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A chemodivergent photocatalytic approach to 1-pyrrolines and 1-tetralones

from alkyl bromides and vinyl azides has been developed through

chemoselectively controllable intermolecular [3 + 2] and [4 + 2] cyclization.

This photoredox-neutral two-component protocol involves intermolecular

radical addition and switchable distal C(sp3)–H functionalization enabled by

iminyl radical-mediated 1,5-hydrogen atom transfer. Meanwhile,

chemoselectivity between C(sp3)–N bond formation and C(sp3)–C(sp2) bond

formation is precisely switched by photocatalysts (Ru(bpy)3(PF6)2 vs. fac-

Ir(ppy)3) and additives (base vs. acid).

KEYWORDS

1-pyrrolines, hydrogen atom transfer, [3+2] cyclization, [4+2] cyclization, 1-tetralones

Introduction

1-Pyrroline motifs are core structures of a plethora of biologically active molecules

such as natural products and drugs. Joined to this, they could also act as versatile synthetic

intermediates of various valuable molecules including pyrrolidine alkaloids (Tyroller

et al., 2002; Pluotno and Carmeli, 2005; Newcomb et al., 2016), ligands (Lasri et al., 2012),

pharmaceuticals (Rosser and Faulkner, 1984; Schann et al., 2001; Tsukamoto et al., 2001;

Aicher et al., 2011), etc (Miltyk and Pałka, 2000; Stapon et al., 2003). With the rapid

development of visible-light-driven photoredox catalysis, photocatalytic iminyl radical-

mediated cyclization reactions have emerged as greener and milder approaches for the

straightforward synthesis of 1-pyrroline frameworks. One of the novel synthetic methods

is photocatalytic iminyl radical-mediated intramolecular cyclization/functionalization of

C–C double bonds for rapid synthesis of diversely functionalized 1-pyrroline derivatives

developed by the groups of Leonori (Davies et al., 2015), Itoh (Usami et al., 2018), and

Studer (Jiang and Studer, 2017), our group (Zhang et al., 2021), and others (Chen et al.,

2020; Wang et al., 2020; Krylov et al., 2021) (Scheme 1A, left). On the other hand,
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photocatalytic iminyl radical-mediated intramolecular 1,5-

hydrogen atom transfer (HAT)/cyclization cascade has been

exploited by Nevado group and Yu group as a valuable tool

for distal C(sp3)–H bond functionalization to access 1-pyrrolines

and related scaffolds (Scheme 1A, right) (Shu and Nevado, 2017;

Wu et al., 2021). Despite the marked advances achieved, these

two iminyl radical-mediated approaches to 1-pyrroline skeletons

are based on the self-elaboration of single puzzling oxime

derivative. Thus, the development of novel, straightforward,

and efficient approaches to construct 1-pyrroline architectures

via photocatalytic iminyl radical-mediated intermolecular

cyclization, especially with two or more simple and readily

available starting materials, is highly desirable but challenging.

Meanwhile, vinyl azides, as another extremely attractive

iminyl radical source, could provide iminyl radicals through

the radical addition followed by the release of an N2 molecule

to trigger further cyclization for the facile construction of various

hetero- and carbocycles (Shu et al., 2017; Tang et al., 2017; Lei

et al., 2018; Li et al., 2018; Tang et al., 2019; Liao et al., 2020; Lin

et al., 2020; Jiao et al., 2021; Liang et al., 2021). In 2021, our group

developed an unprecedented trifunctionalizing ipso-

spirocyclization of vinyl azides with unactivated alkenes as

1,2,n-tri-radical precursors to afford novel spiroaminal

skeletons through photocatalytic nitrogen radical-triggered

cyclization-trapping-translocation-cyclization cascade (Qi

et al., 2021). Prompted by this work and seminal pioneering

reports on the unparalleled functional diversity of vinyl azides

(Fu et al., 2017), we envisioned whether readily available alkyl

bromides could be used as 1,2-diradical precursors and react with

iminyl radical source vinyl azides to undergo the photocatalytic

intermolecular radical addition, iminyl radical-mediated

intramolecular 1,5-HAT (Dong et al., 2022), and sequential

radical cyclization cascade, thus providing access to highly

valuable 1-pyrroline architectures. Herein, we report an

example of photocatalytic iminyl radical-mediated

intermolecular [3 + 2] cyclization from alkyl bromides and

vinyl azides to access structurally intriguing and highly

functionalized five-membered heterocycle 1-pyrrolines

(Scheme 1B). Interestingly, a chemodivergent approach to

pharmaceutically important 1-tetralones (Taber et al., 2004;

Odagi et al., 2017; Legoabe et al., 2018) (six-membered

carbocycles) via photocatalytic iminyl radical-mediated

intermolecular [4 + 2] cyclization from the same starting

materials could also be established (Miller and Sarpong, 2011;

Zhan et al., 2017; Najera et al., 2019).

Results and discussion

To validate our hypothesis, diethyl 2-benzyl-2-

bromomalonate 1a and vinyl azide 2a were firstly selected as

model substrates to optimize the reaction conditions (Table 1). It

was pleasing to find that when using fac-Ir(ppy)3 as the

photocatalyst, K2CO3 as the base, and anhydrous CH2Cl2 as

the solvent, the expected [3 + 2] cyclization product 1-pyrroline

3aa could be obtained in 12% yield as well as the [4 + 2]

cyclization product 1-tetralone 4aa in relatively higher yield

(entry 1). Subsequently, screening of photocatalysts

demonstrated that replacing fac-Ir(ppy)3 with Ru(bpy)3(PF6)2
remarkably enhanced the reaction efficiency of [3 + 2]

cyclization, whereas only a trace amount of the [4 + 2]

cyclization product 4aa was detected (entries 2 and 3). After

selecting Ru(bpy)3(PF6)2 as an optimal photocatalyst, we further

explored the effect of solvents and additives. However, when

other solvents such as DMF, THF, and MeCN were tested, it led

to the expected product 3aa in the decreased yields of 13%, 46%,

SCHEME 1
Photocatalytic access to 1-pyrrolines via iminyl radical-mediated cyclization.
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and 55%, respectively (entries 4–6). Furthermore, other tested

bases delivered no more significant improvement, and notably,

the yield of the desired product 3aa dropped sharply to 12%

without the addition of a base (entries 7–10), indicating that a

base is critical to the success of this [3 + 2] cyclization.

Interestingly, the yield of the desired product 3aa could be

further improved to 82% yield by adjusting the loading of

reaction substrates (entries 11 and 12). As anticipated, control

experiments indicated that visible light and photocatalyst fac-

Ir(ppy)3 were indispensable for such photocatalytic [3 + 2]

cyclization (entries 13 and 14). Delightfully, using AcOH

instead of the essential base in the predominant [3 + 2]

cyclization could not only enable the preferential [4 + 2]

cyclization, but the yield of 1-tetralone 4aa could also be

improved from 60% to 76% by further increasing the amount

of solvent CH2Cl2 (entries 15 and 16 vs. entry 1).

Having established the optimal reaction conditions (Table 1,

entry 12), we next explored the substrate scope of alkyl bromides

and vinyl azides to extend the synthetic potential and generality

of this method as summarized in Scheme 2. Firstly, the generality

of this photocatalytic [3 + 2] cyclization with regard to alkyl

bromides was examined. Generally, a diverse array of alkyl

bromides bearing different electronic groups at various

positions of the phenyl moiety could be successfully

transformed into the desired 1-pyrroline products (3aa–3qa).

Notably, the molecular structure of the representative 1-pyrroline

3ba was confirmed by X-ray crystallography (CCDC 2173209).

Gratifyingly, this photocatalytic cyclization tolerated well a broad

range of diverse functionalities such as alkyl (3ca, 3da, 3na, and

3qa), alkoxyl (3ba and 3ma), cyano (3ha), and acetyl (3ia), as

well as halogen (3ea–3ga, 3ja–3la, and 3oa–3pa) that could

provide opportunities for further product functionalization.

Interestingly, the [3 + 2] cyclization reaction between indole-

derived bromide 1r and vinyl azide 2a also proceeded smoothly

to produce the corresponding 1-pyrroline 3ra with a satisfactory

yield. Additionally, homoallylic and homopropargyl-substituted

TABLE 1 Optimization of the reaction conditionsa,b.

Entry Photocatalyst Solvent Additive 3aa Yield
(%)

4aa Yield
(%)

1 fac-Ir(ppy)3 CH2Cl2 K2CO3 12 36

2 Ir(p-F-ppy)3 CH2Cl2 K2CO3 6 14

3 Ru(bpy)3(PF6)2 CH2Cl2 K2CO3 77 trace

4 Ru(bpy)3(PF6)2 DMF K2CO3 13 n.d.

5 Ru(bpy)3(PF6)2 THF K2CO3 46 n.d.

6 Ru(bpy)3(PF6)2 MeCN K2CO3 55 n.d.

7 Ru(bpy)3(PF6)2 CH2Cl2 K3PO4 66 n.d.

8 Ru(bpy)3(PF6)2 CH2Cl2 2,6-lutidine 72 n.d.

9 Ru(bpy)3(PF6)2 CH2Cl2 DABCO 70 n.d.

10 Ru(bpy)3(PF6)2 CH2Cl2 — 12 16

11c Ru(bpy)3(PF6)2 CH2Cl2 K2CO3 64 trace

12d Ru(bpy)3(PF6)2 CH2Cl2 K2CO3 82 8

13 — CH2Cl2 K2CO3 n.d. n.d.

14e Ru(bpy)3(PF6)2 CH2Cl2 K2CO3 n.d. n.d.

15f fac-Ir(ppy)3 CH2Cl2 AcOH Trace 60

16f,g fac-Ir(ppy)3 CH2Cl2 AcOH 10 76

aReaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), photocatalyst (2 mol%), solvent (1 ml), additive (0.15 mmol), 30 W blue LEDs, argon atmosphere, r.t., 9 h. n.d. = not detected.
bYields were determined by 1H NMR using dibromomethane as an internal standard.
c2a (0.15 mmol).
d2a (0.25 mmol).
eWithout LEDs.
fAdditive (0.1 mmol).
gSolvent (2 ml).
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bromides have also been proven to be suitable substrates for this

[3 + 2] cyclization, providing the desired highly substituted 1-

pyrrolines (3sa and 3ta) with yields of 71% and 15%, while

saturated alkyl bromides (1u and 1v) failed to give the desired

products. Subsequently, we examined the scope of vinyl azides

with 2-benzyl-2-bromomalonate 1a as the coupling partner.

Different substituents on the aromatic ring of the vinyl azides

were found compatible with the [3 + 2] cyclization conditions to

obtain the desired products in moderate to good yields

(3ab–3am). It is worth noting that the estrone-derived vinyl

azide 2p effectively participated in such [3 + 2] cyclization to give

the structurally intriguing 1-pyrroline derivative 3ap,

demonstrating the capacity of this protocol in late-stage

modification of complex bioactive molecules. However, alkyl-

substituted vinyl azide seemed to be not suitable for this

cyclization and provided the unseparated mixture including a

trace amount of the expected product 3aq.

After completing the [3 + 2] cyclization, we continued to

expand the substrate scope to afford the [4 + 2] cyclization

product 1-tetralones under the conditions of fac-Ir(ppy)3 as the

SCHEME 2
Substrate scope with respect to [3 + 2] cyclization. Reaction conditions: 1 (0.2 mmol), 2 (0.5 mmol), Ru(bpy)3(PF6)2 (2 mol%), K2CO3 (0.3 mmol),
CH2Cl2 (2 ml), 30 W blue LEDs, argon atmosphere, r.t., 9 h, in a sealed tube; isolated yields based on 1 after the chromatographic purification.
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photocatalyst and AcOH as the additive (Table 1, entry 16). As

illustrated in Scheme 3, this [4 + 2] cyclization showed good

tolerance of various substituents such as alkyl, halogen, cyano,

acetyl, and alkoxyl, providing a great variety of highly

functionalized 1-tetralones (4aa–4qa). In particular, the

molecular structure of the representative 1-tetralone 4ga was

also confirmed by X-ray crystallographic analysis (CCDC

2173208). On the other hand, a panel of vinyl azides with

electron-donating or electron-withdrawing groups at the para-

position of the aromatic ring could be successfully converted into

the corresponding 1-tetralones (4ab–4ah) in satisfactory yields.

However, vinyl azide with methyl at the meta-position of the

aromatic ring furnished the corresponding 1-tetralones as

mixtures of regio-isomer (4aj and 4aj9). In addition, the

ortho-substituted vinyl azide reacted smoothly with 1a to give

the corresponding 1-tetralone in an acceptable yield (4an).

Furthermore, this photocatalytic [4 + 2] cyclization also

displayed good tolerance of other important heteroaromatics

including thiophene (4ao). However, during our preparation of

this manuscript, Xu, Hu, and co-workers also reported an elegant

SCHEME 3
Substrate scope with respect to [4 + 2] cyclization. Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), fac-Ir(ppy)3 (2 mol%), AcOH (0.2 mmol),
CH2Cl2 (4 ml), 30 W blue LEDs, argon atmosphere, r.t., 9 h, in a sealed tube; isolated yields based on 1 after the chromatographic purification. rr:
regioisomeric ratio.

Frontiers in Chemistry frontiersin.org05

Tu et al. 10.3389/fchem.2022.1058596

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1058596


SCHEME 4
Representative derivatizations.

SCHEME 5
Preliminary mechanistic studies.
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radical cascade cyclization between vinyl azides and alkyl

bromides toward 1-tetralone skeletons by using a metal-free

photocatalyst (Jiao et al., 2021).

To illustrate the potential application of this protocol, we

performed a scale-up reaction containing 1.0 mmol of 1a under

standard conditions to obtain the target product 3aa with a

synthetically useful yield (Scheme 4A). To further showcase the

synthetic utility of this protocol, we next performed a set of facile

derivatization applications using the formed 1-pyrroline 3aa. In

the presence of trifluoroacetic anhydride or acetyl chloride, 3aa

could be readily transformed into the acylated 2-pyrroline

derivatives (5 and 6) with 89% and 92% yields, respectively

(Schemes 4B,C). Additionally, [3 + 2] cycloaddition of 3aa with

N-hydroxybenzimidyl chloride successfully obtained biologically

relevant pyrroline-fused 1,2,4-oxadiazoline 7 in an excellent yield

of 90% (Scheme 4D). Upon treatment of 3aa with

N-chlorosuccinimide (NCS) at 80 °C, the α,α-dichlorinated 1-

pyrroline derivative 8 was isolated in very good yield (Scheme

4E). Interestingly, treatment of 3aa with LiCl in DMSO and trace

H2O at 180°C resulted in the mono-decarboxylation,

aromatization, and unclarified methylation process to afford

tetra-substituted pyrrole 9 in moderate yield (Scheme 4F).

Subsequently, some control experiments were conducted to

elucidate the reaction mechanism as shown in Scheme 5. When

the electron-transfer scavenger p-dinitrobenzene (DNB) or

radical scavenger including 2,6-di-tert-butyl-4-methylphenol

(BHT), 2,2,6,6-tetramethyl-piperidinyloxyl (TEMPO), and

1,1-diphenylethylene (DPE) was added into the reaction

system, the model reaction was suppressed to varying

degrees (Scheme 5A). Notably, the existence of both 1a-

derived adduct TEMPO-1a detected by LC-HRMS and 3aa9

isolated by the chromatographic purification indicated that the

corresponding alkyl radical might be generated from 1a.

Furthermore, a trace amount of other TEMPO-trapped

adducts (TEMPO-C and TEMPO-C9) were also detected by

LC-HRMS analysis, suggesting that the carbon-radical

intermediates generated through the radical addition

followed by iminyl radical-triggered 1,5-HAT might be

involved in such transformation. Additionally, no desired

product 3aa was observed when using 3-phenyl-

2H-azidocyclopropane 2a9 generated under standard

conditions instead of vinyl azide 2a, which seems to exclude

the participation of 2H-aziridine intermediate in this

transformation (Scheme 5B).

Based on the above-mentioned results and literature

survey, the reaction mechanism of [3 + 2] cyclization is

depicted in Scheme 6. MacMillan group (Nicewicz and

MacMillan, 2008) and Stephenson group (Wallentin et al.,

2012; Swift et al., 2016) disclosed that, under the irradiation of

visible light, the weakly reducing excited-state *Ru2+ [E1/2
red

(Ru3+/*Ru2+) = −0.81 V vs. SCE] (Teegardin et al., 2016) can

not be oxidatively quenched by the electron-deficient diethyl

bromomalonate [E1/2
red = −1.0 V vs. SCE (Wang et al., 2016);

while our model substrate diethyl 2-benzyl-2-bromomalonate

1a (E1/2
red = −1.27 V vs. SCE) see the Supplementary

Material]. In contrast, single electron transfer from the

photogenerated electron-rich Ru1+ (−1.33 V vs. SCE) to 1a

could deliver an electrophilic alkyl radical A, although that the

excited-state *Ru2+ [E1/2
red (*Ru2+/Ru1+) = +0.77 V vs. SCE]

might be reductively quenched by certain unclarified

SCHEME 6
Plausible reaction mechanism.
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reductant to initiate the first photocatalytic cycle and provide

Ru1+ has not been clarified in detail yet. Subsequently, the

addition of radical A onto vinyl azide 2a leads to the release of

an N2 molecule and the formation of an iminyl radical B,

which undergoes 1,5-H atom transfer (1,5-HAT) to produce a

more stabilized benzyl radical C. In path A, radical

intermediate C proceeds via the 5-endo-trig radical

cyclization with an imine moiety to give the electron-rich

α-aminoalkyl radical D (–0.92 to –1.12 V vs. SCE) (Wayner

et al., 1986; Du et al., 2020; Liang et al., 2020; Wu et al., 2020),

which is readily oxidized by the excited-state *Ru2+ to access

iminium cation E and finally yield the target 1-pyrroline 3aa

with the aid of a base. For the [4 + 2] cyclization, the strongly

reducing excited-state *Ir3+ [E1/2
red (Ir4+/*Ir3+) = −1.73 V vs.

SCE] (Teegardin et al., 2016) could be oxidatively quenched by

diethyl 2-benzyl-2-bromomalonate 1a to give radical

intermediate C through the same radical addition/1,5-HAT

sequence. As depicted in path B, intermediate C undergoes the

6-endo-trig radical cyclization onto the phenyl ring of vinyl

azide to form G, which is further oxidized by the oxidized

ground-state Ir4+ (+0.77 V vs. SCE) and then undergoes the

deprotonation/hydrolysis process to release 1-tetralone 4aa

with the assistance of AcOH. In addition, another alternative

path C, in which benzyl radical C could also undergo the single

electron transfer with *Ru2+ or Ir4+ having a higher oxidation

potential followed by 5- or 6-endo-trig ionic cyclization and

further transformation to access 3aa or 4aa, could not be

completely ruled out. In the [4 + 2] cyclization reaction, the

additive acid might suppress the oxidation of α-aminoalkyl

radical D in path A or 5-endo-trig ionic cyclization in path C,

which resulted in the low efficiency of the [3 + 2] cyclization

reaction. Notably, compound C·H, hydrolyzed C·H,

compound J·Br, and hydrolyzed J·Br detected through LC-

HRMS analysis of the ongoing reaction mixture validate the

existence of radical C and cation J, providing further evidence

for our proposed mechanism (for details see the

Supplementary Material).

Conclusion

In conclusion, we have developed a controllable

photoredox-neutral [3 + 2] and [4 + 2] cyclization of alkyl

bromides and vinyl azides by simply manipulating the

photocatalysts and additives, providing chemodivergent

access to highly substituted 1-pyrrolines and 1-tetralones.

This protocol relies on intermolecular radical addition

triggered 1,5-hydrogen atom transfer/switchable C(sp3)–H

bond functionalization tandem sequences. In addition, the

mild reaction conditions, easy-to-handle feedstocks, good

tolerance of functional groups, easy scalability, facile

derivatization of products, and late-stage functionalization

of bioactive molecule provide great potential for application

in synthetic chemistry and pharmaceutical chemistry. Further

mechanistic research and application of this protocol are

currently undergoing in our laboratory.
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