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Electroplated copper was prepared under typical conditions and a high defect

density to study the effect of the defects on its self-annealing phenomenon.

Two conditions, grain growth and stress relaxation during self-annealing, were

analyzed with electron backscattered diffraction and a high-resolution X-ray

diffractometer. Abnormal grain growth was observed in both conditions;

however, the grown crystal orientation differed. The direction and relative

rate at which abnormal grain growth proceeds were specified through

textured orientation, and the self-annealing mechanism was studied by

observing the residual stress changes over time in the films using the sin2Ψ
method.
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Introduction

As Moore’s law nears its physical limits, a new type of integrated circuit device with

high density is needed for the Internet of things (IoT), artificial intelligence (AI), and other

wearables (Knickerbocker et al., 2018). Therefore, to achieve smaller form factors, lower

power, and high performance, advanced packaging technologies, such as a 3D

interconnection, are promising solutions. In advanced 3D interconnection

technologies, Cu-to-Cu direct bonding has received attention because of a lower

interface resistance. Electroplated Cu has been mainly studied to connect the device

electrically in the Cu-to-Cu bonding (McMahon et al., 2005; Beica et al., 2008; Gueguen

et al., 2010; Radisic et al., 2011; Kong et al., 2012; Liu et al., 2015). (111)-oriented nano-

twinned Cu for bonding has been widely investigated because of the fastest surface

diffusivity and its properties (Juang et al., 2018; Chiu et al., 2021; Lu et al., 2021). In

addition, nano-twinned Cu, which has a high density of nano-twin boundaries in its grain,

has attracted attention with its ultrahigh strength, ductility, high electrical conductivity,

and thermal stability (Lu et al., 2004; Shen et al., 2005; Chen and Lu, 2007; Saldana et al.,

2011). However, the microstructure of electroplated Cu generally changes during room

temperature storage, a phenomenon termed self-annealing. Therefore, preservation of the

grain orientation and nano-twin structure prior to bonding are important for connecting

the bonding interface at low process temperature.
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Recrystallization and grain growth occur at room

temperature during a self-annealing phenomenon, unlike the

conventional annealing process at high temperatures between

600°C and 1000°C (Blaz et al., 1983; Huang et al., 1997; Seah et al.,

1999; Hau-Riege and Thompson, 2000; Koo and Yoon, 2001;

Militzer et al., 2004; Hasegawa et al., 2006; Stangl et al., 2008).

The drastic change in electrical, mechanical, and crystallographic

properties was accompanied by a self-annealing phenomenon

(Ritzdorf et al., 1998; Brongersma et al., 1999; Ueno et al., 1999;

Lagrange et al., 2000; Hara et al., 2003; Dong et al., 2008; Cheng

et al., 2010; Huang et al., 2010).

Ho et al. conducted an in situ investigation of the self-

annealing behavior of electroplated copper films with organic

additives. Copper self-annealing was accelerated by increasing

the current density, and grain growth was accompanied by an

increase in the twin structure and a decrease in the grain

orientation spread (Ho et al., 2016). In addition, Sung et al.

proposed that the defect energy causes the recrystallization of the

copper film, and it can be varied depending on the deposition

type, which differs by the dynamic interaction of bis-(3-

sulfopropyl) disulfide (SPS) and polyethylene glycol (PEG)

during electrodeposition (Sung et al., 2017). Although many

papers focused on the self-annealing behavior of Cu with

electrodeposition and other methods, studies about the

relationships between defects, especially nano-twin lamellae,

and self-annealing behaviors have not been clearly represented.

In this paper, Cu with a high density of defects and nano-twin

lamellae was electroplated based on our previous research. A

lower electrochemical bath temperature and higher current

density generated a high density of defects with nano-twin

lamellae in the Cu (Lee et al., 2020; Han et al., 2021).

Crystallographic defects are formed in every material to

thermodynamically stabilize the system. The defects

particularly affect the intrinsic properties of materials such as

the mechanical properties (Lubomirsky, 2006; du Plessis et al.,

2020; Liu et al., 2020). Especially for nano-twinned Cu, one of the

defects has attracted great attention because of its mechanical and

electrical properties (Lu et al., 2004; Shen et al., 2005; Chen and

Lu, 2007; Saldana et al., 2011). This study compared the

microstructure change over time with a typical self-annealing

sample, room temperature Cu (RT Cu), and a nano-twinned Cu

(NT-Cu) to investigate the effect of the defects on the self-

annealing phenomenon. Specifically, the effect of defects in

pure Cu electroplated without any additives on the self-

annealing behavior was studied by monitoring the

microstructural change over time. Electron backscattered

diffraction (EBSD), a high-resolution X-ray diffractometer

(HR-XRD), and residual stress analysis with X-ray diffraction

(XRD) were used for various microstructural analyses. Residual

stress analysis in the Cu film on the substrate was characterized

by XRD according to the sin2Ψ method in which the theta angle

was monitored with a variety of tilt angles (Bobet et al., 1995; Luo

and Yang, 2017; Lin et al., 2020).

Experimental

Electrodeposition of Cu was conducted in a jacketed

beaker (inner diameter: 10 cm; outer diameter: 14 cm;

height: 20 cm) filled with an electrolyte. The Cu layer was

electrodeposited on a p-type heavily doped (100) Si substrate

(<0.01 Ωcm) and 200 nm Cu/20 nm Ti seed layer, which were

deposited with an electron beam (e-beam) evaporation

system. The two-electrode experiment was conducted with

a Pt-coated mesh (7 × 36 mm2) as a counter electrode and the

Si wafer with a Ti and Cu seed layer covered with silicone

masking tape to expose the specific area (10 × 10 mm2) as the

working electrode.

Cu electrodeposition was performed with a pH 1.0 acidic

electrolyte adjusted with 95% sulfuric acid (0.19 M), in which

the solution comprised copper sulfate (1 M) without additives

was in deionized water (resistivity: 18.6 MΩ). Two types of Cu

films were prepared with a programmable DC power supply

(Dawoo nanotech, DADP-20010R) and a thermostatic

circulator (JEIO tech, RW-0525G) to control the electrolyte

temperature.

Two types of Cu specimens were prepared with

different electrolyte temperature, and the same solution

and plating conditions. A high current density, 210 mA/

cm2, was applied to the specimens to achieve self-

annealing, which was accelerated by increasing the

current density (Ho et al., 2016). However, the

electrolyte temperature remained different, one was

deposited at room temperature, 22.5°C, and the other at

0°C. The rotating speed was maintained at 500 rpm with an

impeller coated with a stop-off lacquer to prevent other

unnecessary reactions.

Crystallographic evolution during self-annealing was

analyzed with EBSD operated at 20 kV, which was

performed with field emission gun scanning electron

microscope (FEG-SEM, 7100F, JEOL, Japan) combined with

a TEAM™ PEGASUS EBSD system (EDAX, USA). The grain

and grain boundary analysis were characterized with OIM™
software (EDAX). An electropolishing process was conducted

for EBSD and residual stress analysis to flatten the surface of the

electroplated Cu with 85% phosphoric acid. Electropolishing of

Cu was applied at 4 C with a potentiostat/galvanostat (Versa

STAT 4, Princeton Applied Research, USA) at room

temperature.

HR-XRD (SmartLab, Rigaku, Japan) was used to characterize

the preferred grain orientation of the Cu and operated at 40 kV

and 30 mA from 35° to 75°. To analyze the residual stress, XRD

(PANalytical; Expert pro-MPD, Almelo, Netherlands) was

operated with a Cu-Kα (λ = 0.15418 nm) source generated at

40 kV and 40 mA (spot size = 3 × 3 mm2). A sin2Ψ method was

analyzed in the (111) grain orientation over time with X’Pert

Stress software (Baczmanski et al., 2002; Delbergue et al., 2016;

Luo and Yang, 2017).
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FIGURE 1
(A–F) EBSD inversed pole figures (IPFs) of the RT Cu plating at (A) 0, (B) 1, (C) 2, (D) 3, (E) 7, and (F) 14 days. (A’–F’) IPFs of NT-Cu at the same time
as (A–F). (G) Average grain size and (H) grain boundary length evolution with time for RT Cu and NT-Cu.
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A cross-sectional image was observed by a focused ion beam

(FIB, LYRA 3 XMH, TESCAN, Czech Republic). A cross-sectional

sample for FIB analysis was prepared with the FIBmilling performed

with a small ion beam dose (current = 10 nA, voltage = 30 kV), and

ion channeling contrast (current = 30 pA, voltage = 30 kV) was used

to image the grains on the cross-sectional plane.

Results and discussion

Crystallographic analysis was performed over time using the

EBSD and HR-XRD measurements. To verify the surface

crystallographic evolution, the surface grain orientation and

morphologies were characterized with EBSD analysis. The

variation of the surface grains with respect to the electrolyte

temperature under a current density of 210 mA/cm2 is

represented in Figures 1A–F’. Grain growth of the sample

electroplated at 22.5°C (RT Cu) occurred, and the overall grain

orientations changed within a week, as shown in Figures 1A–F.

Alternatively, Cu electroplated at 0°C (NT-Cu) experienced

abnormal grain growth over time, and the growth was not

saturated, as shown in Figures 1A’–F’. Figures 1A–F shows that

the RT Cu grains with random orientation grew to the (111)

orientation over time, and Figures 1A’–F’ shows the change of the

NT-Cu grains that grew from the (111) preferred orientation to

other orientations. As shown in Figures 1A–F’, abnormal grain

growth occurred in both specimens regardless of the condition.

HR-XRD analysis was used to study the grain orientation and

texture change tendency with both conditions of Cu by time

(Figure 2). Three major peaks in Cu were measured in Figure 2,

corresponding with the Cu peak in PDF #03-065-9026. Figure 2A

shows an increase in the (111) grain orientation peak in RT Cu,

especially after one week. However, there is no drastic change in

the peaks over time in NT-Cu (Figure 2B); the (200) peak

appeared gradually.

To elucidate the texture changes of the specimens, the texture

coefficient (TC) was calculated by Eq. 1, which was measured by

HR-XRD analysis (Dixit et al., 2007; Hamid and Aal, 2009).

TC(hkl) � I(hkl)
I0(hkl)/

1
n
∑ I(hkl)

I0(hkl) (1)

where I(hkl) is the intensity of the samples in the experiment,

Io(hkl) is the standard relative intensity of the peak from PDF

#03-065-9026, and n is the total number of peaks analyzed. Three

prominent peaks of Cu, the (111), (200), and (220) orientations

were applied to calculate the TC values. TC > 1 refers to the

preferred orientation of the materials (Figure 3).

The (200) orientation of the RT Cu was dominant in the

initial stage of the self-annealing, while RT Cu had the random

orientation depicted in Figure 3A. Interestingly, a drastic

transition from the (200) to (111) orientation was observed in

the RT Cu within a week. Alternatively, the crystallographic

evolution of NT-Cu was observed slowly over a long period

(Figure 3B). The (111) oriented grains were illustrated as the

preferred orientation of the NT-Cu during self-annealing.

However, the (111) peak decreased over time while the (200)

peak increased. In other words, abnormal grain growth of NT-Cu

progressed with the grains in the (200) planes, while that of the

RT Cu progressed with the grains in the (111) planes.

As shown in Figure 1G, both as-deposited RT Cu and NT-Cu

had nanocrystalline grains with an average grain size of 87 nm

and 91 nm. A high free energy per unit volume of the grain was

formed because of the increase in the grain boundary area (Park

et al., 2017). Grains of both RT Cu and NT-Cu were driven to

grow at room temperature to reduce their internal energy

because of their high grain boundary energy (Yang et al., 2019).

In the case of RT Cu, grains relatively superior to the (200)

orientation in the initial stage of self-annealing changed into the

(111) orientation to release the initial high internal energy.

Grains with (111) planes parallel to the plane of the film have

FIGURE 2
HR-XRD profiles of the (A)RTCu and (B)NT-Cu films at t=0 (black), 1 h (red), 2 h (green), 3 h (blue), 24 h (cyan), 144 h (magenta), 336 h (yellow),
504 h (dark yellow), 672 h (navy), and 840 h (purple).
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the lowest surface energy in the face-centered cubic (FCC)

structure, which results in grain growth in a direction (Foiles

et al., 1986; Udler and Seidman, 1996; Jian-Min et al., 2004; Wen

and Zhang, 2007; Fishman et al., 2013). Additionally, (111)

planes are conventionally known as the plane with the fastest

growth rate (Thompson, 1990; Lee et al., 2001), which causes

grains in RT Cu to grow rapidly in the (111) orientation.

However, grains in NT-Cu grew into the (200) orientation,

with the minimum strain energy in the FCC metals (Zielinski

et al., 1995; Lee, 2000; Zhang et al., 2002; Zhang et al., 2005).

Although the initial average grain size generated a similar grain

boundary energy in both Cu, a strain energy relaxation

mechanism occurred in NT-Cu. As confirmed in the previous

research, NT-Cu has a high density of defects on its surface even

though it has a high density of nano-twin lamellae in its vertical

grains. The defects increase the internal strain energy, causing

grain growth in the direction of less strain energy (Lee et al., 2020;

Han et al., 2021).

The sin2Ψ method by X-ray diffraction (XRD) was used to

verify the residual stress of RT Cu and NT-Cu in the

unidirectional direction over time, as shown in Figure 4. By

detecting the theta value (?) according to the psi value (Ψ),
residual stress in the sample was calculated by elastic modulus

and Poisson’s ratio of bulk Cu (Baczmanski et al., 2002;

Delbergue et al., 2016; Luo and Yang, 2017).

Figure 4 shows the residual stress changes in RT Cu and NT-

Cu during self-annealing. The stress in the RT Cu was calculated

as 67.4 MPa in the initial stage of self-annealing and gradually

decreased to approximately 8.0 MPa after 51 days. In its initial

state, NT-Cu has a relatively higher stress than RT Cu

(84.1 MPa), and it rapidly reduced and saturated to

approximately 40 MPa, approximately 47% of the initial stress.

Stress changes during self-annealing have been conventionally

expressed as a stress evolution of Cu, divided into two categories:

stress generation because of grain growth and stress relaxation by

dislocation plasticity (Brongersma et al., 1999; Harper et al., 1999;

Huang et al., 2010). Figure 4 shows that high residual stress

existed in both conditions as compared to other references where

it existed at the initial stage of the self-annealing (Brongersma

et al., 1999; Lagrange et al., 2000).

Both conditions had a similar average grain size and grain

boundary length in the initial state shown in Figures 1G,H;

however, the initial stress of the two conditions differed by

approximately 16.7 MPa. Internal strain generated by defects

can cause stress in the metal (Dieter and Bacon, 1976). The initial

internal strain caused by the grain boundary was similar, so it is

expected that the initial defect density difference between the two

conditions generated the residual stress difference (Basu et al.,

FIGURE 3
TC(hkl) evolution of the (A) RT Cu and (B) NT-Cu films calculated with the (111), (200), and (220) orientations.

FIGURE 4
Residual stress evolution of the RT Cu and NT-Cu films over
self-annealing time.
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2017). Stress saturation in the NT-Cu can be supposed that the

stress reached the self-diffusion equilibrium because of its

defects, while RT Cu lost most of its stress and only remained

approximately 10 MPa after self-annealing (Figure 4). The self-

diffusion of RT Cu occurred actively over time.

Chen et al. investigated the effect of triple junctions generated

with a grain boundary and twin boundary on atomic diffusion

(Chen et al., 2008). The twin boundary separates the grain into

two sub-grains and generates the triple junction with the grain

boundary. In their research, the atomic diffusion was delayed in

the triple junction between the grain boundary and twin

boundary.

Figure 5A shows the high density of the nano-twin lamellae in

columnar grains of the as-deposited NT-Cu. In this study, NT-Cu

has a high density of nano-twin lamellae, resulting in many triple

junctions between the grain boundary and twin boundary, similar to

Figure 5B. The grain growth phenomenon occurs via atomic

diffusion. Atoms mainly diffuse along the intergranular path,

called grain boundary diffusion (Nieh and Nix, 1980; Kolobov

et al., 2001). Therefore, self-diffusion via the grain boundary can

be illustrated as shown in Figure 5B. It was expected that atoms

diffused along the grain boundary and met the innumerable triple

junctions that disturbed the diffusion. In other words, Cu atoms

were diffused at both conditions; however, numerous triple

junctions in the NT-Cu delayed their motions. The grain growth

rate of NT-Cu is slow because of the triple junction delay.

Conclusion

The effect of the high defect density and nano-twin lamellae

on the self-annealing phenomenon was investigated by analysis

of the grain morphology, orientation, texture, and residual stress.

Grains of NT-Cu grew to the (200) orientation, while RT Cu grew

to the (111) orientation according to EBSD and HR-XRD

analysis. Both conditions had a similar average grain size;

however, their crystalline evolution patterns and rates differed.

In particular, RT Cu grains grew and saturated within a week,

whereas NT-Cu grains grew gradually and did not saturate after a

month. However, the opposite tendency was observed in residual

stress. Residual stress in RT Cu gradually decreased over time,

and the stress in NT-Cu was dramatically reduced in the initial

stage of self-annealing and saturated at 50%. As a result, the high

defect density contributed to the grain growth texture and the

nano-twin lamellae contributed to the self-diffusion rate at room

temperature.
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