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Tumor immunotherapy mainly relies on activating the immune system to

achieve antitumor treatment. However, the present tumor immunotherapy

used in the clinic showed low treatment efficacy with high systematic

toxicity. To overcome the shortcomings of traditional drugs for

immunotherapy, a series of antitumor immunotherapies based on

nanomaterials have been developed to enhance the body’s antitumor

immune response and reduce systematic toxicity. Due to the

noninvasiveness, remote controllability, and high temporal and spatial

resolution of light, photocontrolled nanomaterials irradiated by excitation

light have been widely used in drug delivery and photocontrolled switching.

This review aims to highlight recent advances in antitumor immunotherapy

based on photocontrolled nanomaterials. We emphasized the advantages of

nanocomposites for antitumor immunotherapy and highlighted the latest

progress of antitumor immunotherapy based on photoactivated

nanomaterials. Finally, the challenges and future prospects of light-activated

nanomaterials in antitumor immunity are discussed.
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1 Introduction

Cancer is one of the main causes of human death (Zaimy et al., 2017). Statistics show

that there will be an estimated 19.3 million new cancer cases and nearly 10 million cancer

deaths worldwide in 2020 (Siegel et al., 2021; Sung et al., 2021). Therefore, the exploration

of early diagnosis and effective treatment methods of cancer have attracted much

attention. The traditional clinical methods of tumor treatment are mainly surgery,

chemotherapy and radiotherapy (Burugu et al., 2017; Hojman et al., 2018), which

have defects, such as poor efficacy and high toxicity (Zeng et al., 2021). In recent

years, immunotherapy has become a promising method for the treatment of malignant

tumors (Riley et al., 2019; Abbott & Ustoyev, 2019; Igarashi & Sasada, 2020; Yang F. et al.,

2020). Immunotherapy is the artificial enhancement or suppression of the body’s immune

function in the presence of hypo- or hyperfunctioning organisms for the purpose of

treating disease. Tumor immunotherapy aims to improve the overall adaptability of the

immune system by modulating key immune mechanisms (Topalian, 2017) and
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redirecting adaptive immune cells to destroy tumor-specific

targets (June et al., 2018). To date, a variety of tumor

immunotherapy methods have been discovered (Figure 1)

(Chauhan et al., 2021; Kumar et al., 2021; Lesch & gill, 2021;

Guo et al., 2022), including immune checkpoint blockade (Ribas

& Wolchok, 2018; Havel et al., 2019; He & Xu, 2020), cancer

vaccines (Duong et al., 2018; DeMaria & Bilusic, 2019; Shemesh

et al., 2021), cell therapy (Fry et al., 2018; Mohanty et al., 2019;

Wang et al., 2020), immunomodulatory small molecules (Cukier

et al., 2017; Berraondo et al., 2019; Gracia, et al., 2019), etc.

However, emerging tumor immunotherapy methods still face

enormous challenges, such as the low efficacy of targeted drug

therapy and the inherent toxicity of immunotherapy drugs,

which may lead to severe inflammatory responses and

autoimmune diseases (Emens et al., 2017; Kroschinsky et al.,

2017). Therefore, it is essential to find a safer and more

controllable method for tumor immunotherapy.

With the rapid development of nanotechnology, the clinical

application of nanomaterials is also increasing (Ulbrich et al.,

2016; Zang et al., 2017; Cheng et al., 2021). Due to their special

physical and chemical properties, nanoparticles have significant

potential therapeutic effects in tumor immunotherapy

(Velpurisiva et al., 2017; Park et al., 2018; Irvine & Dane,

2020; Muluh et al., 2021). Tumor immunotherapy mainly

relies on efficient drug delivery and targeted tumor therapy.

Nanomaterials are used as transport carriers to form stable

nanocomplexes through encapsulation or combination, which

can improve the efficacy of tumor immunotherapy and reduce

drug toxicity (Gonçalves et al., 2020). Furthermore,

nanomaterials can enhance the drug delivery efficiency in an

active or passive manner (enhanced permeability and retention

(EPR) effect) (Liu et al., 2018; Kang et al., 2020; Li et al., 2022),

enabling the delivery of drugs, antibodies or other

immunotherapeutic agents to preferentially accumulate at the

tumor site (Jain & Stylianopoulos, 2010), which can minimize

side effects and improve therapeutic efficacy (Duong et al., 2018).

To date, phototherapy has attracted extensive attention in

clinical treatment due to its remote controllability, high temporal

and spatial resolution, noninvasiveness and high selectivity (Li

J. et al., 2019; Wang M. et al., 2019; Zhao et al., 2019). At present,

light-responsive nanomaterials mainly include organic materials

(photosensitizers, fluorophores and carbon-based nanoparticles)

and inorganic-based nanoparticles (quantum dots, upconverting

nanoparticles and gold nanoparticles) (Choi & Frangioni, 2010;

Son et al., 2019). Light-activated therapy is less invasive, much

more precise and safer than traditional treatments such as

chemotherapy, surgery and radiation (Riley et al., 2018).

UV light is most commonly used light for photocontrolled

drug delivery, release or response owing to its capability to trigger

a structural change in light-responsive systems. These

photochemical reaction processes then lead to nanoparticle

disassembly and the subsequently controllable release of

payloads. Most UV light responsive nanomaterials have been

modified with photocleavable terminal groups, photocleavable

side chains or multiphotocleavable linkers (Yan et al., 2013; Sun

et al., 2018), and the most commonly used photocleavable

protecting groups are o-nitrobenzyl and coumarin derivatives.

According to the photochemical reaction mechanisms, light-

induced structural changes are often divided into three major

processes: 1) photocleavage of light-responsive units, 2)

photoisomerization, and 3) photocrosslinking/-decrosslinking

(Zhao et al., 2019). However, light in the ultraviolet‒visible

region has poor penetration ability in biological tissues and is

harmful to the skin, while near-infrared (NIR) light has deeper

tissue penetration and low toxicity, so the application of NIR

light to trigger tumor therapy has stronger application potential

(Wang et al., 2013; Yan & Li, 2016). The mechanism of

converting NIR light irradiation into UV light is discussed in

the section on upconversion nanoparticles.

For immune activation triggered by light-activated

nanomaterials, the strategies mainly include using light to

activate cancer vaccines, chimeric antigen, receptor (CAR)-

T-cell therapy, immune checkpoint blockade (ICB) therapy,

cytokine therapy, and immune adjuvant therapy (Chu et al.,

2021). Phototherapy can enhance the therapeutic effect by

amplifying antitumor immunity, reversing the tumor

immunosuppressive microenvironment (TIME) and enhancing

the effect of immunotherapy by producing an extremely

immunogenic tumor microenvironment (TME) (Li H. et al.,

2020; Shi et al., 2020). Phototherapy can be combined with

immunotherapy to eliminate metastatic tumors. Moreover,

when used in combination with conventional immunotherapy,

FIGURE 1
Tumor immunotherapy. (Reproduced from Chauhan et al.,
2021, International Journal of Molecular Science; Guo et al., 2022,
Biomaterials).
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phototherapy can promote the maturation of APCs to initiate

immune responses (Jiang et al., 2020).

In recent years, a variety of photocontrolled nanomaterials

have been developed, such as gold nanoparticles, carbon

nanomaterials, and upconversion nanoparticles (Boyer et al.,

2010; Zhang et al., 2016). Here, we mainly review the

application of photocontrolled nanomaterials in antitumor

immunotherapy.

2 Light-activated nanomaterials for
tumor immunotherapy

2.1 Polymer nanomaterial-based
antitumor immunity

Polymer-based nanoparticles can serve as excellent carriers

for delivering biomolecules, drugs, genes and vaccines to tumor

sites in vivo (Wei et al., 2021). Among them, conjugated polymers

(CPs) have strong light absorption ability, good stability and

biocompatibility in the NIR region. Xuan et al. reported an

optogenetic system mediated by conjugated polymer

nanoparticles (CPNs), which could activate immunotherapy in

situ under NIR irradiation (Fu et al., 2021). Illumination of CPNs

with NIR drives the heat shock promoter (HSP70) to trigger gene

transcription of the interferon-γ (IFN-γ) cytokine. IFN-γ
secreted by tumor cells induces the activation of surrounding

tumor-associated macrophages through the IFN-γ-JAK-
STA1 signaling pathway, which induces cancer cell killing

through immunotherapy (Figure 2A).

Moreover, CPs can be facilely designed by using molecular

engineering to possess certain electrical and optical properties for

optimal photothermal therapy (PTT) performance (Tuncel &

Demir, 2010; Guo et al., 2017; Qian et al., 2017). Wang et al. first

demonstrated the synthesis of conjugated polymer nanoparticles

(CP NPs) with a uniform diameter of 52 nm as PTT agents by

using a modified nanoprecipitation process (Wang S. et al.,

2019). Under 808 nm laser illumination, the thiolated cyclo

FIGURE 2
(A) Schematic illustration of photothermal conjugated polymer nanoparticles (CPN) for remote control cancer immunotherapy (Reproduced
from Fu et al., 2021, AdvanceMaterials). (B) Schematic illustration of amicrofluidic glass capillarymixer for the synthesis of PORGDNPs. (Reproduced
from Wang M. et al., 2019, ACS Applied Materials & Interfaces). (C) Synthetic route and chemical structure of three conjugated polymers. (D) NIR-II
fluorescence images of mice with 4T1 tumors at different time points after injection with P1 NPs under 808 nm illumination. (E) Quantitative
NIR-II fluorescence signal intensity corresponding to the tumor sites at different time points in (D). (F) Corresponding infrared photothermal images
of mice with 4T1 tumors after injection with PBS and P1 NPs under 1,064 nm laser excitation (G) Corresponding temperature changes at the tumor
sites. (H) Tumor volumes and (I) weight growth curves of mice with 4T1 tumors treated with the four treatment groups at different time points. (J)
Photo of excised tumors after 15 days of therapy. (Reproduced from Chen C. et al., 2021, Journal Materials Chemistry B).
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(Arg-Gly-Asp-D-Phe-Lys (mpa)) peptide (c-RGD)-

functionalized CP NPs exhibited high photothermal

conversion efficiency, which activated a proinflammatory

immune response and induced effective cancer cell death

(Figure 2B). Furthermore, studies have found that NIR-Ⅱ light

reduces light scattering and photon absorption in biological

tissues, so it has better spatial resolution and lower

autofluorescence intensity than traditional NIF-FI

(700–900 nm) (Zhang D. X. et al., 2019; Hu et al., 2020a;

Zhang et al., 2020a; Hu et al., 2020b; Yang J. et al., 2020).

Thus, CPs are designed for NIR-Ⅱ because of their changeable

chemical structures, adjustable NIR absorption, large Stokes

shift, high extinction coefficient, and superior biocompatibility

(Lin et al., 2017; Yin et al., 2017; Li T. et al., 2019; Li X. et al., 2019;

Cui et al., 2020). Chen et al. designed and developed

nanoparticles based on double-acceptor conjugated polymers

(P1 NPs) for application in NIR-Ⅱ FI and NIR-Ⅱ PTT (Chen

C. et al., 2021) (Figure 2C). The in vivo experiments

demonstrated that P1 NPs not only exhibited high

accumulation and a high sign-to background ratio (SBR) of

vascular imaging at the tumor sites but also showed excellent

NIR-II PTT efficiency for tumor treatment (Figures 2D–J).

Tumor cells can escape T-cell-mediated cytotoxicity using

the programmed cell death protein 1 (PD-1)/programmed cell

death 1 ligand 1 (PD-L1) immune checkpoint (Goodman et al.,

2017), so blocking the PD-1/PD-L1 checkpoint has been

extensively studied in antitumor immunity (Akinleye &

Rasool, 2019). Yu et al. designed a synthetic nanoparticulated

PD-L antagonist consisting of poly (ethylene glycol)-poly (lactic

acid-coglycolic acid) (PEG-PLGA) nanoparticles decorated with

a PD-L1 binding peptide. Nanoparticles can accumulate in the

tumor site and mediate strong photothermal effects, eliminate

primary tumors treated by near infrared radiation and cause

strong antitumor immunity by inducing immunogenic cell death

(ICD) (Yu et al., 2022).

Semiconducting polymer nanoparticles (SNPs) are

transformed from semiconducting polymers (SPs), which are

composed of highly π-conjugated backbones (Li W. et al., 2020).

Compared with most semiconductor inorganic nanoparticles,

SNPs have good biocompatibility and optical properties, as well

as excellent optical stability (Jiang B. P. et al., 2019; Li & Pu, 2020;

Zhou et al., 2020; Zhen et al., 2021). Zhang et al. reported a

semiconducting polymer nano-PROTAC (SPNpro) with

phototherapy and activatable protein degrading capabilities for

photoimmunometabolic cancer therapy (Zhang et al., 2021).

Under NIR light irradiation, SPNpro can generate singlet

oxygen to eliminate tumor cells and induce immunogenic cell

death (ICD) to enhance tumor immunogenicity. In addition,

cathepsin B, a cancer biomarker, can specifically activate the

PROTAC of SPNpro, triggering the targeted proteolysis of

immunosuppressant indoleamine 2,3-dioxygenase (IDO) in

tumors. Sustained IDO degradation blocked the catabolic

process of tryptophan (Trp) and promoted the activation of

effector T cells (Figures 3A,B).

Liu et al. reported an amphipathic semiconductor polymer

nanoimmunomodulator (SPNI) that absorbed NIR light to

achieve PDT (Zhu et al., 2017) and conjugated with a Toll-

like receptor 7 (TLR7) agonist (imiquimod: R837) via an acid-

liable Schiff base linker (Figure 3C) (Liu et al., 2022).

Introduction of R837 triggers ligation of TLR7 in endosomal

membrane localization to promote DC maturation and secretion

of proinflammatory cytokines (Lee et al., 2003). Under NIR light,

FIGURE 3
(A) Structure and cathepsin B (CatB)-specific activation mechanism of SPN pro. (B) SPN-mediated activation of two processes of
photoimmunometabolic therapy. (Reproduced from Zhang et al., 2021, Nature Communitions). (C) Chemical structures of PFPR, PEG-PLGA,
PCPDTBT, and the preparation of SPNI. (D) The process of immune activation mediated by SPNI-based precision photodynamic immunotherapy.
(Reproduced from Liu et al., 2022, Advance Materials).
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SPNI has the photodynamic effect of direct tumor killing and

death of immunogenic cancer cells. The synergistic action of the

released immunogenic factor and TLR7 agonist activated by the

acidic tumor microenvironment (TME) can be used as a tumor

vaccine in situ with strong antitumor activity (Figure 3D) (Liu

et al., 2022). Lyu et al. utilized the enzymatic oxidation properties

of vinylidene bonds in combination with polymers to synthesize

biodegradable semiconductor polymers (DPPV) and convert

them into water-soluble nanoparticles (SPNV), which can

enhance PA and PTT efficiencies for cancer therapy (Lyu

et al., 2018). Wei et al. designed and synthesized a novel

diketopyrrolopyrrole polymer nanoparticle [P(AcIID-DPP)],

which exhibited strong light absorption and excellent

photothermal conversion in the NIR-I to NIR-II optical

region. capacity, high biocompatibility and photostability (Wei

et al., 2018). In addition, nanoparticles can be efficiently absorbed

by cancer cells and thermally ablated under NIR-II laser

irradiation, exhibiting excellent anticancer effects. Jiang et al.

synthesized an amphiphilic semiconductor polymer (PEG-PCB)

that can not only be used as a diagnostic component in NIR

fluorescence and PA imaging but also enable effective NIR

fluorescence/PA imaging-guided photothermal therapy (Jiang

et al., 2017).

Polylactic glycolic acid (PLGA) has controlled and sustained-

release properties, low toxicity, and good biocompatibility and

can be used for drug delivery, cancer imaging and therapy

(Clawson et al., 2010; Danhier et al., 2012; Sadat Tabatabaei

Mirakabad et al., 2014; Jia et al., 2018). Chen et al. discovered a

kind of PLGA-IGG-R837 nanoparticle coated with the

photothermal agent indocyanine green (IGG) and

TLR7 ligand R837 (Chen et al., 2016). Under NIR light

irradiation, PLGA-IGG-R837 ablated tumors by photothermal

action and released tumor-associated antigens. Nanoparticle

adjuvants loaded with R837 showed vaccine-like function,

leading to immune responses. Luo et al. prepared

biodegradable PLGA nanoparticles coloaded with hollow gold

nanoshells (HAuNS) and anti-PD-1 peptide (APP) (AA@PN).

NIR irradiation can not only trigger the release of APP and

maintain a long-term immune response in vivo but also enable

HAuNS to produce a photothermal effect to ablate tumors. The

combined effect of NIR and HAuNS can produce a stronger

antitumor effect (Luo et al., 2018).

2.2 Small molecule nanomedicine-based
antitumor immunity

Small molecule nanomedicines (SMNs) refer to nanoscale

drug delivery systems assembled from small molecule drugs (Ma

et al., 2016; Wang Y. et al., 2017; Cheetham et al., 2017).

Compared with traditional nanomedicines with complex

preparation and possible toxicity of carrier materials, small

molecule nanomedicines have been extensively studied (Luo

et al., 2016; Li G. et al., 2021). All-drug small-molecule

nanomedicines show excellent antitumor effects due to the

synergistic effect of different drugs, but they have untraceable

and undetermined defects (Xue et al., 2020). Adding

photosensitizers to small-molecule nanomedicines can not

only achieve light control but also enhance the effect of

antitumor immunotherapy in combination with

photodynamic therapy or photothermal therapy (Xue et al.,

2019).

Li et al. self-assembled small-molecule nanoparticles by the

interaction of photosensitizer ICG and epirubicin (EPI) in

aqueous solution. ICG-EPI NPs exerted an excellent

photothermal effect to ablate tumors under NIR laser

irradiation and combined with chemotherapy drugs to further

enhance the antitumor effect (Li et al., 2017). Zhang et al.

assembled nanoparticles (DINP) using the hydrophobic drugs

doxorubicin (DOX) and ICG and coated their surface with

ruptured cancer cell membranes to form novel NIR-

responsive and highly targeted small-molecule

nanoparticles (DOX NPs@ICG@CCCM, DICNPs) (Zhang

H. et al., 2018). The cancer cell membrane can enable

DICNPs to target the tumor site. After reaching the tumor

site, the cancer cell membrane was destroyed under NIR light

irradiation to rapidly release DOX and ICG, thereby

producing efficient chemical and photothermal effects to

achieve antitumor immunotherapy. Zhang et al. assembled

amphiphilic amino acids (9-fluorenylmethoxycarbonyl-

L-leucine, Fmoc-ll) and photosensitive drugs (Ce6) with

metal ions (Mn2+) to form an amino acid-porphyrin-Mn

complex nanoplatform (FMCNPs) (Zhang N. et al., 2018).

FMCNPs had high drug-loading capacity, good

biocompatibility and MRI function and showed excellent

tumor accumulation and photodynamic effects under NIR

irradiation, which can effectively ablate tumors.

2.3 Porous silicon nanoparticle-based
antitumor immunity

Due to its unique optical properties and biodegradability, porous

silicon has been widely used in biomedical fields, such as drug

delivery, biosensors and imaging (Martín-Palma et al., 2014; Li et al.,

2018; Zhang R. et al., 2019; Tieu et al., 2021). Li et al. designed a

selective photothermal and weak immunostimulatory nanovaccine

based on porous silicon composite nanomaterials (Li J. et al., 2021).

Porous silicon nanoparticles (PSiNPs) had a significant

immunostimulatory effect on immune cells after special

treatment and were coated with the cancer cell membrane

(CCM) to obtain the CCM@PSiNPs@Au nanovaccine (Figure 4).

Under irradiation with NIR light, immunostimulatory vaccines are

released, which can induce the antitumor immune response of the

body and control the overproduction of cytokines by immune cells,

further enhancing the therapeutic effect of PTT.
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NIR dye IR780 is a biodegradable photothermal and imaging

agent that can be loaded into mesoporous silica nanoparticles

(MSNs) to form biodegradable cores (Jiang et al., 2015; Zhan

et al., 2017). Ma et al. coated IR780-loaded MSNs (IMs) with a

prefabricated CAR-Tmembrane to prepare tumor-specific CAR-

T membrane-wrapped nanoparticles (CIMSs) (Ma et al., 2020).

Experiments in vitro and vivo show that CIMS has stronger

tumor targeting and antitumor ability.

MSNPs, with higher intrinsic stability, higher drug loading

and larger surface area, can deliver effective concentrations of

drugs to tumor sites, which provides a new research direction for

targeted drug delivery (Moradipour et al., 2020; Barkat et al.,

2021; Ghaferi et al., 2021;Wang et al., 2021; Sheng et al., 2022; Xie

et al., 2022), such as the delivery of anti-miR therapeutics (Zhang

et al., 2014; Bertucci et al., 2015; Yu et al., 2016; Khatami et al.,

2021). Yue et al. developed a multifunctional nanoplatform

(MPSNs@R837) formed by mesoporous hexagonal core-shell

zinc porphyrin silica nanoparticles (MPSNs) loaded with R837

(Toll-like receptor 7 agonist) (Yue et al., 2022). In the presence of

light sources, MPSNs@R837 can effectively destroy primary

tumors through PTT and PDT. In addition, the loaded

immune adjuvant R837 can be functionalized with tumor-

associated antigens, promote the maturation of DCs and

trigger a strong immune response (Figure 5A).

However, MSNPs suffer from low biocompatibility and

dispersibility, premature drug release, and interaction with

erythrocyte membranes, leading to hemolysis (Bharti et al., 2015;

Zhang et al., 2017). Lu et al. constructed multistimuli-responsive

mesoporous silica-coated carbon nanoparticles (DOX/MCN@Si-

Cd) with high drug loading capacity and high photothermal

conversion efficiency (Lu et al., 2020). The appropriate size of

carbon dots (Cd) prevented the premature release of DOX (Hu

et al., 2016); DOX was released rapidly at low pH and high

glutathione (GSH) concentrations (Cheng et al., 2011; Cui et al.,

2012; Duan et al., 2019). Local high temperature generated under

NIR radiation can not only directly kill the cells but also accelerate

the release of DOX and improve the sensitivity and permeability of

cells. The DOX/MCN@Si-Cd compound achieved accurate drug

delivery, controlled drug release and synergistic chemo-

photothermal antitumor therapy (Figures 5B–D) (Lu et al., 2020).

2.4 Carbon nanomaterial-based antitumor
immunity

Carbon nanomaterials (carbon nanotubes, carbon

quantum dots, graphene oxide, carbon nanohorns

(Karousis et al., 2016), etc.) are widely used in medical

research due to their ideal biocompatibility, unique

photothermal conversion efficiency and other

physiochemical and chemical properties (Jiang Y. et al.,

2019; Giordani et al., 2019; Wiehe et al., 2019; Liu et al.,

2020; Lee et al., 2021; Sainz-Urruela et al., 2021). Graphene

quantum dots (GQDs) have been shown to produce singlet

oxygen and other ROS under specific light activation, which is

the key to the phototoxicity of PDT (Ge et al., 2014). Zhang

FIGURE 4
(A–C) The schematic simulation of (A) the fabrication of PSiNPs, (B) PSiNPs@Au and CCM@(PSiNPs@Au) samples; and (C) the aggregation
mechanism of particles induced by CCM coating during their coextrusion. (Reproduced from Li G. et al., 2021, Advance Materials).
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et al. proposed a hybrid photosensitizer (GQD-PEG) based on

the connection of the original GQDs to polyethylene glycol

(PEG), which showed significant ROS generation efficiency

and excellent biocompatibility under 560 nm laser irradiation

(Zhang et al., 2020b). In addition, GQD-PEG showed a strong

ablative effect under irradiation and a significant increase in

antitumor immune-associated cytotoxic T lymphocytes

(CTLs) and proinflammatory cytokines. Liu et al. found

that water-soluble C (60)(OH)(20) nanoparticles have

effective antitumor activity in vivo and can increase the

production of T helper cell type 1 (Th1) cytokines and

decrease the production of Th2 cytokines (Liu et al., 2009).

Single-walled carbon nanotubes (SWNTs) are characterized

by strong absorbance in the NIR region (Zhou et al., 2009; Lin

et al., 2022) and are able to cross cell membranes without causing

cytotoxicity (Porter et al., 2007; Tajabadi, 2019). Some carbon-

based nanomaterials can mature DCs and then stimulate an

immune response, suggesting that they have potential

immunoadjuvant properties in cancer immunotherapy (Wang

et al., 2014). Zhou et al. designed amultifunctional SWNT system

that can absorb NIR light to destroy tumor cells and carry

immune stimulants into tumor cells to enhance tumor

immunogenicity (Zhou et al., 2012). However, given the

degradability of carbon nanomaterials in vivo (Chong et al.,

2015), biodegradable carbon nanotubes or graphene oxide

(GO) that have been reported thus far tend to have an

inhomogeneous size or morphology, which may lead to

uncertain side effects in vivo (Bianco, 2013). Thus, Wang

et al. designed a degradable carbon-silica nanocomposite

(CSN) with immunoadjuvant properties that could be

degraded into small particles (~5 nm) (Figure 6) (Wang et al.,

2020). In vivo, the tumor inhibition efficiency of CSN was above

90% in the 4T1 tumor model and the PDX tumor model.

GO is considered a promising nanomaterial for NIR drug

delivery systems due to its two-dimensional film structure,

biocompatibility and near infrared absorption spectroscopy

(Daniyal et al., 2020). Tao et al. applied a GO-PEG-PEI

nanosystem to efficiently deliver CpG, and its NIR light

absorbance can control the immune stimulation activity of

CpG ODNs (Tao et al., 2014). Under irradiation with NIR

light, the intracellular transport of nanocarriers was

accelerated due to PTT, and the immune stimulation response

FIGURE 5
(A) Schematic illustration of the preparation of the core-shell zinc porphyrin nanoplatform (MPSNs@R837) and its use for synergistic antitumor
immunity. (Reproduced from Yue et al., 2022, Journal of Nanobiotechnology). (B–D) Synthesis process of (B) DOX/MCN@Si-CDs and (C)MCN@Si-
CDs. (D) Schematic illustration of chemo-photothermal synergistic therapy against tumors. (Reproduced from Lu et al., 2020, Colloids and Surfaces
B: Biointerfaces).
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FIGURE 6
(A) Schematic illustration of degradable CSNs with immunoadjuvant properties for photothermal and photodynamic cancer therapy. (B)
Schematic illustration of CSN synthesis. (C) SEM and (D) high-resolution transmission electron microscopy (HR-TEM) images of CSN. (E) Size
distribution of CSN. (F) High-angle annular dark-field scanning TEM (HAADF-STEM) image and element mapping of CSN. (Reproduced from Wang
et al., 2020, ACS Nano).
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was significantly enhanced. Zhou et al. constructed a

nanosystem (rGO/MTX/SB) that loaded the chemotherapy

agent mitoxantrone (MTX) and transforming growth factor-

β (TGF-β) inhibitor SB-431542 (SB) onto reduced graphene

oxide (rGO) (Zhou B. et al., 2021). Under noninvasive NIR

light irradiation, MTX-induced ICD effectively activated

systemic antitumor immune responses, and SB helped to

alter the tumor microenvironment to enhance reduced

graphene oxide (rGO) (Figure 7). This synergistic therapy

induced superior antitumor immunity, tumor killing and

immune processes and triggered effective CTL control of

metastasis.

2.5 Metal nanomaterial-based antitumor
immunity

Metal nanomaterials have been widely used in biomedical

fields due to their good physicochemical properties (Popescu,

et al., 2015; Vimbela, et al., 2017). Among them, gold

nanomaterials have the advantages of photocontrol ability,

chemical inertness and minimal toxicity (Kohout et al., 2018;

Zhou F. et al., 2021) and are widely used in the diagnosis and

treatment of tumors (Singh et al., 2018; Ding et al., 2020;

Guinart et al., 2020; Essawy et al., 2021). Upconversion

nanoparticles are also in the category of metal

nanoparticles, but they are a relatively special metal rare

earth element that can be used for more effective and safer

cancer treatment (Li H. et al., 2020; Liu X. et al., 2021). In

addition, there are other metal nanomaterials, such as Pt, Cu

and Fe, which are used in cancer therapy due to their unique

physicochemical properties.

2.5.1 Gold nanomaterial-based antitumor
immunity

Gold nanorods (AuNRs) with tunable and strong NIR

absorption are considered one of the most promising drugs

for tumor therapy and diagnosis (Lee & Gaharwar, 2020).

Yata et al. designed a composite immunostimulatory DNA

hydrogel, mixing appropriately designed hexapods with CpG-

modified gold nanoparticles to form a composite gold

nanoparticle-DNA hydrogel (Yata et al., 2017). Under laser

irradiation, the hydrogel released hexapods, effectively

stimulating immune cells and releasing proinflammatory

cytokines. Ahn et al. reported an AuNP-based therapeutic

cancer vaccine carrying endogenous EDB autoantigens (Ahn

et al., 2014). Gold nanoparticles can effectively deliver

antigens to dendritic cells and induce antigen-specific

cytotoxic T lymphocyte responses for effective cancer therapy.

Khoobchandani et al. designed a novel nanodrug MGF-AuNP

formed by encapsulating mangiferin (MGF) with gold

nanoparticles, which can provide an effective

immunomodulatory intervention by targeting the tumor

microenvironment (Khoobchandani et al., 2021).

The tumor microenvironment is an indispensable part of

tumors (Pitt et al., 2016) and is one of the key factors affecting

immunotherapy effects (Osipov et al., 2019; Xiao & Yu, 2021).

Tian et al. designed a multifunctional nanoparticle (HA-AuNR/

M-M2pep NP) to overcome the limitations of the tumor

microenvironment on immunotherapy efficiency. It is

FIGURE 7
The mechanism of the antitumor immune response induced by rGO/MTX/SB-based PTT. (Reproduced from Zhou B. et al., 2021, Biomaterials).
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composed of gold nanorods (HA-AuNR) modified with M2pep

melt peptide (M-M2pep) in response to hyaluronic acid (HA)

and matrix metalloproteinase-2 (MMP2). Precise PTT can be

achieved under NIR light irradiation, triggering tumor

immunogenic cell death and antitumor immunity irradiation

(Figure 8A). Meanwhile, the nanoparticles release M2pep by

cleaving MMP2-sensitive peptide, which can improve the

immune activity of the TME and further enhance the

antitumor efficacy (Tian et al., 2021).

Tang et al. used supramolecular gold nanorods to target and

block the immune checkpoint (PD-L1-CRISPR/Cas9), which

blocked the gene expression of PD-L1 under NIR light

irradiation to improve the transformation of dendritic cells

into T cells, promote T-cell infiltration and enhance

antitumor immunity in the body (Figures 8B–D) (Tang et al.,

2021). In addition, the gold nanorods can produce mild

hyperthermia to induce immunogenic cell death after NIR

light irradiation and further enhance tumor immunotherapy.

Yang et al. reported a Au@Pt-LMDP nanosystem conjugated by

Au@Pt with a reasonably designed peptide (LYP-1-PLGVRG-

DPPA-1, LMDP) (Yang et al., 2019). The system can effectively

eliminate primary tumors through PTT and can also act as a

tumor-targeting agent activated by MMPs, releasing D-peptide

antagonists of PD-L1 and stimulating the activation of cytotoxic

T lymphocytes, thereby inhibiting distant tumor growth and

reducing tumor metastasis (Figure 8E).

2.5.2 Upconversion nanoparticle-based
antitumor immunity

Upconverted nanoparticles (UCNPs) are a class of

lanthanide-doped optical nanocrystals that have broad

application prospects in light-controlled tumor therapy owing

to their low toxicity, good chemical stability, and good

photostability (Qiu et al., 2018; Wen et al., 2018). UCNPs can

convert near infrared (NIR) light to UV or visible light via the

sequential absorption of two or more low-energy photons,

together with their deep penetrating ability, making UCNPs

hot materials (Zhou et al., 2015; Wang et al., 2018; Zhou

et al., 2018; Liu Y. Q. et al., 2021). Xiang et al. designed

UCNPs loaded with dendritic cell (DC) vaccine antigen to

label and stimulate DCs to achieve precise tracking and

induce antigen-specific immune responses in vivo, thereby

exerting antitumor immunity (Xiang et al., 2015). Our team

has developed a remote-controlled antitumor immunotherapy

device based on UCNPs, constructed by combining UCNPs,

immunotherapeutic CpG oligonucleotides (ODN), and

FIGURE 8
(A) Schematic illustration of enhanced photoimmunotherapy by the combined effect of PTT-induced immune activation and M2-TAM
depletion. (Reproduced from Tian et al., 2021, Colloids and Surfaces B: Biointerfaces). (B–D) Schematic illustration of the photothermal genome-
editing strategy for cancer immunotherapy. (B) Process of preparation of the ANP/HSP-Cas9 plasmid complex. (C) Illustration of photothermal
activation for PD-L1 genome editing in tumor cells. (D) Photoactivable CRISPR/Cas9 strategy reprograms the immunosuppressive tumor
environment. (Reproduced from Tang et al., 2021, Advance Materials). (E) Schematic illustration of the combination of photothermal and
immunotherapy by Au@Pt-LMDP. (Reproduced from Yang et al., 2019, Journal of Controlled release).
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complementary ssDNA (PcDNA) containing a photocleavable

(PC) bond (Chu et al., 2019). Under irradiation with NIR light,

UCNPs can convert NIR light into high-energy UV light, which

can photolytically break the PC bond and decompose PcDNA

into DNA fragments, thereby releasing CpG ODNs to activate

and control the body’s immune activity. Ding et al. reported

biodegradable K3ZrF7:Yb/Er UCNPs (ZrNPs) as pyroptosis

inducers for cancer immunotherapy (Ding et al., 2021).

Sensitizer ions (Yb3+) absorb low-energy infrared radiation

and effectively transfer excitation energy to activator ions

(Er3+, TM3+, or HO3+), which emit high-energy ultraviolet

(UV), visible, and NIR light through a multiphoton process.

ZrNP-like ion banks dissolve in cancer cells and release large

amounts of K+ and [ZrF7]
3− ions, further inducing an increase in

oxidative pressure and reactive oxygen species (ROS). In

addition, the results confirmed that ZrNPs can increase

dendritic cell (DC) maturity and effector memory T-cell

frequency, thereby inhibiting tumor growth and metastasis in

vivo (Figure 9) (Ding et al., 2021).

Mao et al. reported a nanoscale immune stimulator loaded

with the aggregation-induced emission (AIE) photosensitizer

TPEBTPy on UCNPs (Figure 10A) (Mao et al., 2020).

TPEBTPy with AIE characteristics showed strong fluorescence

and ROS generation in the aggregation state (Hu et al., 2018). The

combination of TPEBTPy and UCNPs can improve light

penetration and have a strong interaction. The nanomaterial

enhanced the adaptive immune response to solid tumors by

modulating ROS production while simultaneously activating

tumor immunogenic cell death (ICD) and dendritic cells to

prevent local tumor recurrence and metastasis (Figures

10B–E) (Mao et al., 2020).

Chen et al. reported a tumor-associated macrophage

membrane (TAMM) derived from primary tumors, which

was coated with a conjugated photosensitizer (NPR@

TAMM) on UCNPs (Chen Y. et al., 2021). The TAMM has

unique antigen-homing affinity and immune compatibility

and can consume CSF1 secreted by tumor cells in the tumor

microenvironment (TME), thus blocking the interaction

between TAMs and cancer cells. NPR@TAMM-mediated

photodynamic immunotherapy transformed macrophage

activation from an immunosuppressive M2-like phenotype

to a more inflammatory M1-like state and induced

FIGURE 9
Scheme and therapeutic effects in vivo for antitumor therapy. (A) Schematic illustration of K3ZrF7:Yb/Er upconversion nanoparticles (ZrNPs) to
induce pyroptosis for cancer immunotherapy. (B) In vivo UCL images of YNPs or ZrNPs at different time points. (C) Digital photographs of excised
tumors. (D) Tumor growth and (E) body weight curves. (Reproduced from Ding et al., 2021, Nano Letters).
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immunogenic cell death, thus stimulating antitumor immune

efficiency by activating antigen-presenting cells (Figure 11).

However, the therapeutic effect of single immunotherapy is

still poor, and synergistic immunotherapy has a better antitumor

immune effect (Sang et al., 2019; Guo et al., 2022). As shown in

Figure 12A, photothermal therapy (PTT) can induce deep tissue

immunogenic cell death and enhance antitumor immunotherapy

(Chen et al., 2001; Chen et al., 2020; Li W. et al., 2020). Similarly,

photodynamic therapy can induce immunogenic cell death and

activate adaptive immune responses to tumor-associated antigens

(Figure 12B) (Castano et al., 2006). Therefore, the application of

synergistic immunotherapy based on light-controlled

nanomaterials has more potential for clinical application.

Xu et al. designed a nanoplatform that combined UCNPs

triggered by PDT with checkpoint blockade (Xu et al., 2017).

The UCNPs were simultaneously loaded with photosensitizer

e6 (Ce6) and toll-like receptor 7 agonist imiquimod (R837) to

form UCNP-Ce6-R837, which was then combined with

cytotoxic T lymphocyte-associated protein (CTLA-4)

checkpoint blocker. The release of tumor-associated

antigens through PDT under NIR irradiation also enhances

antitumor immune responses with long-term immune

memory function (Figure 13A). Wang et al. reported an

NIR-triggered antigen nanoplatform for synergistic

immunotherapy, which is a combination of lipid molecules

(DSPE-PEG-mal), light absorber indocyanine green (ICG)

and photosensitizer rose bengal (RB) assembled in UCNPs

(Wang Z. et al., 2019). Tumor cells irradiated with NIR can

release tumor-derived protein antigen (TDPA), triggering

immunogenic cell death. In addition, TAPDs can be

FIGURE 10
Antitumor immunotherapy with AUNP to inhibit B16F10 tumor growth. (A) Structure of a nanoscale immune stimulator. The dashed box
indicates a linked TPEBTPymolecule on the AUNPs. (B) Schematic illustration of the treatment schedule. T, tumor inoculation; S.C., subcutaneous injections. (C)
Bioluminescence images of the B16F10 tumor-bearing mice receiving different treatments. (D) Tumor growth curve and (E) survival curve of B16F10 tumor-
bearing mice in the control and treated groups (n = 5). (Reproduced from Mao et al., 2020, Science Advances).
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captured by the platform to induce tumor-specific immune

responses (Figure 13B). Ding et al. prepared upconversion

nanoparticles (UCMS) coated with mesoporous silica as an

immune adjuvant for antitumor immunotherapy (Ding et al.,

2018). UCMS was simultaneously loaded with the

photosensitizers merocyanine 540 (MC540), chicken OVA

or tumor antigens. NIR light irradiation can activate

MC540, which produces ROS and releases TAA to

stimulate DCs, resulting in T-cell activation and

proliferation and the release of cytokines to kill tumor cells

(Figure 13C).

2.5.3 Other metal nanoparticle-based antitumor
immunity

Zero-valent iron (ZVI) nanoparticles (NPs) have a strong

reduction potential (Zou et al., 2016) and can produce a large

number of reactive oxygen species (ROS) (Yang L. X. et al., 2020;

He et al., 2022). Hsieh et al. utilized ZVI-NP to enhance

phosphorylation-dependent ubiquitination and degradation of

nuclear factor E2-related factor 2 (NRF2), resulting in excessive

oxidative stress and lipid peroxidation (Hsieh et al., 2021).

Furthermore, ZVI-NPs reprogrammed the polarization of

tumor-associated macrophages into an antitumor

M1 phenotype, increased the cytotoxic function of CD8+

T cells and decreased the proportion of regulatory T cells to

enhance antitumor immunity. Cobalt oxide nanoparticles (CoO

NPs) are promising tools for delivering antigens to antigen-

presenting cells and have induced antitumor immune responses.

Chattopadhyay et al. found that CoO NPs modified with

N-phosphonylmethyliminodiacetic acid (PMIDA) bound

lysate-promoting antigens, which are cancer antigens derived

from cancer cell lysis, to form cancer cell lysate antigen-

conjugated PMIDA-CoO NPs (Ag-PMIDA-CoO NPs)

(Chattopadhyay et al., 2016). The nanoparticles can activate

FIGURE 11
Schematic illustration of the design and mechanism of tumor-associated macrophage membrane-coated upconverting nanoparticles. (A)
Schematic illustration of the preparation of TAMM-coated NPR@TAMMs. (B) Mechanism illustration of TAMM-coated NPR@TAMMs for
photodynamic immunotherapy. (Reproduced from Chen Y. et al., 2021, Nano Letters).
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macrophages (M φ) to improve the anticancer immune response,

increase serum IFN-γ and TNF-α levels and act as an adjuvant to

balance proinflammatory and anti-inflammatory immune responses.

Platinum nanoparticles (Pt NPs) are selectively toxic to

cancer cells (Xia et al., 2016; Shoshan et al., 2019) and enable

photothermal conversion through NIR irradiation (Yang et al.,

2015), leading to targeted hyperthermia (Zhou et al., 2016) and

antigen release (Ma et al., 2019). Yu et al. constructed Pt NPs that

conjugated PD-L1 inhibitor (BMS-1) to Mal-modified

polyethylene glycol (PEG) via thermosensitive bonds (Yu

et al., 2021). Under NIR irradiation, Pt NPs ablated tumors by

PTT and released BMS-1 to alleviate T-cell depletion and induce

effector T cells to infiltrate into tumor tissues and acted as

immune adjuvants to stimulate the maturation of DCs. Mal

exposed to the surface of nanoparticles captured the antigens

released by tumor cells and enhanced antigen internalization and

presentation (Figure 14).

Hollow copper sulfide nanoparticles (HCuSNPs) are

biodegradable photothermal coupling agents that can be

excreted from the liver and kidney with low toxicity (Guo

et al., 2013). Guo et al. reported a CuS-based transformational

nano-CPG system (HCuSNPs-CpG) induced by NIR light (Guo

et al., 2014). Upon NIR light irradiation, HCuSNPs-CpG

structures were decomposed, reassembled and transformed

into chitosan-CPG nanocomplexes, which increased the

stability, tumor retention, and internalization of CpG by

plasmacytoid dendritic cells and initiated effective systemic

antitumor immunity by activating Toll-like receptor

9 signaling (Figure 15).

Titanium nanosheets (Ti NSs), as novel and economical two-

dimensional nanomaterials, have strong NIR light absorption

ability, high photothermal conversion efficiency and good

biosafety (Xie et al., 2019; Yuan et al., 2022). However, Ti NSs

are prone to oxidation in vivo, and their application in medical

materials is also limited. Moreover, polyethylene glycol (PEG)

can improve Ti NS stability, increase the retention time of NSs in

blood circulation, and enhance the drug delivery capacity of the

tumor site (Yang Y. et al., 2020).

In addition, previous studies showed that some transition-

metal ions (including Fe3+, Cu2+ and Mn2+) can be bound to the

FIGURE 12
Antitumor immunotherapy based on photothermal therapy and photodynamic therapy. (A) Photothermal therapy increases immunogenic cell
death and releases antigens that are delivered to T cells, enhancing the recognition and killing of tumor cells. (Reproduced from Li W. et al., 2020,
Frontiers in Immunology). (B) Photodynamic therapy induces the activation of antigen-specific T cells. (Reproduced from Castano et al., 2006,
Nature Reviews Cancer).
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PDA structure by coordination (Li et al., 2016; Wang Z. X. et al.,

2017; Ge et al., 2017). Xu et al. prepared Fe (III) chelated PDA

nanoparticles with high loading and response to release iron ions,

which can improve the light absorption behavior of PDA in the

NIR spectrum and endow PDA with better photothermal

conversion ability (Xu et al., 2022). The in vivo and in vitro

results showed that Fe-PDA could significantly inhibit tumor

growth and effectively promote the repolarization of tumor-

associated macrophages to the M1 mode compared with PDA.

Fe-PDA combined with PTT effectively improved the efficacy of

immunotherapy.

A new class of nanophotosensitizers (nPSs) based on

nanoscale metal-organic frameworks (nMOFs) have

attracted extensive attention in the application of PDT

(Shao et al., 2020; Song et al., 2021). Lan et al. reported a

novel nanophotosensitizer nanoscale metal-organic

framework Fe-TBP, which can overcome tumor hypoxia and

enhance the sensitivity of effective PDT, thereby initiating

noninflammatory tumors for cancer immunotherapy (Lan

et al., 2018). When Fe-TBP is irradiated under anoxic

conditions, it can catalyze a cascade reaction to produce O2

through a Fenton-like reaction, and O2 is further converted to

singlet oxygen with cytotoxicity by photoexcited porphyrins

(O2) to produce PDT effects. In addition, the PDT-induced

systemic antitumor response ameliorates α-PD-L1 ICB,

leading to the regression of primary and distant tumors

through a distant effect.

3 Future and prospects

In summary, this review discusses recent advances in

light-activated nanomaterials and their applications in

antitumor immunotherapy. With the progress of

nanotechnology, the application of nanomaterials in

antitumor immunotherapy cannot be ignored. The clinical

FIGURE 13
(A) Schematic illustration of NIR-triggered PDT with multitasking UCNPs in combination with checkpoint blockade for immunotherapy of
cancer. (Reproduced from Xu et al., 2017, ACS Nano). (B) Schematic illustration of both the fabrication and mechanism of a near-infrared (NIR)-
triggered antigen-capturing nanoplatform. (Reproduced fromWang S. et al., 2019, Advance Science). (C) Schematic illustration of the fabrication and
mechanism of UCMSs-MC540-TF nanovaccines for PDT and immunotherapy. (Reproduced from Ding et al., 2018, Advance Materials).
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efficiency of laser treatments is limited by the low penetration

of UV, visible light or visible light and makes light-activated

imaging or therapy in a dilemma. To achieve deeper tissue

penetration ability, near infrared (NIR) light with low energy

and long wavelength is a good choice. NIR frequency bands

present an optical window for deeper penetration into

biological tissue. Materials such as upconversion

nanoparticles have the unique capability to efficiently

convert NIR light irradiation into UV or visible light via

the sequential absorption of two or more low-energy photons.

This approach achieves the same goal as UV or visible light

with deeper tissue penetration. Despite the described

promise, there still exist challenges based on light-

activated nanomaterials that need to be overcome to meet

the demand in clinics. First, the toxicity of light-activated

nanomaterials which is also a general concern for all

nanomaterials. To date, research on light-activated

nanomaterials has mainly focused on constructing new

light-activated activation strategies, and the metabolism

and toxicity of materials are not deeply understood.

Moreover, most of the models used for nanomaterial

exploration are restricted to small animals, and few studies

have used large animals. Furthermore, the synthesis

standards of nanomaterials, the loading content of drugs,

poor solubility in the physiological environment, how to

effectively preserve them, etc., as well as industry

FIGURE 14
Schematic illustration of Pt NPs conjugated with BMS-1 for NIR-controlled release of inhibitor and exposure to Mal. (Reproduced from Yu et al.,
2021, Bioactive Materials).
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consensus, are also obstacles to the clinical application of

nanomaterials. Since the mechanism of tumorigenesis varies

from person to person, a single immunotherapy may not

achieve satisfactory antitumor therapeutic effects, and

synergistic immunotherapy is becoming an important method

of antitumor therapy. It is also a great challenge to combine

different therapeutic mechanisms and different materials in the

same nanosystem in a rational, compatible and synergistic way to

achieve efficient synergistic immunotherapy. In addition, the

potential risks of photoactivated nanomaterials in clinical

applications, such as systemic toxicity, complexity of

clearance, and long-term effects on the human body, must

also be considered. The above issues may activate future

exploration in the development and improvement of light-

activated nanomaterials, providing better opportunities for

antitumor immunotherapy for future patients.

FIGURE 15
Schematic illustration of the preparation of HCuSNPs-CpG for photothermal immunotherapy. (A) Schematic illustration of the assembly and
decomposition of the HCuSNPs-CpG conjugate. “HCuSNPs-Chi” represents chitosan-coated HCuSNPs. “Chi-CpG-NPs” represents chitosan-CpG
nanocomplexes. “SCuSNPs” represents small CuS nanoparticles. (B) Schematic illustration of HCuSNPs-CpG-mediated photothermal
immunotherapy of both primary treated and distant untreated tumors. (Reproduced from Guo et al., 2014, ACS Nano).
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