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Recently, how to enhance the energy density of rechargeable batteries

dramatically is becoming a driving force in the field of energy storage

research. Among the current energy storage technologies, the lithium-sulfur

(Li-S) batteries are one of the most promising candidates for achieving high-

capacity and commercial batteries. The theoretical energy density of Li-S

batteries reaches to 2,600Wh kg−1 with the theoretical capacity of

1,675 mA h g−1. Therefore, Li-S batteries are considered as the great

potential for developing future energy storage technology. However, some

of problems such as Li dendrites growth, the shuttle effect of sulfides and the

electronic insulation feature of sulfur, have brought obstacles to the

development of Li-S batteries. The covalent organic frameworks (COFs) are

a series of porous materials with different topological structures, which show

the versatile characteristics of high specific surface area, permanent pores,

ordered porous channels and tunable internal structure. Potentially, their

ordered channels and extended conjugated frameworks could facilitate rapid

Li-ion diffusion and electron transport for the remarkable rate capability. On the

basis of these merits, the COFs become the potential electrode materials to

solve the above serious problems of Li-S batteries. In this mini review, we

summarize the research progress of COFs utilized as electrode materials in the

Li-S batteries, including the cathode, separator and anode materials.

Accordingly, the outlook of COFs as electrodes for future development in

Li-S batteries is also given.
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Introduction

Recently, the big problem of energy depletion seriously

makes people attach importance to the development of clean

and renewable energy to meet the increasing of energy demand

(Shen, et al., 2021). Since 2021, the international crude oil price

has continued to rise, while people’s demand for mobile power

has been increasing gradually. In order to cope with this series of

challenges, most countries have actively implemented energy-

structure adjustment measures and strategies to lessen their

reliance on fossil fuels and the greenhouse gas (GHG)

emissions that result from their usage (Park, 2022; Bobba

et al., 2020). So, the utilization and storage of new energy are

the main strategies to replace fossil energy. Lithium-ion batteries

(LIBs) are a promising option for electrical energy storage

because of their high energy density and low cost, which has

attracted wide attention (Brandt, 2018). Although LIBs dominate

the consumption electronic market as the main commercial

mobile power source, their energy density is approaching the

limit and restricts the development of LIBs to a certain extent

(Zhao, 2020). Lithium-sulfur (Li-S) batteries have a sulfur

composite cathode, a polymer or liquid electrolyte, and a

lithium anode, which are the promising candidate in the

lithium battery series (Barghamadi et al., 2013). Li-S batteries

have a shorter cycle life due to the natural insulating

characteristics of sulfur and the shuttle effect of lithium

polysulfides (LiPSs). Therefore, the commercial application of

Li-S batteries continues to confront several obstacles, including

side reactions, sulfur migration, and lithium dendrite

development. (Xu et al., 2014).

The bottleneck of Li-S batteries

The intrinsic electronic and ionic conductivity of sulfur is

rather poor (Xu et al., 2018). Furthermore, the final products of

the reaction in the charge-discharge process (Li2S2 and Li2S) are

also electrically insulating, which is not conducive to for the

batteries’ high rate performance (Li et al., 2021). Therefore, the

electrons cannot be received by sulfur-based cathodes in the

collector. Some researchers had tried to add conductive agents to

cathode materials, but the theoretical capacity cannot be achieved

due to the limited utilization of sulfur. In addition, in the course

of a charge and discharge, the polysulfide intermediate produced

from the positive electrode would dissolve into the electrolyte,

which passes through the separator and diffuses to the negative

electrode. This undesirable intermediate will react directly with

the metal-lithium anode, where the negative effects of irreversible

loss of active materials in the batteries, capacity fading, low

efficiency and self-discharge are caused (Peng et al., 2017).

Among this process, when charging and discharging, the fast

volume change of sulfur and lithium sulfide will alter the

morphology and structure of the positive electrode, resulting

in the detachment of sulfur from the conductive framework and

the ultimate decrease of capacity accordingly. Finally, the volume

change of metallic lithium will cause the formation of dendrites

in the lithium anode.

To solve these problems, scientists have carried out much

studies on the Li-S battery materials. Among these fields, the

emerging covalent organic frameworks (COFs) are widely used as

electrode materials. COFs are a category of organic crystalline

porous materials composed of light components including C, H,

N, and O (Hu et al., 2018). They are two-dimensional (2D) or

three-dimensional (3D) structural frameworks architected by

light elements and strong covalent bonds, which are a type of

pre-engineered polymer (Zeng et al., 2021). The COFs exist many

advantages of low density, large specific surface area, adjustable

pore size and structure, easy functionalization and plentiful

combinations of covalent structures, in which they show great

potentials in adsorbing polysulfides and inhibiting the formation

of lithium dendrites.

Research status of COFs in cathode
materials

In recent years, because of the extensive research on COFs-

based electrode materials in Li-S batteries, it can be seen that they

are potentially great competitors for the high-performance

cathode materials. Compared with other materials, COFs have

a highly ordered nano-porous structure and a large specific

surface area, where it is conducive to the immobilization of

sulfur and to limit the loss of soluble polysulfides. In addition,

ascribing to the feasible functionalization of COFs, the desirable

skeleton structures of COFs with various pore sizes, shapes, and

volumes can be flexibly designed at the molecular level.

In 2014, Liao used a porous crystalline polymer backbone

formed by the polymerization of benzene and triazine rings in a

2D structure (CTF-1) as a sulfur carrier material (Figure 1A). To

achieve the composite cathode material, the CTF-1 and sulfur

were mixed in a mass proportion of 3:2 at 155°C for 15 h. The

thermogravimetric (TG) analysis showed that the loading of

sulfur in the composite was about 34% (mass fraction).

Subsequently, the electrochemical characterization showed that

the nanopores of CTF-1 can effectively alleviate the dissolution

and shuttling of polysulfides. After 50 cycles at a rate of 0.1°C, it

still has 64% capacity retention rate. Accordingly, this work

broadens the application of COFs in Li-S batteries (Liao et al.,

2014).

However, the CTF/S cathode’s performance is clearly subpar.

For instance, CTF-1 has a minor sulfur loading (34%). Two years

later, A novel microporous COF (Por-COF) based on porphyrin

was created by the solvothermal method. The composite material

of Por-COF/S with a sulfur content of 55% was prepared in the

melt-diffusion process, where it was used as a positive electrode

material in Li-S batteries. At a rate of 0.5°C, the specific capacity
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remained at 633 mAh g−1 after 200 cycles, and the capacity decay

rate per cycle was 0.16% (Liao et al., 2016). Then, they used

1,3,6,8-tetrakis (4-aminophenyl) pyrene (PyTTA) and

terephthalaldehyde (TA) to synthesize Py-COF (Figure 1B)

under the same method. After this composite cathode was

cycled for 550 times at a rate of 5.0C, the capacity retention

rate was 73.8% with a capacity decay rate per cycle of 0.048%

(Meng et al., 2018).

In 2020, Lu et al. (2020) used π-conjugated system of

aromatic tetraaldehyde (ETTCA) and tetrastyrene tetraamine

(ETTA) to polycondensate under solvothermal conditions to

gain a new COFmaterial (COF-ETTA-ETTCA) (Figure 1C). The

COF-ETTA-ETTCA was used for the loading of elemental sulfur

directly, and the composite material (COF-ETTA-ETTCA-S)

with a sulfur loading of 88.4% was achieved. It showed that

the cathode material based on COF-ETTA-ETTCA-S exhibited a

specific capacity of 1,617 mAh g−1 at 0.1°C, which was very nearly

its predicted specific capacity. After 528 cycles at 0.5°C, it still

maintained a high capacity with a capacity decay rate per cycle of

0.077%. These studies have proved that through COFs structure

modification, the sulfur loading of active materials can be

increased, and ultimately the electrochemical performance of

Li-S batteries is improved simultaneously.

By introducing different functional groups in COFs, the

composite cathode materials also present versatile

electrochemical performance. Wang et al. (2021) grafted

quaternary ammonium salt groups onto the pore channels of

COFs in a one-pot procedure to create a cationic mesoporous

COF (COF-NI) (Figure 1D). When cycled at 1.7–2.8 V, the

electrode exhibits a high capacity of 1,038 mAh g−1 at a low

cycling rate, and a high performance above 690 mAh g−1 is

maintained even at 1°C or 2°C. This is attributed to the

quaternary ammonium cations preventing the diffusion of

polysulfide anions into the electrolyte through their strong

interactions with polysulfide anions. Therefore, the functional

groups enable the electrode to obtain good cycle performance

and inhibit the shuttle effect. (Liao and Ye, 2018). Considering

the strong affinity of allyl and triazine groups for lithium ions and

the immobilization of sulfur by C-S covalent bonds, Li et al.

(2022) reported a COF with allyl and triazine groups (ART-COF)

(Figure 1E) to weaken the shuttle effect of LiPSs to the poles. This

further provides ideas for developing batteries with high stability

and long lifetime.

The low electrical conductivity of organic material

composites is one of the shortcomings of current organic

electrode materials, and some scientific research teams have

developed strategies to solve this problem (An, et al., 2021).

For instance, Zhang et al. (2018) prepared a novel core-shell

covalent organic framework/multi-wall carbon nanotube

nanocomposite (TpPa-COF@MWCNTs) by growing highly

FIGURE 1
Summary of schematic diagram of the COFs in cathode materials (A–G) (Liao et al., 2014; Meng et al., 2018; Zhang et al., 2018; Lu et al., 2020;
Wang et al., 2021; Li et al., 2022; Lin et al., 2022).
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conductive multi-wall carbon nanotubes (MWCNTs) on porous

TpPa-COF (Figure 1F). At a current density of 0.05 C, S/TpPa-

COF@MWCNT-based cathode material showed a high initial

discharge capacity of 1,242.2 mAh g−1. Its Coulombic efficiency

was more than 99% when it was cycled at a current density of

0.5 C, and its ultralow capacity decay rate of 0.099% per cycle was

observed after 450 cycles (Zhang et al., 2018). Furthermore, Lin

et al. (2022) fabricated core-shell Co/Zr-NC@TpPa composites

by coating a layer of TpPa-1 COFs (Figure 1G) on UIO-66-NH2-

derived N-doped Co/Zr-NCs. The carbon matrix provides good

electrical conductivity, while COFs immobilize sulfur and allow

selective permeation of Li+. Furthermore, the doped Co and ZrO2

provide catalytic functions and trap active sites in Li-S batteries.

(Lin et al., 2022).

In this section, the above discussion can summarize several

ideas for COFs in solving the bottlenecks of Li-S batteries: 1) The

physical sulfur fixation can be carried out by designing porous

structures, and the nano-channels formed in COFs can effectively

alleviate the dissolution of polysulfides and shuttle effect (CTF-1,

Py-COF). 2) By expanding the conjugation system to obtain a

high degree of conjugation and appropriate interlayer space, the

loading of sulfur in the composite cathode can be increased

dramatically (COF-ETTA-ETTCA). 3) The introduction of

electron-rich heteroatoms or functional groups can fix

polysulfides and reduce the loss of active substances (COF-NI,

ART-COF). 4) Through mixing the highly conductive carbon-

based materials with COFs or combining COFs with metal

organic framework derived carbon/metal composites, the

conductivity of cathode materials could be improved

obviously (TpPa-COF, TpPa-1).

Research status of COFs in anode
materials

Since the anode is metallic lithium in Li-S batteries, the

uneven deposition of lithium ions during charging tends to form

dendrites, reaches the cathode by penetrating the separator.

Eventually, an internal short circuit will lead to a severe safety

danger (Wei et al., 2021). Therefore, fine design of a porous

interface layer on the lithium anode can reduce the local current

density and adjust the deposition while ensuring uniform Li+

flux, thereby improving the lithium loading capacity of the anode

material. Zhou et al. (2021) designed and synthesized a

piperazine-based two-dimensional COFs (PTDCOF)

(Figure 2A). The PTDCOF was composed of benzo-acene

units through irreversible piperazine bonds with regular pores

and few layers. The composite PTDCOF had a capacity

contribution of 1,644.3 mAh g−1 at 0.1 A g−1 with good rate

and cycling performance.

FIGURE 2
Summary of schematic diagram of the COFs in anode, separator and solid electrolytesmaterials (A–G) (Zhou et al., 2021; Zhao et al., 2021; Yang
et al., 2022; Xu et al., 2021; Zhu et al., 2021; Sun et al., 2022; Zhao et al., 2022).

Frontiers in Chemistry frontiersin.org04

Wang et al. 10.3389/fchem.2022.1055649

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1055649


The porous characteristics and high surface area of COFs make

ions easily accessible to the redox active sites where they could

improve the Li+ storage and diffusion. So, how to increase the

number of redox active sites of COFs is crucial to meeting the high-

capacity requirements of LIBs anodes (Zhai et al., 2022). Zhao et al.

(2021) synthesized a COF material (DAAQ-COF) (Figure 2B)

through the condensation of 2,6-diaminoanthraquinone (DAAQ)

and 1,3,5-benzenetricarboxaldehyde (Tb). This is a layered porous

COF with C=N and C=O dual redox active sites. The aromatic C=C

bonds are also involved in the Li + storage mechanism (Zhao et al.,

2021).

Yang et al. (2022) synthesized a novel redox COF (TP-DA-

COF) (Figure 2C) via in-situ growing on CNTs with different

COF thicknesses. The high capacity and efficient Li + diffusion in

this composite was made possible by the large number of redox

active sites that were exposed due to its few layers structure. More

exposed active sites and better conductivity leaded to better

electrical performance, where After 100 cycles at 0.1 A g−1

current density, the specific capacity was around 570 mAh g−1,

and it stabilized at about 373 mAh g−1 with a Coulombic

efficiency close to 100%.

In this section, the application of COFs in anode materials

could solve the following problems: 1) By finely designing the

porous interface layer, the local current density is reduced where

the lithium ions can move to the redox active sites uniformly,

thereby enhancing the lithium loading capacity of anode

materials (PTDCOF). 2) To increase the number of redox

active sites in COFs through designing layered porous COFs,

it can increase the lithium loading capacity of anode materials

(DAAQ-COF) 3) The COFs can also be uniformly encapsulated

on other materials (e.g., carbon nanotubes) through in-situ

reactions to obtain high crystallinity, ordered pores and

conductive frameworks. Thus, more redox active sites are

exposed and the distribution of lithium ions is adjusted to

achieve dendrite-free lithium deposition (TP-DA-COF).

Research status of COFs in separator
materials

In the charge-discharge process, the positive electrode

would generate a polysulfide intermediate (e.g., Li2Sx),

which would then dissolve in the electrolyte, cross the

separator, and diffuse toward the negative electrode. This

polysulfide from the positive electrode could react directly

with the metal lithium of the negative electrode, which

eventually causes the irreversible loss of the effective

material in the batteries. Since COFs have the potential to

capture polysulfide anions due to their multi-pore structure

and designable pore size, some works have proposed strategies

to design functional separators to capture polysulfides.

Xu’s group designed and synthesized a dual-sulfonate COF

(SCOF-2) (Figure 2D) to modify separators for Li-S batteries.

When the SCOF-2 was combined with the concentrated sulfonic

acid group, it would repel polysulfide anions and adsorb the

molecular LiPS, where it acted as an ion sieve and promoted the

migration of Li+ (Xu et al., 2021). More so than no/

monosulfonate COFs, SCOF-2 hinders polysulfide migration

and reduces lithium dendrite development due to its higher

interlayer spacing and greater electron negativity. The high

rate capacity of the SCOF-2 modified batteries was shown by

electrochemical characterization to be 479 mAh g−1 at 5 C.

Through the electrochemical characterization, results shown a

high-rate capacity of 479 mAh g−1 at 5 C from the SCOF-2

upgraded batteries. After more than 800 cycles at 1 C, the

decay rate was very low, at just 0.047% per cycle (Xu et al.,

2021). With the same design concept, Zhu et al. (2021)

synthesized a carborane-based amphiphilic COF (CB-COF)

(Figure 2E) with the nano-trapping function of polysulfides.

Its ability to synergistically trap LiPS and redeposit solid

discharge products uniformly on the pore surface is

remarkable, showing the potential to effectively suppress the

shuttle effect. Furthermore, another strategy of inhibiting the

polysulfides migration and reaction with lithium anode is to

enhance the electron mobility for efficient electrocatalysis when

effectively trapping LiPSs. For example, Sun et al. (2022)

combined 5,10,15,20-tetrakis (4-aminophenyl) porphyrin

(TAPP) and 4,4′,4″,4‴-(ethylene-1,1,2,2-tetra base)

tetrabenzaldehyde, ETTB) through covalent network

aggregation in a crystal framework to obtain TAPP-ETTB

COF (Figure 2F). Then, through the introduction of graphene

sheets to the COFs system, a TAPPETTB COF@G

nanocomposite modified separator was obtained finally. This

composite material simultaneously possessed a strong chemical

affinity for LiPSs and excellent catalytic activity. It exhibited good

cycling performance (920 mAh g−1 after 400 cycles at 0.2 A g−1)

and excellent rate capability (827.7 mA hg−1 at 2 A g−1) after the

first cycle (Sun et al., 2022).

In this section, the COFs mainly solve two problems in the

separators: 1) By introducing functional groups, it repels

polysulfide anions and adsorbs molecular LiPS, thereby

reducing the negative impact of the shuttle effect (SCOF-2,

CB-COF). 2) Another strategy is to enhance the electron

mobility for efficient electrocatalysis while trapping LiPS

efficiently, providing sufficient lithiophilic sites for the strong

chemisorption and catalysis of polysulfides (TAPP-ETTB COF).

Research status of COFs in solid
electrolyte materials

Until now, there is no very direct or strongly related research

on COFs-based solid electrolyte in Li-S batteries (Gao et al.,

2022). The chemical modification on COFs is beneficial to create

excellent Li-ion conduction channels and improve the durability

of LIBs (Huang et al., 2021). At present, some modified COFs

Frontiers in Chemistry frontiersin.org05

Wang et al. 10.3389/fchem.2022.1055649

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1055649


have been developed as solid electrolytes for LIBs. For example,

Zhao et al. (2022) constructed a lithium carboxylate COFs

(LiOOC-COF3) (Figure 2G) with ordered one-dimensional

channels. The single Li-ion conductor of LiOOC-COF3

exhibits an excellent ionic conductivity of 1.36 × 10−5 S cm−1

and a high mobility number of 0.91 at room temperature (Zhao

et al., 2022), where the LIBs shows good cycling performance,

high capacity output and no lithium dendrites. Therefore, the

applicable potential of COF-related solid-state electrolyte in Li-S

batteries can be expected in the future to construct ordered ion

transport channels and guarantee the longevity and safety.

However, the reaction mechanism between sulfur-based

cathode and COF-based solid electrolyte is still unclear, so

further research is needed to reveal it.

Summaries and perspectives

This mini reviewmainly summarizes the research progress of

COFs in cathode, anode, and separator materials in Li-S batteries.

For the application of COFs materials in the cathode, researchers

have improved the electrochemical performance of the batteries

and suppressed the shuttle effect by constructing different pore

environments and introducing different functional groups.

Anode applications of COFs materials benefit from the

incorporation of a porous interface layer that, when carefully

designed, may effectively suppress the development of lithium

dendrites. This is because it increases the lithium loading capacity

of high anode materials. For COFs materials as separators, nano-

collectors for polysulfides were designed, which can inhibit the

shuttle of sulfides and also facilitate the conduction of lithium

ions, thereby improving the electrochemical performance.

To develop high capacity and long lifetime Li-S batteries, the

following research directions should attract more attention in the

future: 1) The poor electrical conductivity of COFs materials

makes it difficult to balance its cycle life and electrical

conductivity, which is one of the main reasons that restrict its

practical application regarding the technology of energy storage.

2) Due to the low volumetric energy density of COFs materials,

the high specific capacity properties of cathodes composing of

COFs materials have not been fully exploited. 3) Compared with

the application of COFs around the design and development of

cathode materials in Li-S batteries, their applications as

separators, anode materials and solid electrolytes also show

good prospects, which should be attracted much interests in

further studies.
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