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The seamless integration of human disease-related mutation data into protein

structures is an essential component of any attempt to correctly assess the

impact of the mutation. The key step preliminary to any structural modelling is

the identification of the isoforms onto which mutations should be mapped due

to there being several functionally different protein isoforms from the same

gene. To handle large sets of data coming from omics techniques, this

challenging task needs to be automatized. Here we present the MoNvIso

(Modelling eNvironment for Isoforms) code, which identifies the most useful

isoform for computational modelling, balancing the coverage of mutations of

interest and the availability of templates to build a structural model of both the

wild-type isoform and the related variants.
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1 Introduction

The spatial and functional diversity of the 20,465 protein-

coding genes (Howe et al., 20212021) (https://www.ensembl.

org/) in the human genome is dramatically augmented through

alternative splicing that results in an enormous number of

potential protein isoforms. Exact numbers are not fully

known but common estimates for total isoforms are in the

10X range (245,000 transcripts in https://www.ensembl.org/).

Alternative splicing can result in isoforms with relatively subtle

changes through to those that vary enormously in their

structure, function, and subcellular spatial expression (Park

et al., 2018).

Indeed, most functional (and dysfunctional) biochemical

processes are affected by the expressed isoforms, which

feature distinct functional roles. Examples of this complexity

include the neuroligin and neurexin families, which perform

synaptic regulatory functions that are surprisingly isoform

specific (Markwick et al., 2007; Slabinski et al., 2007). This

complexity may be increased by the addition of genetic

variants, which can directly influence the protein structure

and function of the isoform. Moreover, genetic variations can

also affect the splice mechanisms and change the isoforms

directly (Park et al., 2018), but this is not addressed in this study.

Further information, key to our understanding of genetic

diseases, is the availability of three-dimensional structures of a

protein. The structure of many human proteins is now available

by accurate - yet time-consuming (Markwick et al., 2007;

Slabinski et al., 2007) - experimental techniques (such as

X-ray diffraction, NMR and electron microscopy (Murata and

Wolf, 2018)). These accurate but demanding approaches are

complemented by fast (and more approximate) computational

predictions (Kuhlman and Bradley, 2019), including homology

modelling (Kuhlman and Bradley, 2019) and deep learning

techniques such as AlphaFold (AF) (Tunyasuvunakool et al.,

2021), based on experimental structural information of

evolutionarily related template protein(s) (Kuhlman and

Bradley, 2019). Unfortunately, all these methods do not

usually provide the isoforms most likely involved in the

process of interest.

Here we present a computational platform that selects

specifically the most useful isoform for molecular modelling

and provides structural information, in the context of

identified genetic variants. The presence of a variable number

of protein isoforms makes it challenging to assign each mutation

to a specific position in the protein sequence, which frequently

hampers a reliable assessment of the impact of the genetic

variations (including disease relevant mutations (Rees et al.,

2010; Kato et al., 2018)) on an isoform suitable for molecular

modelling. In other cases, a mutation is observed that is relevant

to a specific isoform, but the databases reporting mutations

related to a particular genetic disease usually lack a reference

to the specific isoform.

Given a set of mutations at the protein expression level, our

pipeline can correctly assign them to the corresponding isoforms

at the protein level, providing important information that can be

used for further investigations. The second key step of the

determination of the isoform most useful for molecular

modelling is achieved by combining the mutation-isoform

map with the sequence coverage of available structural templates.

2 The MoNvIso (Modelling
eNvironment for Isoforms) pipeline

The general workflow of MoNvIso is summarised in Figure 1

and proceeds according to three steps described inmore details in

the next subsections:

1) Step 1: check of the gene names provided in the input file,

identification of canonical and additional isoforms extracted

from the Uniprot database. In the input file a list of the

mutations of interest is also present.

2) Step 2: check of the modelling propensity and how properly

mutations are mapped on the available isoforms. The

availability of templates is supervised by MoNvIso, as well

as the association of the mutations to the appropriate

isoforms. MoNvIso highlights failures in this mapping

procedure, i.e., when mutations cannot be mapped on any

available isoforms.

FIGURE 1
MoNvIso’s flowchart.

Frontiers in Chemistry frontiersin.org02

Oliva et al. 10.3389/fchem.2022.1059593

https://www.ensembl.org/
https://www.ensembl.org/
https://www.ensembl.org/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1059593


3) Step 3: Building of the structural model of the identified

proteins. Model of the wild-type (WT) forms and of their

variants (selected by MoNvIso according to Step 2) are built if

experimental structures are not already available for the

selected isoforms.

The selection procedure is based on a function, named

Selection, (Step 2) that casts two contributions as follows:

Selection � w1 · (Structural function)
+w2 · (Mutation function)

The two terms, Structural function and Mutation function
numerically translate the modelling propensity and the mapping

of the mutations on the available isoforms to accomplish the two

conditions. w1 and w2 are the weights of two terms. By default,

w1 = w2 = 10 but they can be adjusted by the user. Structural
function and Mutation function are described more in detail in

the Subsection Step 2.

Collections of input and output files for the proteins KRAS

and KDM5C are collected in example_p1. rar and example_p2.

rar, which can be downloaded at https://github.com/

MoNvIsoModeling/MoNvIso.

2.1 Step 1

MoNvIso checks the list of gene names and the set of point

mutations provided by the user. The mutations can be

indicated in the input file according to different formats:

three-letters or single letter names for the amino acids.

Additionally, spaces and tabs are also accepted to simplify

the creation of the list by the user. Every gene name is searched

against the Uniprot (Bateman et al., 2021) database, the results

are extracted from two files, namely uniprot_sprot.fasta,

which contains the aminoacidic sequence of the canonical

isoforms according to the classification of Uniprot, and

uniprot_sprot_varsplic.fasta collecting the sequences of the

remaining isoforms obtained from Uniprot (see

Supplementary Figure S1 for the list of folders and files

created by MoNvIso) .

2.2 Step 2

MoNvIso then performs an analysis on each isoform

extracted from the Uniprot entry (see Step 1) based on two

functions: 1) checking the modelling propensity and 2)

mapping of the mutations. A score is associated with each

function and the combination of the two is used to select the

isoform most suitable to be modelled. Independently on the

chosen isoform to be modelled, the information on the mapped

mutations onto all the isoforms is provided by MoNvIso. In

detail:

2.2.1 Checking the modelling propensity.
Each isoform is then processed according to a standard

procedure: A search for homologous sequences is performed

using BLAST API (Altschul et al., 1990), which allows users to

submit BLAST searches for processing through cloud service

provider(s) using HTTPS; and a multi sequence alignment

(MSA) is generated using COBALT (Papadopoulos and

Agarwala, 2007). Subsequently, based on the MSA, the

hmmsearch function of HMMER (version 3.3.2 http://hmmer.

org/) uses the HMM (Hidden Markov Model) (Baum and Petrie,

1966) to find relevant templates in the PDB. The 10 most similar

sequences for the identified PDB structures are downloaded and

the chains necessary for the homology modelling are extracted as

separate files. The extracted structures are cleaned from water

molecules, ligands, disordered atoms, and non-standard residues,

then aligned to the MSA and are made available to the user in a

folder (see Supplementary Figure S1).

The resulting structures are ranked by resolution and

sequence identity to find the most appropriate templates, thus

excluding crystals with poor resolution or with sequences that are

very different from the original query (see Section Limitations).

The default values of the sequence identity and resolution

thresholds are 25% and 4.5 Å, respectively. However, the

thresholds can be modified by the user. A further selection

criterion is applied by calculating the coverage of the input

sequence by the sequences of the templates. To this aim,

MoNvIso identifies the minimum number of templates

necessary to model the highest percentage of the target

sequence. For a given target sequence (for example, Isoform

1 = ADRRVLTY) and the set of templates identified as described

above (for example, Template A: AD, Template B: AD, Template

C: RRVLT, Template D: DRR), MoNvIso proceeds as follows:

1) Sorting of the templates according to the covered lengths, in

our case Templates A, B, D, C;

2) Checking if the given sequence is covered by more than one

template or by a combination of templates. In our case,

Templates A and B cover the same portion;

3) If a single template covers the target, then this template is

considered (which is not the case of our example);

4) If the target is covered either by a longer template or by a

combination of other templates (with at least one covering

extra portions of the protein), the proper selection is

considered. In our example, this is accomplished by the

combination of Templates A and C, being the choice

between Templates A and B only dictated by the

alphabetical order.

The described procedure is applied by MoNvIso to entire

sequences or portions of them and to all the possible additional

isoforms (our example deals with a second isoform, Isoform 2 =

ADRKVLTY). Note that information about covered sections and
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associated templates are stored in the covered_intervals file

produced by MoNvIso.

Starting from the above description, the term Structural
function in Eq. 1, accounts for the availability of

crystallographic data defined as the number of amino acids

(AAs) that are covered by a template (or a combination of

templates) over the total number of AAs constituting the isoform

Structural function � (CoveredAA)
(Total AA) (2)

In the above example, for Isoform 1 we have Total AA =

8 and Covered AA = 7, resulting in a Structural function = 0.875,

while for Isoform 2 the values of Covered AA and Structural
function are 6 and 0.750, respectively.

2.2.2 Mapping of the mutations
The second term of Eq. 1, Mutation Function, considers the

entire list of mutations provided for the considered gene, thus

pinpointing to the isoform most suitable for homology

modelling. Our program maps all mutations onto the

appropriate isoform and increases by one the numerator,

Mutating AA that can be modelled, if the mutated residue can

be correctly located in the isoform sequence. The contribution of

matched mutations to the selection function is evaluated as follows:

Mutation function � (MutatingAA that can bemodelled)

(MutatingAAfound in at least 1 isoform)

(3)

According to our example, for the three mutations T2A, R3A,

R4L, MoNvIso highlights that the first mutation T2A is not

mapped on the two present isoforms, while it evaluatesMutating
AA that can be modelled equal to two and one for Isoforms 1 and

2, respectively.Mutating AA found in at least one isoform is two

for both isoforms, Mutation function (Isoform 1) = 1, and

Mutation function (Isoform 2) = 0.5.

For each gene and each isoform, the resulting Selections are
reported in the report. log file. Moreover, this file contains a

report on all mutations inserted in the input file, that is, i) the

mapped mutations, ii) on which isoform they were mapped and

iii) mutations not associated with any isoforms, together with iv)

the isoform most suitable to be modelled (see Supplementary

Figure S2). In our example, the selected isoform to be modelled is

Isoform 1 with Selection = 18.75.

2.3 Step 3

Structural models for the selected isoform in itsWT form and

in all the variant(s) associated with the properly mapped

mutation(s) are then created by using the MODELLER

program (Webb and Sali, 2016) based on the sequence

alignment obtained in the previous step. Regions not covered

by the templates are not considered. The models are then ranked

by the DOPE score (Shen and Sali, 2006), andMoNvIso yields the

top ranked one (the list of all the models with their DOPE score is

in the file MYOUT. dat, see SI for the list of all the files generated

by MoNvIso and their location). The modelling of the variants is

then performed by taking the MODELLER input file containing

the WT sequences of the templates and replacing the mutated

AAs in the sequence. MODELLER is then run again to produce

the model of the variant(s). This can be useful for mapping the

position of mutations on a three-dimensional structure, allowing

the study not only of the mutated residue but also of the amino

acids in its vicinity and with which the mutated residue may be in

contact.

3 Strengths

Our pipeline exploits a series of tools tailored to manage large

sets of proteins. Useful information is provided at each step of the

run so that decisions taken by the pipeline can be audited. In the

case of a failure of the pipeline to provide a satisfactory structural

model, the file report. csv traces the mutations on all the isoforms

and provides an easy way to identify the isoform mapping the

largest number of mutations. The previously mentioned report.

log file is also important. This file contains all the data that would

otherwise have to be manually collected such as the number of

isoforms for a gene, the location of the mutations, which

mutations cannot be mapped on any known isoform and

finally the values of the selection functions. These data can

provide a useful starting point if the user needs to manually

model the protein. For example, the user, upon data retrieval, can

also decide if another isoform should be prioritised because of a

mutation of particular interest not present in the isoform selected

by the program. Regarding the modelling part of the protocol, the

final alignments, the used templates with detailed information on

the selection process as well as the coverage are made available to

the user, as specified thoroughly in Section 2. Although the

process of building the variants can be time consuming if

many of them need to be built, this part is fully automated. In

most of the tested cases the models built showed a high quality

and can be used for further studies (see Section Results). Thus,

our pipeline reduces the time necessary to model a large number

of proteins by automating the slowest parts of the process

including the search for isoforms, the mapping of mutations,

the search for crystallographic data to use as templates and the

building of the alignments.

4 Limitations

As with any modelling study, also our method presents

limitations. MoNvIso does not model the parts of the protein

that are not covered by templates. The solution implemented in

the program is the modelling of the single domains, although this
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implies the uncertainty on reciprocal orientations of the

domains. An additional drawback is the possible presence of

several small portions that can be modelled but are interspersed

by regions not covered by templates. In some cases, the search for

templates with HMMER does not return any result (depends on

HMMER’s servers). When several successive searches for

homologues are queued on BLAST, a slowdown of the runs

may occur. Multiple point mutations coexisting on the same

proteins are not modelled by MoNvIso concurrently. Rather,

MoNvIso provides a series of structural models of single amino

acid variants for pairwise comparison. Finally, MoNvIso selects

the most useful isoform based on available structural data and

mutation coverage but there is no guarantee this is the most

functionally relevant one in every case.

5 Case studies

We tested MoNvIso on a set of 70 proteins. A corresponding

257 human isoforms were extracted from the Uniprot database

and relative mutations obtained from the relative Uniprot

webpage, with a maximum cap of five mutations per protein.

The genes and mutations considered are listed in the file

mutations.txt provided in Supporting Materials. For all

selected proteins MoNvIso was able to produce the alignments

and to map the mutations onto the identified isoform. It

successfully located, retrieved, and edited the templates to

generate the WT structural models as well as the variants,

when the identified mutations were in the modelled portions.

Out of the 70 proteins we modelled, 53 WT models could be

compared against equivalent ones available in the AF database

(DB) (https://alphafold.ebi.ac.uk/). This was done by extracting

from the AFmodel the part of the sequence that wemodelled and

performing an RMSD analysis on the Cα.
For the remaining 17 proteins (BCL11A, CACNA1B,

CAMKK1, CAMKK2, DNMT1, FMR1, GABRB3, GRIK2,

GRM5, PLXNB1, SCN2A, SLC17A8, SNAP25, STX1A, SYN1,

SYT1, TAF1), such comparison was not feasible because the

isoform selected by MoNvIso was not the canonical one as

considered by AF and was not sufficiently similar for direct

comparison, i.e. the number of Cα was different. For a further

13 proteins out of 70 we modelled an isoform different from the

canonical sequence but the RMSD comparison with the AF

models was possible because the changes were localised in

region not covered by templates.

Thus, for a total of 30 proteins out of 70 mutations are best

modelled on non-canonical isoforms. The results of the

comparison are presented in Supplementary Table S1 together

with the amount of residue for which AF has a high or very high

confidence (pLDDT score >70) about their position. The genes
are ordered from the one with lowest RMSD value to the highest.

According to Supplementary Table S1, 44 out of 57 (77%) models

present an RMSD below 20 Å, and a visual inspection reinforces

the validity of our results, since the larger RMSD values in this

group are mainly due to small, disordered loops. In the group of

models with RMSD above 20 there are subunits assuming

different orientations in both MoNvIso and AF structures.

When comparing the number of AA with a high or, very

high, confidence score, we see that in most of our results

(46 out of 57), the modelled portion retains at least 50% of

these residues.

As an example, we show two structures in Figure 2: the

proteins GRIN1 (Glutamate receptor ionotropic, NMDA one;

also known as GluN1; Uniprot #Q05586) and GRIN2B

(Glutamate receptor ionotropic, NMDA one; also known as

GluN2B; Uniprot #Q13224). These two transmembrane

FIGURE 2
Comparison between the ribbon representations of
GRIN1 (A) and GRIN2B (B)model structures generated with AF (left
panels) and MoNvIso (right panels). The ribbons are colored from
blue to red going from the N- to the C-terminal.
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proteins are subunits of the N-methyl-D-aspartate (NMDA)

glutamate receptor complex, which contribute to excitatory

transmission in the brain. In the first case both AF and

MoNvIso produce similar results that differ only in the

domains for which no templates are available, but still

modelled by AF. Examples of these domains are the

C-terminal part, starting from K866 to S938 and the

N-terminal helix (residues M1 to D23) that are modelled by

AF and not by MoNvIso (see top left and bottom right in

Figure 2A, respectively). These two portions of the sequence

are not considered by MoNvIso (see Step 3) since there are no

available templates to correctly model them, but AF does attempt

to model the whole chain. This leads to portions of the model

with low or very low confidence scores (calculated by AF), and

which corresponds to a pLDDT between 0 and 70, meaning that

those parts of the model are generally unreliable.

The results for GRIN2B (see Figure 2B) demonstrate the

differences between AF and MoNvIso predictions. AF

successfully models the N-terminal part of the protein but

fails to correctly build the trans and intra-membrane domains,

which are then added as loops twisted around the correctly

modelled section of the protein. Once again, the portions that

are missing from the PDB database are poorly modelled. Since

AF has been trained on the PDB dataset (Tunyasuvunakool et al.,

2021), it still relies on available crystallographic data to correctly

model structures. Thus, transmembrane domains such as those

of GRIN2B, which are underrepresented in that training set

because of the scarcity of experimentally determined

structures of transmembrane proteins and their complexes

(Kermani, 2021), may fail to be correctly built. In turn,

MoNvIso automatically recognises the parts of the protein

that can be modelled with confidence. As a result, MoNvIso

cuts out of the sequence the extra AAs that cannot be modelled,

producing a model ready to be used for further analysis.

6 Conclusion

Dissecting the impact of point mutations in the function of

a protein are often hindered by a lack of an appropriate

mapping of the mutation onto the correct isoform of a

protein, of the identification of isoform(s) useful for

molecular modelling, and of the associated building of a

reliable structure. This knowledge is important because

different isoforms of proteins can have widely differing

functional roles and spatio-temporal expression profiles. As

genomic variants associated with human traits and/or disease

are being discovered at an increasing rate, approaches to link

them to isoforms and find reliable structural models are

urgently needed. MoNvIso addresses these two aspects:

mapping a set of point mutations (provided by the user) on

known isoforms, along with selecting the isoform most suitable

to be modelled. The prediction of the structural models for the

WT isoforms and their variants is automated, making MoNvIso

appropriate for high-throughput investigations. Although

several platforms to provide accurate structures of a protein

are available and routinely used (Yang et al., 2014; Webb and

Sali, 2016; Waterhouse et al., 2018), surprisingly few of them

can be implemented in a pipeline (Webb and Sali, 2016) to

automate the modelling of multiple different proteins.

Therefore, our protocol combines this final step with the key

preliminary assessment of the isoform mapping correctly the

mutation of interest. Importantly, all steps of our protocol yield

results that can be used at different stages by the user: the

identification of specific isoforms containing residues involved

in selected mutations is per se a remarkable clue for genetic

assessment of the impact of isoforms, especially by handling a

large number of proteins and point mutations; the set of the

templates eventually identified by MoNvIso with the section of

the target protein covered by them are made available to the

user; finally, the structural predictions represent a valuable

starting point for additional refinements and investigations,

such as molecular dynamics simulations (Raval et al., 2012;

Hollingsworth and Dror, 2018; Lazim et al., 20202020; Miller

and Phillips, 2021; Itoh and Okumura, 2022), hot spots

evaluation (Murakami et al., 2017; Liu et al., 20182018;

Rosell and Fernández-Recio, 2018; Rosensweig et al., 2018),

protein-protein docking (Kangueane and Nilofer, 2018; van

Noort et al., 2021) and more (Poelwijk et al., 2016; Rivoire et al.,

2016; Salinas and Ranganathan, 2018). Finally, note that for

isoforms without good quality-templates, users could choose to

use predicted structures such as those provided by AF and

RosettaFold (Baek et al., 2021) or other modelling packages

and/or protocols to build their own structural models using the

isoform(s) correctly associated with the selected point

mutations.

The test of MoNvIso on a set of proteins and the comparison

with the results of AF confirms the validity of our approach.

Additionally, our computational protocol can be easily inserted

in a pipeline suitable to perform extensive campaigns of

investigation on protein-protein interactions. MoNvIso is

particularly useful to evaluate the availability of templates for

large sets of proteins and automatically selecting the isoform

most suitable to be modelled containing the point mutations of

interest. MoNvIso is freely available and can be downloaded from

GitHub at the following link: https://github.com/

MoNvIsoModeling/MoNvIso, implemented in Python 3.8 and

tested on version 3.0, 3.7 and 3.9 and supported on Linux.

Key points

1) We have developed a computational protocol to map

mutations on appropriate isoforms of protein.

2) The protocol identifies the available templates on which

mutations can be located.
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3) Ranking of the isoforms based on the number of located

mutations and the template coverage.

4) Structural models are built for the WT and mutated isoforms

if reliable templates are available.
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