/ITO with different amounts

of the immune complex on the electrode surface was obtained.

The ECL intensities or the anodic peak currents of the

immunosensor before and after AFP binding were measured.

For ECL detection, AbAFP/O-VMSF/ITO or AFP/AbAFP/

O-VMSF/ITO was immersed in 0.01 M PBS (pH = 7.4)

containing 10 μM Ru (phen)3
2+ and 3 mM TPA for 10 min to

enrich the luminophores. It is important to note that 3 mM TPA

used here is excess in order to ensure continuous and stable ECL

emission (Ma et al., 2022b). Then, ECL signals were recorded by

continuous cyclic scanning between 0 and 1.25 V with a scan rate

of 100 mV/s. For EC detection, AbAFP/O-VMSF/ITO or AFP/

AbAFP/O-VMSF/ITO was immersed in 0.01 M PBS containing

0.5 mM Ru (phen)3
2+ for 5 min to enrich the electrochemical

probe. Then, current responses were recorded using the DPV

technique. For real sample analysis, human serum was diluted

50 times with PBS (0.01 M, pH 7.4) and directly determined

using the developed immunosensor.

3 Results and discussion

3.1 Characterization of the VMSF/ITO
electrode

Growth of VMSF on the ITO substrate was obtained by the

EASAmethod, as shown in Scheme 1. EASA is a simple and rapid

method used for the growth of VMSF with good reproducibility

on conductive substrates. In the EASAmethod, the condensation

of the siloxane precursor (TEOS) is triggered around the CTAB

surfactant micelle (SM) template by applying a cathode potential

to the electrodes to generate a hydroxide ion (OH−) catalyst

through the reduction of water and nitrate ions (NO3
−) (Ma et al.,

2022b). The as-prepared SM@VMSF/ITO contains SM inside the

channels, which can be removed by soaking it in HCl–ethanol to

get the channels open (Giordano et al., 2017). The morphology of

VMSF/ITO was first investigated by TEM and SEM. As shown in

the TEM image (Figure 1A), VMSF has numerous hexagonally

packed nanopores with a uniform diameter of 2–3 nm and

exhibits a high porosity of ~45%. The cross-sectional SEM

image of VMSF/ITO shows that the thickness of VMSF is

homogeneous and about 85 nm (Figure 1B). Two kinds of

electrochemical probes (Fe(CN)6
3– and Ru(NH3)6

3+) with

different charges were selected to prove the integrity and

permeability of VMSF. Figures 1C,D depict the

electrochemical behaviors of probes on the three types of

electrodes. Owing to the fact that CTAB SM inside the

channels hinders the transfer of these two probes from the

bulk solution to the electrode surface, no faradic currents but

only capacitive currents were observed at the SM@VMSF/ITO

electrode, indicating the integrity of VMSF without cracks or

defects. After the removal of SM, at the pH of 7.4, the redox peak

currents of Fe(CN)6
3–were significantly suppressed at the VMSF/

ITO electrode, while those of Ru(NH3)6
3+ remarkably enhanced

compared with bare ITO. This prominent charge-based

FIGURE 2
CV curves (A) and EIS plots (B) of VMSF/ITO, O-VMSF/ITO, AbAFP/O-VMSF/ITO, and AFP/AbAFP/O-VMSF/ITO electrodes obtained in 0.1 M KCl
containing 2.5 mM Fe(CN)6

3–/4–. The inset in (B) is the equivalent circuit. The concentration of AFP is 1 ng/ml.
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permeability ascribes to the deprotonation of abundant silanols

(pKa~2) inside the nanochannels, suggesting that the as-prepared

VMSF/ITO facilitates the electrostatic enrichment of positively

charged species. Then, we investigated the enhancement effect of

ECL/EC signals of the bifunctional probe Ru (phen)3
2+ with the

help of VMSF, and the results are shown in Figures 1E,F. As seen,

the ECL intensity of 10 μM Ru (phen)3
2+ obtained at the VMSF/

ITO electrode is two orders of magnitude higher than that of the

bare ITO electrode (Figure 1E), and the redox peak currents of

0.5 mM Ru (phen)3
2+ obtained at the VMSF/ITO electrode is

two-fold higher than that of the bare ITO electrode (Figure 1F).

The aforementioned results suggest that VMSF/ITO with charge

selectivity has great potential for the construction of Ru

(phen)3
2+-based electrochemical/electrochemiluminescent

sensors with high sensitivity.

3.2 Characterization of the ECL/EC dual-
mode immunosensor

The modification procedures and feasibility of the

construction of the immunosensor were proved by

electrochemical methods including CV and EIS. Figure 2

shows the CV curves and EIS plots obtained on various

electrodes in 2.5 mM Fe(CN)6
3–/4– solution. As seen, the

redox peak currents of the O-VMSF/ITO electrode are

similar to those of VMSF/ITO with only a slight decrease,

which is because the GPTMS monolayer being covalently

linked on the outer surface and the entry of silica

nanochannels instead of the inner nanochannels and also

suggests that the linkage of the epoxy group on the outer

surface of VMSF hardly affects the mass transfer (Figure 2A).

After the immobilization of AbAFP, the redox peak currents

underwent a significant decline, and the peak-to-peak

difference became larger. Supplementary Figure S1

compares the CV curves of VMSF/ITO before and after

incubation with AbAFP. No obvious change is observed,

indirectly indicating the presence of GPTMS entities on the

outer surface of O-VMSF/ITO and their important role in

AbAFP immobilization. When AFP is present, AFP can bind

specifically to AbAFP to form the immunocomplex on the

electrode surface, leading to further decreased redox peak

currents and increased peak-to-peak difference. This is

because the AbAFP or the immunocomplex with non-

conductive and large-sized characteristics could hamper the

electron transfer of the electrochemical probes on the

FIGURE 3
ECL–potential (A) and ECL–time (B) curves obtained at different electrodes. The concentration of AFP is 1 pg/ml. (C) ECL responses of the ECL
immunosensor in the presence of different concentrations of AFP. (D) Corresponding calibration curve. Error bars represent the standard deviation
of three measurements. The electrolyte is 0.01 M PBS (pH = 7.4) containing 10 μM Ru (phen)3

2+ and 3 mM TPA. The PMT voltage is 500 V.
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electrode interface. EIS is also applied to investigate the

interface properties during the sensor construction. As

depicted in Figure 2B, there are two segments in each EIS

plot: a semicircle in the high-frequency region representing

electron transfer-limited processes and a linear part in the

low-frequency region representing diffusion-limited

processes (Lu et al., 2018). The inset demonstrates the

equivalent circuit, which consists of the solution resistance

(Rs), double-layer capacitance (Cdl), Warburg impedance

(Zw), and apparent charge-transfer resistance (Rct). The

equivalent diameter of the semicircle in the high-frequency

region is equal to the apparent charge-transfer resistance Rct,

which increased from 128 Ω for ITO to 140 Ω for O-VMSF/

ITO, 499 Ω for AbAFP/O-VMSF/ITO, and 2945 Ω for AFP/

AbAFP/O-VMSF/ITO. All these results confirm the successful

construction of the immunosensor.

TABLE 1 Comparison of the analytical performances of various electroanalytical methods for the determination of AFP.

Electrode Method Classification Linear range
(pg/ml)

LOD (pg/ml) Reference

Ab2-ZnO-Ru and Ab1-AuNPs-rGO/GCE ECL Labeled 40–5×105 31 Zhao et al. (2018)

Ru-Si@AuNPs/PLL/rGO/Ab2 and Ab1/AuNPs/GCE ECL Labeled 3–5×105 0.5 Liu et al. (2014)

PAADs@CNDs@Ab2 and Ab1/C60/rGO/GCE ECL Labeled 10−3–8×104 3.3×10−4 Zhang et al. (2016)

HRP/AuNRDs/Ab2 and CdS:Eu QDs/AuNPs/rGO/GCE ECL Labeled 0.05–104 0.05 Feng et al. (2015)

CdSe/Ab2 and Ab1/ABA/GCE ECL Labeled 0.05–102 0.01 Cui et al. (2016)

CNTs@PNFs/CS/GCE ECL Label-free 0.1–1.6×105 0.09 Zou et al. (2017)

CNDs-Nafion/GCE ECL Label-free 0.1–3.2×105 0.1 Dai et al. (2012)

AuNPs/g-C3N4/GCE ECL Label-free 1–5×103 0.5 Dai et al. (2014)

PPy-MO DMIP/FTO EIS Label-free 10–104 3.3 Zheng et al. (2016)

AF/PDA/Ab2 and Ab1/GE CA Labeled 0.5–103 0.01 Taheri et al. (2022)

Fc/GO-DETA/Ab2 and Ab1/AuNPs-rGO/GCE DPV Labeled 0.35–3.5×104 0.014 Gong et al. (2021)

Au@CeO2 YSNs-Ab2 and Ab1/AuNPs/GCE LSV Labeled 0.1–2×105 0.035 Liao et al. (2021)

Ab/N-GQD/SWCNHs/GCE CV Label-free 1–2×105 0.25 Dutta et al. (2021)

Ab/p-PANI/GCE DPV Label-free 0.01–103 3.7×10−3 Wang et al. (2021)

Ab/O-VMSF/ITO ECL Label-free 10−2–106 5.6×10−4 This work

EC 10–106 4.5

Ab, antibody; AuNPs, gold nanoparticles; rGO, reduced graphene oxide; GCE, glassy carbon electrode; PLL, poly-L-lysine; PAADs, poly (amidoamine) dendrimers; CNDs, carbon

nanodots; AuNRDs, gold nanorods; QDs, quantum dots; ABA, p-aminobenzoic acid; CNTs, carbon nanotubes; PNFs, produced nanofibers; CS, chitosan; g-C3N4, graphite-like carbon

nitride; PPy, polypyrrole; MO, methyl orange; DMIP, dual-template molecularly imprinted polymer; FTO, F-doped tin oxide; EIS, electrochemical impedance spectroscopy; AF,

aminoferrocene; PDA, polydopamine; GE, gold disk electrode; CA, chronoamperometry; YSNs, yolk shell nanostructures; AuNPs, gold nanoparticles; GCE, glassy carbon electrode; LSV,

linear sweep voltammetry; N-GQD, nitrogen-doped graphene quantum dot; SWCNHs, single-walled carbon nanohorns; CV, cyclic voltammetry; p-PANI, porous polyaniline.

FIGURE 4
(A) DPV curves of the immunosensor in the presence of different concentrations of AFP. (B) Corresponding calibration curve. Error bars
represent the standard deviation of three measurements. The electrolyte is 0.01 M PBS (pH = 7.4) containing 0.5 mM Ru (phen)3

2+.
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3.3 ECL detection of AFP

Figures 3A,B compare the ECL–potential, and ECL–time

curves of the Ru (phen)32+/TPA co-reactant system at various

electrodes, namely, VMSF/ITO, O-VMSF/ITO, AbAFP/O-VMSF/

ITO, and AFP/AbAFP/O-VMSF/ITO electrodes. Similar to the

aforementioned CV and EIS results, decreased ECL intensity is

observed for each fabricated step and further incubation with

1 pg/ml AFP. Also, the resulting ECL sensor (AbAFP/O-VMSF/

ITO) has satisfactory stability under continuous scanning

(relative standard deviation (RSD), less than 7%) before and

after the detection of AFP. These results indicate that the

proposed ECL immunosensor has the ability to detect AFP.

Based on the AFP-controlled transport of Ru (phen)3
2+ into

the silica nanochannels, the as-prepared AbAFP/O-VMSF/ITO

immunosensor was applied to detect various concentrations of

AFP in the buffer solution, and the results are shown in Figures

3C,D. As seen, the obtained ECL signals gradually decrease with

the increasing AFP concentration, and the corresponding

calibration curve shows a good linear relationship between

ECL intensity (IECL) and the logarithmic value of AFP

concentration (logCAFP) ranging from 10 fg/ml to 1 μg/ml

(IECL = −919 logCAFP + 11,524, R2 = 0.992). The limit of

detection (LOD) is calculated to be 0.56 fg/ml (S/N = 3).

Moreover, Table 1 summarizes the detection performance of

various ECL methods for the detection of AFP. Although

excellent analytical performance is achieved by these listed

sensors, most of them are based on the label strategy and

require laborious procedures. Without the need for

synthesizing complex nanomaterials or tedious labeling, the

proposed immunosensor exhibits a wider linear range and a

much lower LOD.

3.4 EC detection of AFP

Arising from the inherent redox characteristic of Ru

(phen)3
2+, the proposed immunosensor was also used to

quantitatively detect AFP by the EC mode. Figure 4A shows

the DPV responses of the AbAFP/O-VMSF/ITO electrode to the

different concentrations of AFP. Upon increasing the

concentration of AFP, the decreased anodic peak currents

FIGURE 5
Relative ratio (I/I0) of ECL intensity (A) or EC signal (B) before (I0) and after (I) incubation with buffer (control), SAA, CEA, S100β, CA199, AFP, or
their mixture. The concentrations of all the species are 10 pg/ml and 1 ng/ml for ECL and EC detection, respectively.

TABLE 2 Detection of artificially added AFP in human serum.

Sample Method Addeda Founda RSD/% (n=3) Recovery/%

Serumb ECL 0.100 0.104 2.4 104

10.0 9.17 4.3 91.7

100 103 3.1 103

EC 0.100 0.102 3.8 102

10.0 0.957 4.4 95.7

100 10.2 5.1 102

aThe units of AFP, detected by ECL and EC, are pg/mL and ng/mL, respectively.
b50 times diluted with PBS (0.01 M, pH=7.4).
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were obviously displayed, showing a good linear relationship

with the logCAFP ranging from 10 pg/ml to 1 μg/ml

(IEC = −2.33 logCAFP + 28.41, R2 = 0.991). The LOD is

calculated to be 4.5 pg/ml (S/N = 3). A comparison of various

EC methods for the detection of AFP is also listed in Table 1. As

revealed, a wider linear range is achieved by the proposed EC

method. Although the LOD is not as low as other EC methods,

our electrode materials are easily obtained and have simple

operation methods.

3.5 Anti-interference and stability of the
immunosensor

A series of potentially existing interfering species were

chosen to estimate the selectivity of our ECL/EC dual-mode

immunosensor, and the results are shown in Figure 5. After

incubation with AFP, serum amyloid A protein (SAA),

carcinoembryonic antigen (CEA), S100 calcium-binding

protein β (S100β), carcinoma antigen 199 (CA199), or their

mixture, only AFP and a mixture of five species could

produce a remarkable decrease at the AbAFP/O-VMSF/ITO

sensor for both ECL and EC modes. The aforementioned

results show the high selectivity of our dual-mode sensor,

which is ascribed to the highly specific recognition between a

couple of antibodies and antigens. In addition, our proposed

dual-mode immunosensor is stable after 20 days when stored

at 4°C.

3.6 Analysis of AFP in human serum
samples

The practical application of the developed immunosensor is

evaluated by determining the concentration of AFP in complex

biological samples. Different and known concentrations of AFP

are artificially added to the serum of a healthy man for direct

analysis. As shown in Table 2, the proposed ECL or EC

immunosensor exhibits good recoveries ranging from 91.7%

to 104.4% and low RSD values (< 5.1%). We also compared

the amounts of a human sample spiked with 1 ng/ml AFP

obtained from enzyme-linked immunosorbent assay (ELISA)

and our proposed dual-mode immunosensor, which showed

good consistency and further proved that both ECL and EC

modes have good reliability in real sample analysis. Moreover,

owing to the excellent anti-fouling ability of VMSF whose

nanopores can filter macromolecules, the as-prepared

immunosensor has great potential in complex real sample

analysis without tedious pretreatments.

4 Conclusion

In summary, we have reported that the ECL/EC signals of

Ru (phen)3
2+ can be significantly improved by the VMSF/ITO

electrode and used as the bifunctional probe in solution for the

construction of the dual-mode ECL and EC immunosensors.

Arising from the negatively charged nanochannel walls of

VMSF, a large amount of Ru (phen)3
2+ could be

electrostatically preconcentrated onto the electrode surface,

which could remarkably increase the sensitivity of Ru

(phen)3
2+-based ECL/EC sensors. As a proof of concept,

when using a tumor biomarker (AFP) as the analyte, the

anti-AFP antibody was covalently immobilized onto the

external surface of VMSF/ITO to produce the highly

specific sensing interface. On the basis of the fact that the

formed immunocomplex could hinder the diffusion of Ru

(phen)3
2+ to the underlying electrode surface, the intensities of

ECL/EC signals at the fabricated immunosensor were

decreased, and the sensitively quantitative determination of

AFP was realized with a low LOD and relatively low

consumption of Ru (phen)3
2+. Moreover, due to the anti-

fouling property of VMSF, the proposed dual-mode

immunosensor could be successfully applied to the analysis

of human serum, which could extend to a large scope of

biomarkers and provide a new strategy for clinical diagnosis.
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