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Microalgae, macroalgae and cyanobacteria are photosynthetic

microorganisms, prokaryotic or eukaryotic, living in saline or freshwater

environments. These have been recognized as valuable carbon sources, able

to be used for food, feed, chemicals, and biopharmaceuticals. From the range of

valuable compounds produced by these cells, some of the most interesting are

the pigments, including chlorophylls, carotenoids, and phycobiliproteins.

Phycobiliproteins are photosynthetic light-harvesting and water-soluble

proteins. In this work, the downstream processes being applied to recover

fluorescent proteins from marine and freshwater biomass are reviewed. The

various types of biomasses, namely macroalgae, microalgae, and

cyanobacteria, are highlighted and the solvents and techniques applied in

the extraction and purification of the fluorescent proteins, as well as their

main applications while being fluorescent/luminescent are discussed. In the

end, a critical perspective on how the phycobiliproteins business may benefit

from the development of cost-effective downstream processes and their

integration with the final application demands, namely regarding their

stability, will be provided.
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Introduction

Marine biomass is recognized worldwide as a valuable carbon source, which can

be used for food, feed, chemicals, and biopharmaceuticals of paramount industrial

relevance (Merlo et al., 2021). Algae are mostly known for their use in the production

of biomaterials and biofuels, due to their high content of fats or polysaccharides

(Pham et al., 2013). Nonetheless, new fields of application arise with a greater focus on

the remaining compounds with multiple uses in the food, medical, pharmaceutical,

and cosmetic industries. Both academia and industry have invested significant efforts

during the last decades in the exploration of valuable bioproducts that can be sourced
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from algae, and which can allow the development of a

biorefinery focusing on a blue economy. Plenty of high-

value compounds such as proteins, antioxidants, vitamins,

minerals, lipids, pigments, biopolymers (chitosan and sodium

alginate), and polyunsaturated fatty acids are already being

explored for this purpose (Barkia et al., 2019; Novak et al.,

2019, Cuellar-Bermudez et al., 2014).

Microalgae, macroalgae, and cyanobacteria are

photosynthetic microorganisms, prokaryotic or eukaryotic,

living in saline or freshwater environments. The cell wall of

macroalgae consists of polysaccharides (agar and cellulose),

which are an obstacle to cell rupture during the extraction of

their bioactive compounds (Mittal et al., 2017).

The species selection and cultivation strategies are considered

essential to producing each compound of interest (López-

Rodríguez et al., 2020), further boosting their industrial

potential. Included in the set of bioactive compounds of most

interests to academia and industry are the pigments, including

chlorophylls, carotenoids, and phycobiliproteins (Pagels et al.,

2019).

Phycobiliproteins are photosynthetic light-harvesting

proteins present in cyanobacteria, red algae, cryptomonads,

and cyanelles. They are water-soluble proteins, covalently

bound via cysteine amino acid chromophores called

phycobilins, which are open-chain tetrapyrroles (Mulders

et al., 2014; Pagels et al., 2019), and organized in

supramolecular structures called phycobilisomes, located in

the stroma of the cells (Dumay et al., 2014).

The presence of phycobiliproteins in some organisms allows

the transfer of light energy in spectral zones that cannot be used

by chlorophyll a (responsible for the photosynthesis mechanism

to occur), thus allowing the photosynthesis and the survival of

living organisms even at low light intensities (Dumay et al., 2014)

The phycobilisome works as an energetic funnel, allowing the

energy transfer through chromophores to the reaction centers

(Roy et al., 2011).

All phycobiliproteins have the same monomer as the basic

unit, composed of α and β subunits. Each monomer can carry

either one, two, or three chromophores, depending on the

molecular species. These phycobilin chromophores are

phycoerythrobilin (PEB), phycocyanobilin (PCB) and

phycobiliviolin (PVB) (Bryant, 1982). Depending on the

phycobiliprotein, different phycobilin combinations may

occur leading to their specific spectral and optical identity

(Glazer, 1994): Phycoerythrin with maximum absorption

wavelengths (λmax) ranging between 490 and 570 nm (with

three-peak absorption maxima at 565, 539, and 498 nm) (Liu

et al., 2005); phycocyanin (λmax = 610–620 nm) (Dias et al.,

2022) allophycocyanin (λmax = 650–655 nm), and

phycoerythrocyanin (λmax = 560–600 nm) (Munier et al.,

2014). Given that, phycobiliproteins differ in the amino-

acid sequence, the number of chromophores per subunit,

and the type of chromophores. Based on their structure

and properties, specifically on their radiation absorption

ability, phycobiliproteins are divided into four main types,

namely phycoerythrin (PE), phycocyanin,

phycoerythrocyanin, and allophycocyanin, as detailed in

Table 1 (Pagels et al., 2019).

PE is found in the chloroplasts of red algae, cyanobacteria,

being generally composed of (αβ) 6γ complexes (α,
18–20 kDa; β, 19.5–21 kDa; and γ, 30 kDa) (Munier et al.,

2014), with a total molecular weight around 240 kDa

(Table 1). PE can be classified into four classes: B-PE

(Bangiophyceae PE, containing PEB only or containing

PEB and phycourobilin) C-PE (cyanobacterial-PE), and

R-PE (Rhodophyta-PE). The increment of the γ subunit in

R-PE in comparison with other phycobiliproteins confers

additional stability since this subunit is in the center of the

molecule linking the (αβ) 3 trimers (Wang et al., 1998).

Indeed, R-PE is recognized for its stability towards several

denaturant agents, namely temperature and pH (Galland-

Irmouli et al., 2000). The high solubility in water and

stability associated with R-PE has increased industrial

interest. R-PE is commonly used as a natural colouring

agent (Kamble et al., 2018), fluorescent label probe (Wang

et al., 2020), and as an ingredient in pharmaceutical

formulations (Sekar and Chandramohan, 2007). Many

studies show the various biological activities of R-PE,

namely its antioxidant and anti-cancer properties (Pan

et al., 2013; Jung et al., 2016; Tan et al., 2016).

Given the broad range of applications of

phycobiliproteins, particularly of R-PE, and their

consequent economic value, there is a growing interest in

the development of more sustainable and efficient extraction

and purification techniques for their recovery. These methods

are dependent on the biomass and should be tailored in

accordance (Ranjitha and Kaushik, 2005). Cell disruption,

primary recovery, and purification are the three main steps for

the recovery of pure R-PE. The polysaccharides present in the

algal cell wall, such as agar and cellulose, interfere with cell

disruption during extractions, so there is a need for a suitable

method for PE extraction (Mittal et al., 2017). The purity

index expressed as the A565 nm/A280 nm ratio indicates the

purity of PE for different applications, where a value of

0.7 represents a protein with food-grade purity, 3.9 as a

reactive grade, and greater than 4.0 as analytical grade

(Rito-Palomares et al., 2001). Some other variables to be

considered are the recovery, the yield of extraction, the

extraction efficiency, and the purity level, which will be

further described and analysed in this work.

This review will focus on the different downstream schemes

reported so far for the recovery of phycobiliproteins frommarine

and freshwater biomass, highlighting the different sources,

namely macroalgae, microalgae, and cyanobacteria, the

solvents and techniques applied in the extraction and

purification of the fluorescent proteins, as well as their main
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applications while being fluorescent/luminescent. In the end, a

critical perspective on how the sector of phycobiliproteins may

benefit from the development of cost-effective downstream

processes and their integration with the final application

demands, namely regarding their stability, will be provided.

Downstream processing

A downstream process is traditionally defined by two or

three main steps, which depend on the compounds to be

recovered from the biomass being produced extra or

intracellularly. Moreover, the downstream processes to

apply, depends not only on the type of biomolecule(s) to

recover (considering the physical, chemical, and optical

properties) but also on the morphology of the raw material,

in the specific case of this review, cyanobacteria, macro or

microalgae.

Considering that the focus of this review is the

phycobiliproteins, the downstream processes associated with

their production are composed of three main steps: 1) cell

disruption and pigments’ release, 2) extraction of

phycobiliproteins 3) purification of phycobiliproteins by

separating them from the other contaminants. As recently

discussed by Martins and Ventura (2020), the traditional

schemes of cell disruption and biomolecules release are based

on mechanical and/or chemical treatments. Included in the

mechanical treatments, and considering specifically the release

of phycobiliproteins, the effect of maceration, freeze-thaw,

ultrasounds, and microwaves have been evaluated. In addition

to the mechanical treatments, two other techniques are explored

to recover phycobiliproteins, namely the use of specific solvents

in the solid-liquid extraction of the pigments and the enzymatic

hydrolysis (as described in Tables 2, 3). Furthermore, with a

much lower incidence of investigation are the extraction schemes

considering the combination of mechanical and chemical

treatments (Martínez et al., 2019). Normally, the first step for

the recovery of a valuable compound produced intracellularly by

any organism is cell disruption with the consequent release of the

cell components (Günerken et al., 2015). Disruption processes

have been effectively performed to release R-PE from algae by

applying the techniques of maceration, freeze-thaw, ultrasound,

microwave irradiation and enzymatic hydrolysis. Normally these

techniques are used in conjunction with solid-liquid extraction,

which can be water or other solvents. In the next section of this

review, a brief analysis of the techniques applied to extract

phycobiliproteins from 1) macroalgae and 2) microalgae/

cyanobacteria.

TABLE 1 Main properties and characteristics of phycobiliproteins.

Phycobiliprotein Absorption
maxima (nm)
(Liu et al., 2005)

Chemical
structure
(Li et al., 2019)

Molecular
weight (kDa)

Chromophore
ID and structure

Phycoerythrin 490–570 (αβ)6γ complexes 240

Phycoerythrobilin (PEB)

Phycoerythrocyanin 560–600 (αβ)3

Phycoerythrobilin (PEB)

Phycocyanin 610–625 (αβ)3 30

Phycocyanobilin (PCB)

Allophycocyanin 650–660 (αβ)3 104

PCB and

Phycobiliviolin (PVB)

Frontiers in Chemistry frontiersin.org03

Kovaleski et al. 10.3389/fchem.2022.1065355

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1065355


TABLE 2 Extraction methods applied so far to the recovery of phycobiliproteins from macroalgae.

Species Tissue disruption/
Extraction
method

Yield/Extraction
efficiency PE

Yield/Extraction
efficiency PC

Yield/
Extraction
efficiency

R-PE purity
index
(A565/A280)

References

Gracilaria gracilis Maceration (mortar and pestle) 3.58 ± 0.03 mg g−1 0.62 ± 0.02 mg g−1 — — Pereira et al. (2020)

Ultrasonic bath 1.60 ± 0.12 mg g−1 0.37 ± 0.03 mg g−1 — —

Ultrasonic probe 1.57 ± 0.10 mg g−1 0.44 ± 0.01 mg g−1 — —

High pressure 0.25 ± 1.27 mg g−1 — — —

Freeze-thawing 1.51 ± 0.03 mg g−1 — — —

Maceration with pestle and mortar 7 mg g−1 d.w. 2 mg g−1 d.w. — — Francavilla et al.
(2015)

Aqueous solutions of ionic liquids 0.4 mg g−1 fresh
biomass

- — — Martins et al. (2016)

Gelidium pusillum Ultrasonication 0.16 ± 0.01 mg g−1 0.11 ± 0.01 mg g−1 — — Mittal et al. (2017)

Maceration using mortar and
pestle

1.19 ± 0.03 mg g−1 0.81 ± 0.03 mg g−1 — —

Maceration in liquid nitrogen 0.54 ± 0.05 mg g−1 0.34 ± 0.03 mg g−1 — —

Homogenization 1.29 ± 0.04 mg g−1 0.80 ± 0.07 mg g−1 — —

Freezing-thawing 0.17 ± 0.04 mg g−1 0.29 ± 0.02 mg g−1 — —

Maceration + freezing-thawing 0.9 ± 0.03 mg g−1 0.61 ± 0.02 mg g−1 — —

Homogenization +
ultrasonication.

1.41 ± 0.01 mg g−1 0.95 ± 0.01 mg g−1 — —

Maceration + ultrasonication 1.56 ± 0.01 mg g−1 1.19 ± 0.01 mg g−1 — —

Grateloupia
turuturu

Ultrasound-assisted — — — — Guillard et al. (2015)

Ultrasound-assisted extraction +
enzymatic hydrolysis

3.6 mg g−1 (22°C) — — —

Porphyridium
purpureum

Microwave-Assisted (40°C) 73.7 ± 2.3 μg mg−1 34.8 ± 6.4 μg mg−1 — — Juin et al. (2014)

Porphyridium
cruentum

Fresh: Freeze-thawing (−20°C and
20–25°C)

71 ± 4% — — — Lauceri et al. (2019)

Fresh: Freeze-thawing +
Ultrasound

69 ± 3% —

Freeze dried: Freeze-thawing
(−20°C and 20–25°C)

69 ± 5% —

Freeze dried: Freeze-thawing +
Ultrasound

62% —

50 mM acetate buffer at pH 5.5) +
five repeated freeze-thaw cycles

0.27 mg ml−1 — — — Ibáñez-González
et al. (2016)

Pyropia yezoensis Freeze-thaw (−20°C and 4°C) — — 3.766 ±
0.021 mg g−1 dw

0.195 ± 0.015 Wang et al. (2020)

Maceration — — 2.465 ±
0.017 mg g−1 dw

0.176 ± 0.014

Hydrolysis — — 2.087 ±
0.022 mg g−1 dw

0.147 ± 0.012

Enzymatic hydrolysis (agarase and
cellulase)

— — 6.953 ±
0.020 mg g−1 dw

0.287 ± 0.014

Mastocarpus
stellatus

Enzymatic hydrolysis (xylanase) — — 1.99 mg g−1 dw 0.36 Nguyen et al. (2016)

Palmaria palmata Enzymatic digestion (xylanase) — — 3.28 ± 0.64
(g.kg−1 dw)

0.14 ± 0.03 Dumay et al. (2013)

After optimization — — 12.36 ± 0.37
(g.kg−1 dw)

0.40 ± 0.04

Gracilaria
verrucosa

Enzymatic hydrolysis
(endocellulase and βxylanase)

— — 6.25 mg g−1 - Mensi et al. (2011)

d.w. (dry weigh).

[PE], phycoerythrin concentration; [PC], phycocyanin concentration.
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Extraction processes applied to
macroalgae

Conventional techniques

Macroalgae, also known as seaweeds, are multicellular,

macroscopic algae, which may belong to different groups of

multicellular algae: green, red, and brown algae (Suganya

et al., 2016). Due to their desirable characteristics, such as

high photosynthetic efficiency, high biomass conversion rate,

ease of handling, and fast growth rate, they are considered a

promising raw material for biotechnological valorization

answering the needs of a marine biorefinery (Francavilla et al.,

2015). The cell wall of macroalgae consists of polysaccharides

(agar and cellulose), which are an obstacle to cell rupture during

the extraction of their bioactive compounds (Mittal et al., 2017).

Maceration and milling are often used, with liquid nitrogen

freezing to yield better results. However, at least some of these

cell disruption approaches require increased time, specific

equipment, and higher overall costs. An example is the use of

liquid nitrogen at a lab scale which is impossible to apply in

higher scales, but nevertheless, it can be replaced by a cryogenic

mill operational unit. Ultrasonication is a technique where

biomass breaks down by the compression and decompression

cycles resulting from sound waves at frequencies normally higher

than 20 kHz, also requires less time and lower temperature

(Guillard et al., 2015; Mittal et al., 2017). Table 2 describes

the yields of extraction and purities obtained by the

application of different conventional methods.

In 2015, Francavilla et al. (2015) used maceration to extract

phycobiliproteins from Gracilaria gracilis, which was used as the

first step of a complex biorefinery cascade, achieving a yield of

7 mg PE. g−1 d. w. and 2 PC. g−1 d. w. Later, Pereira and co-

authors (2018) compared five techniques for the extraction of

R-PE from the same algae, namely maceration, ultrasonic bath,

ultrasonic probe, high pressure, and freeze-thawing. Using a

Response Surface Methodology for optimization of the

extraction method, a greater efficiency was attained through

maceration with mortar and pestle yielding an extraction of

3.58 ± 0.03 mg PE. g−1 and 0.62 ± 0.02 mg PC. g−1, confirming

that PE is the most abundant phycobiliprotein in Gracilaria

gracilis. Still, in the study of red macroalgae, various extraction

methods were tested on Gelidium pusillum, namely maceration

with freezing-thawing, homogenization and ultrasonication, and

maceration and ultrasonication, the latter being more effective in

the R-PE and R-PC extraction, 77%, and 93%, respectively

(Mittal et al., 2019). Guillard et al. (2015) compared two

extraction processes with Grateloupia turuturu, ultrasound-

assisted extraction and ultrasound-assisted with enzymatic

hydrolysis. Despite the higher complexity of an enzymatic

step, normally a better performance is achieved considering

the specificity of the enzymes to break the bonds between the

constituents of the biomass (3.6 mg g−1 at 22°C). Finally, in 2017,

Sharmila et al (2017) used different cell disruption schemes,

TABLE 3 Extraction methods applied so far to the recovery of phycobiliproteins from microalgae and cyanobacteria.

Species Tissue
disruption/Extraction method

Yield/
Extraction
efficiency PE

Yield/Extraction
efficiency PC

References

Spirulina maxima Ultrasonication 0.8 mg ml−1 11.3 mg ml−1 Choi and Lee (2018)

Spirulina platensis Ultrasonication + protic ionic liquids (2-HEAA + 2-
HEAF)

— 0.75 g.L−1 Rodrigues et al. (2018)

Mechanical agitation + thermal heating + protic ionic
liquids (2-HEAA + 2-HEAF)

— 1.65 g.L−1 Rodrigues et al. (2019)

Pseudanabaena catenate Three cycles of repeated freezing in liquid nitrogen +
maceration mortar and pestle.

25.5 ± 5.1 mg.L−1 28.8 ± 2.8 mg.L−1 Khan et al. (2018)

Pseudanabaena
amphigranulata

Three cycles of repeated freezing in liquid nitrogen +
maceration mortar and pestle.

10.2 ± 3.9 mg.L−1 86 ± 14.7 mg.L−1 Khan et al. (2018)

Arthrospira platensis GL Fresh: Freeze-thawing (−20°C and 20–25°C) — 77 ± 6% Lauceri et al. (2019)

Fresh: Freeze-thawing + Ultrasound — 76 ± 6%

Freeze dried: Freeze-thawing (−20°C and 20–25°C) — 81 ± 2%

Freeze dried: Freeze-thawing + Ultrasound — 79 ± 1%

Porphyridium cruentum 50 mM acetate buffer at pH 5.5) + five repeated freeze-
thaw cycles

0.27 mg ml−1 — Ibáñez-González et al.
(2016)

Fresh: Freeze-thawing (−20°C and 20–25°C) 71 ± 4% — Lauceri et al. (2019)

Fresh: Freeze-thawing + Ultrasound 69 ± 3% —

Freeze dried: Freeze-thawing (−20°C and 20–25°C) 69 ± 5% —

Freeze dried: Freeze-thawing + Ultrasound 62% —

Porphyridium purpureum Microwave-Assisted (40°C) 73.7 ± 2.3 μg mg−1 34.8 ± 6.4 μg mg−1 Juin et al. (2014)
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which included the maceration using mortar and pestle, the

freeze-thaw, the use of lysozyme and sonication for the extraction

of phycobiliproteins from Kappaphycus alvarezii. In this work,

the authors have also investigated different process conditions,

namely, three temperatures for the freeze-thaw, the best

extraction using freeze-thaw at a temperature of −20°C–25°C.

Solvent-and solvent-assisted extraction

Another approach for the extraction of molecules is the use of

solvents. Phycobiliproteins are hydrophilic proteins, thus,

conventional solvents used in their extraction are mainly

water or buffers (to control the media pH). These solutions

can be phosphate buffer, ethylenediamine tetra-acetic acid

(EDTA), acetate buffer, or even water. For the optimization of

the extraction, Hemlata et al. (2018) have used five different

buffers as solvents to extract phycoerythrin from Michrochaete,

namely the citrate buffer (pH-5.0; 0.1 M), acetate buffer (pH-6.0;

0.1 M), carbonate buffer (pH 9.6; 0.1 M), Tris-HCl buffer (pH-

7.2; 0.05 M) and the sodium phosphate buffer (pH-7.0; 0.1 M).

After optimization, a higher yield of extraction (65.21 mg g−1)

was obtained with the acetate buffer (pH-6.0; 0.1 M). They also

showed the antioxidant, antibacterial, anticancer, antifungal

activities of Microchaete’s PE. Sfriso et al. (2018) used

different concentrations of buffers, phosphate buffer (0.1, 1,

10, and 100 mM), and EDTA (0.1, 1, 10, and 100 mM), to

later investigate the fluorescence of PE. Sharmila et al. (2017)

also optimized the process with different buffers at different

pH conditions, followed by different cell disruptionmethods, and

this result was found for different temperatures. The results were

better with sodium phosphate pH 7.2 and using freeze-thaw

at −20°C/−25°C. Sintra and co-authors (2021) also used sodium

phosphate for extraction and achieved 90% of recovery of C-PC.

Meanwhile, Nguyen et al. (2016) compared different

concentrations of phosphate buffer (20 mM, 50 mM, and

0.1 M) with tap and pure water with maceration in liquid

nitrogen. It was found that the solution of phosphate buffer

20 mM with pH 7.1 showed better results for PE inMastocarpus

stellatus. Sudhakar et al. (2015) also purchased the extractions of

the algae Gracilaria crassa with water (distilled water and

seawater) and phosphate buffer (0.1 M), and found a better

yield for distilled water for PE (0.35 mg g−1) and PC

(0.18 mg g−1). The use of solvents was also reported by its

combination with microwave irradiation. Microwave

irradiation consists of instantaneous and homogeneous heat

transfer in the sample to break the cell wall. Juin et al. (2014)

achieved maximum extraction efficiency of PE (73.7 ±

2.3 μg mg−1) with just 10 s of irradiation, at 40°C, showing

that this procedure is fast and has high yields, but for PC the

efficiency was lower (34.8 ± 6.4 μg mg−1) with 10 s but with a

temperature of 100°C, describing that: “The weak extractability of

the two pigments tightly bound to the thylakoid membrane

compared to PE.” Martins et al., 2016 compared the

extraction of PBPs in Gracilaria sp. between sodium

phosphate and different ionic liquids, finding cholinium

chloride as the best solvent, with an increase of 45% in yield

and represented by high selectivity since practically no

chlorophylls were extracted simultaneously. Pressurized liquids

extraction (PLE), which is a method that uses solvents at high

temperatures and pressures for the extraction of compounds, has

the advantage of being a faster process and using less solvent.

This method was applied in the extraction of PE and proved to be

efficient when the temperatures were lower and with pressurized

water (16.51 ± 0.21 mg g−1 of PE) (Gallego et al., 2019).

Extraction processes applied to
microalgae and cyanobacteria

Conventional techniques

Cyanobacteria are unique photosynthetic organisms present

in almost all habitats all over the world, as pointed out by the

World Health Organization (WHO, 2021). They have a small cell

size and can be unicellular, filamentous, or colonial, being

sometimes large enough to be visible by the human eye,

especially during the occurrence of natural blooms (Macário

et al., 2021). These bacteria have been studied for their

morphology, photosynthesis, and nitrogen fixation

mechanisms, but also for certain aspects of their structure

namely in what concerns the part of the cell driving

photosynthesis. As recurrently reported, the cyanobacteria

photosynthetic apparatus is composed of three light-

harvesting systems, namely the two main photosystems found

in other photosynthetic organisms and a phycobilisome

(Masojídek et al., 2013). The phycobilisome of these

organisms is mainly composed of phycobiliproteins, the

phycobilisome composition varying from species to species.

Microalgae are microscopic algae, unicellular, which may

vary in size from a few micrometers to a few hundred of

micrometers (Suganya et al., 2016). They can produce

hydrogen, hydrocarbons, fats and carbohydrates, as well as be

able to use different water sources, such as fresh, saline, and

wastewater (Randrianarison and Ashraf, 2017). Most

microalgae/cyanobacteria produce more phycobiliproteins

under stressful environmental conditions, especially light

(Manirafasha et al., 2016). Microalgae have already been

incorporated, with good acceptability, in dairy products as

bioactive compounds (Caporgno and Mathys, 2018).

Although most works report the recovery of

phycobiliproteins from macroalgae, Choi and Lee (2018) have

extracted phycobiliproteins from Spirulina sp. (a cyanobacterium

commonly used as a functional food) with ultrasound and

obtained very high amounts of phycocyanin (11.3 mg ml−1)

when compared to conventional water extraction at 4°C
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TABLE 4 Purification methods applied to the fractionation of phycobiliproteins.

Type of
algae

Species Tissue
disruption/
Extraction
method

Purification method Yield/Extraction
efficiency/
Recovery/PE
purity index

Yield/Extraction
efficiency/
Recovery/PC
purity index

References

Macroalgae Gracilaria
gracilis

Phosphate buffer
20 mM

Anion-exchange
chromatography (DEAE
Sepharose)

0.24 ± 0.01 mg g−1

A565/A280 = 3.25 ± 0.01
— Nguyen et al.

(2019)

Maceration Induced precipitation +
ultrafiltration (Poly (acrylic acid)
sodium salts)

79.5% yield — Martins et al.
(2021)

Pyropia
haitanensis
residue

Freeze-thaw Expanded-bed chromatographic
(DEAE-Sepharose.)

[PE] 247.13 mg.L−1

OD565/OD280 = 4.01
Zhao et al. (2019)

Halymenia
floresia

0.05 M phosphate
buffer at pH 7.0

Polyacrylamide Gel Using
Electrophoretic elution technique
(Preparative Native PAGE +
dialyzed

41.1% yield A565/
A280 = 5.9

— MalairajMuthu
et al. (2016)

Grateloupia
turuturu

Liquid nitrogen +
sodium phosphate
buffer (20 mM; pH 7.1)

Ammonium sulfate
precipitation 85%

A565/A280 = 1.22 — Munier et al.
(2015)

+ Anion-exchange
chromatography (DEAE-
Cellulose)

A565/A280 = 2.89

Porphyra
yezoensis Ueda

Phosphate buffered
saline + EDTA

Continuous precipitation with
ammonium sulfate at different
concentrations (10%, 20%, 40%
and 50%) + Hydroxylapatites
chromatography (HAC)

A565/A280 = 5.50 A615/A280 = 5.10 Cai et al. (2014)

Gracilaria
corticata

Phosphate
buffer (0.1 M)

65% ammonium sulphate +
dialyzed

0.24 mg g−1 0.11 mg g−1 Sudhakar et al.
(2014)

+ Anion-exchange
chromatography (DEAE-
Cellulose)

A565/A280 = 1.10 —

Portieria
hornemannii

0.02 mM phosphate
buffer at pH 7.2 +
freezing-thawing

Ammonium sulfate (55%) +
anion exchange column
chromatography (Q-Sepharose)

A562/A280 = 5.2 — Senthilkumar
et al. (2013)

Gracilaria
lemaneiformis

10 mM phosphate
buffer (pH 6.8) + agar +
freeze-thaw

Anion-exchange
chromatography (DEAE-
Sepharose)

Recovery 16% OD565/OD280=3.2 Niu et al. (2013)

Porphyra
yezoensis

10 mM phosphate
buffer (pH 6.8) +
freeze–thaw

Expanded bed chromatography
(Phenyl-sepharose)

0.96 mg g−1 OD565/OD280 =
2.0–2.5

Niu et al. (2010)

Anion-exchange
chromatography (DEAE-
Sepharose)

0.82 mg g−1 OD565/OD280 = 4.5

Corallina
elongata

10 mM sodium
phosphate
Ph7+filtration

Hydroxyapatite chromatography A566/A280 = 6.67 — Rossano et al.
(2003)

Ceramium
isogonum

1 mM K-phosphate
(pH 6.8)

Ion-exchange chromatography
(DEAE)

A565/A280 = 2.10 — Kaixian et al.
(1993)

Microalgae or
cyanobacteria

Porphyridium
marinum

Sodium phosphate
buffer (20 mM, pH =
7.2) + freezing-freezing
+ ultrasound

Two steps of precipitation with
ammonium sulfate + Dialyzed +
anion exchange chromatography
(DEAE-Cellulose)

57 mg g−1 dry weight — Gargouch et al.
(2018)Recovery = 72% A545/

A280 = 5

Bangia
atropurpurea

50 mM phosphate
buffer (pH 7.2) +
sonicated

35% saturated ammonium sulfate
+ dialyzed

64.8% recovery A562/
A280 = 2.47

54.7% recovery A615/
A280 = 0.77

Punampalam
et al. (2018)

Gel filtration with Sephadex
G-200

91.3% recovery A562/
A280 = 4.76

68.3% recovery A615/
A280 = 2.80

Reverse Phase-High Performance
Liquid Chromatography (RP-
HPLC)

100% recovery A562/
A280 = 5.42

100% recovery A615/
A280 = 3.95

(Continued on following page)
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(9.8 mg ml−1) and 25°C (5.7 mg ml−1). For PE a low yield of

0.8 mg ml−1 was obtained, demonstrating that PE is not an

abundant phycobiliprotein in this species. In the same year,

Khan et al. (2018) studied the production of PC and PE in

two different strains of Pseudanabaena. P. catenata produced

more PE in green light (25.5 ± 5.1 mg.L−1) but P. amphigranulata

produced 86 ± 15 mg.L−1 of PC in red light. For that, the authors

have used three cycles of freezing-thawing of biomass in liquid

nitrogen and then maceration using a mortar and pestle.

Included in the criteria to select the species to explore in the

recovery of phycobiliproteins should also be the need for a pre-

treatment of the cells before cell disruption. Following this

rationale, the difference between the use of fresh or freeze-

dried biomass was evaluated with the freeze-thawing and

freeze-thawing + ultrasound process by Lauceri et al. (2019).

For Arthrospira platensis GL the yield of PC was 81% for the

frozen microalgae in freeze-thawing extraction, whereas in

Porphyridium cruentum the higher recovery yield with the

fresh algae (71%) was obtained for PE, which was

independent of the method of extraction employed. Another

study with fresh Porphyridium cruentum, using five repeated

freeze-thaw fresh cycles was carried reporting a higher recovery

yield of 86.6%, this value representing a concentration of

0.27 mg ml−1 of R-PE (Ibáñez-González et al., 2016).

Solvent and solvent-assisted extraction

For the optimization of the extraction, Hemlata et al. (2018)

have used five different buffers as solvents to extract

phycoerythrin from Michrochaete, namely the citrate (pH-5.0;

0.1 M), acetate (pH-6.0; 0.1 M), carbonate (pH9.6; 0.1 M), Tris-

HCl (pH-7.2; 0.05 M) and the sodium phosphate buffers (pH-7.0;

0.1 M). After optimization, a higher yield of extraction

(65.21 mg g−1) was obtained with the acetate buffer (pH-6.0;

0.1 M). They also showed the antioxidant, antibacterial,

anticancer, and antifungal activities of Microchaete’s PE.

Sfriso et al. (2018) used different concentrations of buffers,

phosphate buffer (0.1, 1, 10, and 100 mM), and EDTA (0.1, 1,

10, and 100 mM), to later investigate the fluorescence of PE.

Sharmila et al. (2017) also optimized the process with different

buffers at different pH conditions, followed by different cell

disruption methods and this result was found for different

temperatures. The results were better with sodium phosphate

pH 7.2 and using freeze-thaw at -20°C/-25°C. Sintra et al. (2021)

also used sodium phosphate for extraction and achieved 90% of

recovery of C-PC.

The use of protic ionic liquids (PIL) was also studied since the

operating conditions required are softer compared to other

alternatives. As ILs are expensive, PILs were investigated for

their lower price. Rodrigues et al. (2018) used the PILs on

Spirulina (Arthrospira) platensis in combination with

ultrasonic and obtained a PC concentration of 0.75 g.L−1 with

PIL 2-HEAA + 2-HEAF. In 2019, Rodrigues et al. (2019) were

able to double the concentration (PC concentration of 1.65 g.L−1)

when PILs were used with mechanical agitation and thermal

heating in Spirulina platensis and with the same PIL (2-HEAA +

2-HEAF).

At this point, and considering the works reviewed, it is not

completely clear what should be considered the most appropriate

technique to extract the phycobiliproteins from the different algal

matrices. However, it is clear from the data that techniques like a

microwave- and ultrasound-assisted extractions, as well as the

use of only buffers as solvents, although less expensive, do not

TABLE 4 (Continued) Purification methods applied to the fractionation of phycobiliproteins.

Type of
algae

Species Tissue
disruption/
Extraction
method

Purification method Yield/Extraction
efficiency/
Recovery/PE
purity index

Yield/Extraction
efficiency/
Recovery/PC
purity index

References

Nostoc sp. strain
HKAR-2

50 mM potassium
phosphate buffer
(pH 7.0) + sonication +
repeated freezing

Ammonium sulfate precipitation
(20–70%) + Dialyzed + Gel
filtration chromatography
(Sephacryl S-100 HR)

A563/A280 = 7.2 A615/A280 = 3.18 Kannaujiya and
Sinha (2016b)

Nostoc sp. strain
HKAR-11

50 mM phosphate
buffer (PB) (pH 7.0)

Ammonium sulfate precipitation 97% recovery A563/
A280 = 1.10

96% recovery A615/
A280 = 0.92

Kannaujiya and
Sinha (2016a)

+ mortar and pestle +
repeated freeze

+ Gel filtration chromatography
(Sephacryl S-100 HR)

89%, recovery A563/
A280 = 6.37

80% recovery A615/
A280 = 1.36

+ Hydrophobic interaction
chromatography

83% recovery A563/
A280 = 11.53

73% recovery A615/
A280 = 5.75

Porphyra
yezoensis

10 mM phosphate
buffer (pH 6.8) +
freeze–thaw

Expanded bed chromatography
(Phenyl-sepharose)

0.96 mg g−1 OD565/OD280 =
2.0–2.5

Niu et al. (2010)

Anion-exchange
chromatography (DEAE-
Sepharose)

0.82 mg g−1 OD565/OD280 = 4.5
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allow the development of processes of extraction with high

selectivity. Nevertheless, it seems that Spirulina species is one

of the simplest to process since the yields of extraction are higher

than the ones obtained for the remaining species analysed.

Moreover, the comparison between the results presented in

Table 3 seems to suggest that ultrasonication combined with

the use of ionic liquids is the best approach to extracting

phycocyanin. Nevertheless, it should also be pointed out that

the number of works is not so significant to allow us to define

some heuristic rules on the best mechanical approaches or even

on the best solvents to apply. One point is, however, clear; ionic

liquids are normally recognized as being more selective solvents

(Martins et al., 2016), although the selectivity was not checked in

the works analysed.

Purification

Depending on the final application envisioned for PE,

namely in the energy, food, cosmetic, or pharmaceutical

industries, different purities are required, which greatly affect

the production cost and the product price (Torres-Acosta et al.,

TABLE 5 ABS applied to the purification of phycobiliproteins.

Species Tissue
disruption/
Extraction
method

System parameters Yield/Extraction
efficiency/Recovery/
PE purity index/
Selectivity

Yield/Extraction
efficiency/Recovery/PC
purity index

References

Porphyridium
cruentum

Phosphate potassium
buffer + Bead mill

Bead mill + isoelectric
precipitation + ABS (PEG-
potassium phosphate) +
ultrafiltration

54% A545/A280 = 4.2 Ruiz-Ruiz et al. (2013)

Vr = 3.0

PEG 1000 g.gmol−1

TLL 45% (w/w)

System pH 7.0

Porphyridium
cruentum

— Polyethylene glycol (PEG) A545/A280 = 3.2 92% recovery — Benavides and
Rito-Palomares (2008)

Porphyridium
cruentum

Ultrasonic bath PEG/sulphate + isoelectric
precipitation

A545/A280 = 4.1 72% yield — Hernandez-Mireles and
Rito-Palomares (2006)

Vr = 1.0

PEG 1000 g.gmol−1

System pH 7.0

Porphyridium
cruentum

Glass beads Polyethylene glycol-phosphate A545/A280 = 2.8 ± 0.2 82%
yield

— Benavides and
Rito-Palomares (2005)VR = 1.0

PEG 1000 g.gmol−1

TLL 50%w/w

System pH 7.0

VR = 0.3 — A615/A280 = 2.1 ± 0.2 98% yield

PEG 1450 g.gmol−1

TLL 3%w/w

System pH 7.0

Porphyridium
cruentum

Glass beads Polyethylene glycol-phosphate A545/A280 = 2.9 77% yield — Benavides and
Rito-Palomares (2004)Vr = 1.0

PEG 1450 g.gmol−1

TLL 24.9% w/w

System pH 8.0

Anabaena
cylindrica

Sodium phosphate
(20 nM, pH 7.0)

Dextran T6 + Copolymer
Pluronic PE 6400

— A620/A280 = 2.16 Sintra et al. (2021)

Gracilaria sp. Maceration 10 wt% of surfactant and 0 or
0.3 wt% of SAIL

Recovery of PE = 78.8 ± 0.8% Selectivity = 13.6 ± 0.1 Vicente et al. (2019)

0.047 ± 0.004

Maceration +
microfluidics +
ultrafiltration

10 wt% of surfactant and 0 or
0.3 wt% of SAIL

416 mg of R-PE/g dry biomass Seručnik et al. (2020)
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2016). Regardless of its efficiency, the extraction process often

lacks selectivity. Low selectivity means the low purity of the

extracts obtained. Solutions of purified phycobiliproteins are

expensive, considering the established markets (e.g., as natural

food colorants), but also new market applications with high

economic and industrial relevance (energy, medical,

pharmaceutical, and cosmetic). For reference, a purity index,

expressed as the A565 nm/A280 nm ratio, of 0.7 represents a

protein with food-grade purity, 3.9 as a reactive grade, and

greater than 4.0 as analytical grade (Rito-Palomares et al., 2001).

Chromatographic techniques

The most extensively used purification technique is

chromatography, which can be ion-exchange, expanded-bed

absorption, or reverse-phase (Table 4). Often, the purification

consists of a combination of techniques to reach higher purity

levels. A typical example is the use of precipitation followed by

chromatography. Nguyen et al. (2019) achieved a high purity

index (3.3) of R-PE from Gracilaria gracilis after purification on

DEAE-Sepharose fast flow chromatography. The use of

ammonium sulfate before chromatography is very common

since it can remove amino acids, and consequently increase

the purity of PE (Lee et al., 2017). Gargouch et al. (2018)

used two-step precipitation with ammonium sulfate (first 20%

and second 40%) before extraction on DEAE-Cellulose in the

Porphyridium marinum algae and achieved a high PE purity

(5.0). Senthilkumar et al. (2013) used only precipitation by

ammonium sulfate (55%), obtaining a high PE purity (5.2)

from red alga Portieria hornemannii. The use of ultrafiltration

before anion exchange chromatography (SOURCE 15Q) was

evaluated in the microalgae Porphyridium cruentum, achieving

an analytical grade B-PE at the commercial level (purity index of

5.1). Munier et al. (2015) studied the difference between using

only ammonium sulfate precipitation for PE purification and in

combination with anion-exchange chromatography (DEAE-

Cellulose), with the purity index increasing from 1.2 to 2.9.

Sudhakar et al. (2014) purified the PE from red seaweed

Gracilaria corticate found abundantly in Indian waters

throughout the seasons, through anion-exchange

chromatography, to study the stability in carbonated drinks as

a natural coloring, concluding that PE can be used in cool,

sweetened, and carbonated drinks. The use of gel filtration

(Sephacryl S-300) before anion-exchange chromatography was

found for the extraction of PE in Lyngbya arboricola and

Synechococcus sp, with a purity index of A560/A280 = 5.2 and

A542/A280 = 3.4, respectively (Tripathi et al., 2007; Kim et al.,

2010).

Expanded bed adsorption chromatography is a suitable

technique for protein recovery without the need for prior

clarification. Bermejo et al. (2007) used this technique with

Porphyridium cruentum achieving 66% of PE recovered. Niu

et al. (2010) compared the expanded bed and anion-exchange

chromatography in Porphyra yezoensis, the largest and most

important aquaculture species in China, achieving a higher yield

from expanded bed adsorption but a higher purity ratio in anion-

exchange chromatography. The use of this technique was

efficient for the purification of PE in Pyropia haitanensis

residue, with a concentration of 247.13 mg.L−1 and purity

index of 4.1 (Zhao et al., 2019).

Rossano et al. (2003) used hydroxyapatite for the

purification of PE, which is a chromatographic resin that

can be produced at a very low cost, achieving an optimal

purity index of 6.7. Another study on Porphyra yezoensisUeda

used chromatography with hydroxyapatite as adsorbent

material after continuous precipitation with ammonium

sulfate and obtained a purity ratio of 5.5 of PE and 5.1 of

PC (Cai et al., 2014).

The cyanobacterium Nostoc sp. has proved to be an excellent

source of PE. Kannaujiya and Sinha, (2016) performed the

purification with ammonium sulfate precipitation and gel

filtration chromatography (Sephacryl S-100 HR) obtaining a

high purity of PE (7.2). In another study, another purifying

process was added, namely a hydrophobic interaction

chromatography, allowing to obtain a purity of 11.5.

Punampalam et al. (2018) extracted phycobiliproteins with

saturated ammonium and isolated PE and PC by gel filtration

(Sephadex G-200) and further purified by Reverse Phase-High

Performance Liquid Chromatography (RP-HPLC),

demonstrating a higher extraction and purity ratio for PE,

while the protein had its antioxidant activity improved.

MalairajMuthu et al. (2016) obtained the optimum purity of

5.9 from Halymenia floresia using an alternative to

chromatography, the electrophoretic elution technique.

Another purification used as ultrafiltration. Marcati et al.

(2014) used ultrafiltration to separate PE from high molecular

weight polysaccharides in Porphyridium cruentum, first using a

300,000 Da membrane and then a second with 10,000, leaving PE

with a purity index of 2.3. Finally, in 2021, Martins et al. (2021)

found that precipitation with ammonium sulfate has a good yield

for R-PE and R-PC (100% and 81.1%, respectively), however, it

was not selective for any of the PBPs, unlike using poly (acrylic

acid) sodium salts as precipitation agents and conjugated with an

ultrafiltration step (in this case R-PE was precipitated after

extraction from Gracilaria gracilis, with a yield of 79.5%.

Aqueous biphasic systems

ABS consists of a liquid-liquid extraction, where the biphasic

system can be achieved by mixing two hydrophilic and non-

miscible polymers or one salt and one polymer. Table 5

summarizes the conditions, yields of extraction and purities

attained for the extraction of PE and PC using ABS in the

various reports on the subject.
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The first work done in this context was by Benavides and

Rito-Palomares (2004). In this work, the authors studied

polyethylene glycol (PEG) with different molecular weights,

1,000, 1,450, 3,350, and 8,000 g. gmol−1, obtaining the best

purity for PE with PEG 1450, TLL 24.9% (w/w) at a pH of

8.0. Later, they showed that the best purity of PE was obtained for

PEG 1000, (TLL 50% w/w and system pH 7.0) and PEG 1450 for

PC. Later, Antelo et al. (2007) continued to test conventional

ABS. Benavides and Rito-Palomares (2008) found that PEG

1000, beyond the higher yield for PE, induced the change of

two conditions of the system: increased volume ratio (1.0 for 4.5)

and decreased the TLL (50% for 45%), allowing to achieve a

purity of 3.2.

The ABS process can also be used combined with other

processes, such as isoelectric precipitation. Hernandez-Mireles

and Rito-Palomares (2006) used three processes for PE

extraction: cell disruption behind sonification, isoelectric

precipitation with the addition of HCl, and PEG/phosphate

ABS extraction achieving an excellent purity of 4.1. Ruiz-Ruiz

et al. (2013) obtained an excellent purity (4.2) through four steps:

cell disruption through bead mill, isoelectric precipitation, ABS,

and lastly ultrafiltration. Later, in 2020, Sintra and collaborators

(2020) used ABS based on copolymers and dextran to improve

the purity and stability of C-PC. The extraction with sodium

phosphate produced an extract with a purity of 0.52, and after

purification, the purity was increased by 4-fold. Vicente et al.

(2019) tested several surfactants to isolate and maintain the R-PE

structural integrity, identifying benzyldodecyldimethyl-

ammonium bromide as the most adequate. Later, the same

author studied the effect of using microfluidic devices to make

the intensification of the process of purification of phycoerythrin,

achieving very good results as well (Seručnik et al., 2020).

Phycobiliproteins applications

The study of phycobiliproteins as bioactive compounds has

been growing in different areas including cosmetics, food, textile,

and pharmaceutical, because they are obtained from renewable

abundant sources, have good stability, biocompatibility, and

bioactivity (Guedes et al., 2011; Manivasagan et al., 2017). In

this section, studies of the application of phycobiliproteins for

different purposes will be reviewed and discussed.

Food applications

The use of synthetic dyes in the food industry is potentially

harmful to human health, due to their toxicity. Phycobiliproteins

may play a major role as natural food colorants in their water-

soluble protein-bound forms. Generally, these pigments present

an enhanced solubility as well as high stability in the pH range of

FIGURE 1
(A) Photographs of a bundle of cylindrical LSCs and a planar LSC based on R-PE solutions under AM1.5G. Scale bars: 1 cm; (B) Emission spectra
of the R-PE solutions excited at 498 nm; (C) (i) Solar photon flux on Earth at AM1.5G, (ii) absolute absorbance of 1.7 × 10–7 M (blue line), 3.3 × 10–7 M
(red line), and 17 × 10–7 M (green line), and (iii) integral overlap between the solar photon flux and the absolute absorbance. Reproduced with
permission from Frias et al., 2019. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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4–10 (Galland-Irmouli et al., 2000; Munier et al., 2014).

Phycoerythrin holds potential as an alternative red natural

food colorant. Yet more relevant, allophycocyanin and PC

present bluish-green and dark blue hues, respectively, which

are rarely found in other natural sources. However, to guarantee

the stability of the phycobiliproteins in the desired final product,

some conditions must be considered, such as temperature, pH,

and light (Manirafasha et al., 2016).

The addition of acids, salts, and sucrose was proven to

help prevent the denaturation of phycobiliproteins. Mishra

et al. (2010) found that among the preservatives studied:

citric acid, sucrose, sodium chloride, and calcium chloride,

citric acid was the best preservative for C-PE as it acts as a

chelator and reduces the pH preventing protein degradation.

The stability of PE applied in three carbonated drinks,

namely, Lehar soda, 7′UP, and TATA mineral water were

evaluated. Although for the 7′UP drink, the color was

retained for more than 30 days, for the other drinks it was

stable for only 3 days. The authors argue that the sugar

present in 7′UP acted as a preservative retaining the

colour for longer times (Sudhakar et al., 2014). The study

of thermokinetic stability in PC and PE extracted from Nostoc

sp. in preservatives showed that for both phycobiliproteins,

benzoic acid is the best preservative at 4°C compared to citric

acid, sucrose, ascorbic acid, and calcium chloride, at 4°C,

25°C, and 40°C (Kannaujiya and Sinha 2016b). Zhang et al.

(2020) evaluated the stability of C-PC in whey protein in

acidified conditions during light storage. It was found that

whey protein helped protect C-PC from color degradation in

light. The color stability of PE from a crude extract from

Rhodomonas salina was studied, the best conditions being

established under white fluorescent light for 8 h, a maximum

temperature of 40°C, 20% (v/v) of ethanol, and pH range of

3.9–8. (Marraskuranto et al., 2019).

TABLE 6 Reports of LSCs incorporating phycobiliproteins from algae and comparison of their performance with that of other natural-based
molecules.

Solvent Fluorophore/Host matrix Dimensions (cm3) G ηopt (%) PCE (%) Ref.

Natural molecules Triton X-100 Phycobilisomes/Acrylamide 2.2 × 2.2×0.05 44 12.5 — Vossen et al. (2016)

DCM Chlorophyll/t-U (5,000) 1.0 × 1.0×0.3 3.3 3.70 0.10 Frias et al. (2018)

Water R-PE/Glass container 2.0 × 2.0×1.0 2 6.88 0.27 Frias et al. (2019)

mScarlet/PDMS slab 2.5 × 2.5×0.6 0.54 2.58 — Sadeghi et al. (2019)

eGFP/Glass container 2.0 × 2.0×1.0 2 3.30 0.35 Carlos et al. (2020)

4.0 × 2.0×1.0 4 0.12 Correia et al. (2022)

PC/Glass container 2.65 0.21

Carbon dots N-CDs/PMMA 2.5 × 1.6×0.1 4.88 4.75 3.94 Li et al. (2017)

N-CDs/PMMA 2.0 × 2.0×0.2 10 12.2 2.63 Gong et al. (2018)

N-CDs/PVP 1.8 × 1.8×0.11 4.09 5.02 4.97 Wang et al. (2018)

N-CDs/custom glass 5 × 2.5×0.42 5.5 4.52 2.49 Mateen et al. (2019)

N-GQDs/PMMA 2 × 2×0.3 6.7 — 8.77 Saeidi et al. (2020)

UV-CDs/PVP 10 × 10×0.2 50 1.10 — Zhou et al. (2018)

NaOH-CDs/PVP

Narrow sized CDs/PVP 10 × 10×nd 4.5 2.70 1.04 Zhao et al. (2021)

15 × 15×nd 6.8 2.20 1.13

Ethanol CDs/PVP 10 × 10×0.9 2.8 1.60 0.7 Zhao et al. (2019)

DMF 10 × 10×1 2.5 0.92 — Zhao (2019)

OLA-CDs/PLMA 10 × 1.5×0.2 10 1.20 4.65 Zhou et al. (2018)

Water N-CDs/PVP 2.5 × 2×0.2 5.5 5.20 4.06 Ma et al. (2019)

Acetic acid TPFE-Rho/PMMA 2.5 × 2×0.2 2.8 5.20 4.06

Water b-CDs/PVA 8 × 8×0.8 10 2.30 — Zdrazil et al. (2020)

Ethanol g-CDs/PVP

r-CDs/PVP + PEI

Methanol Y-CD/PVP 10 × 10×0.9 2.5 4.3 3.8 Li et al. (2021)

R-CD/PVP

t-U(5,000), tri-ureasil organic-inorganic hybrid; PDMS, polydimethylsiloxane; eGFP, enhanced Green Fluorescent Protein; N-CDs, nitrogen-doped CDs; PMMA, polymethylmethacrylate;

PVP, polyvinylpyrrolidone; N-GQDs, nitrogen-doped graphene quantum dots; UV-CDs, ultraviolet active carbon-dots; NaOH-CDs, NaOH, treated carbon-dots; OLA, oleylamine; PLMA,

poly (lauryl methacrylate); b-CDs, blue-emitting carbon dots; g-CDs, green-emitting carbon dots; r-CDs, red-emitting carbon dots; PEI, polyethylenimine; Y-CDs, yellow carbon dots;

R-CDs, red carbon dots.
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FIGURE 2
(A) Photograph of the LSC/sensor based on a glass container filled with PC-based aqueous solutions under AM1.5G illumination. The PV cell is
located at the bottom edge. PC-based optical sensors temperature-dependent (B) emission and (C) excitation spectra excited at 380 nm and
monitored at 715 nm, respectively, and (D) emission spectra and (E) generated short-circuit current under solar simulator irradiation. Reproduced
from (Correia et al., 2022) under a CC BY 4.0 license.

FIGURE 3
(A) Photographs of PC incorporated in PVA (Dias et al., 2022) under white light (top) and UV irradiation at 365 nm (bottom). Scale bars:
10–2 m. (B) Emission and excitation spectra excited at 575 nm and monitored at 720, respectively. The c-Si spectral response is shown on the
right y-axis. (B) Excitation spectra for R-PE/PVA, C-PC/PVA, and FX/PVA monitored at 720 nm. The shadowed area represents the AM1.5G solar
spectrum (right y-axis). Reproduced from (Dias et al., 2022) under a CC BY 4.0 license.
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The impact of the addition of these pigments in dairy

products was also evaluated by some authors. PE and PC

extracted from Atacama Cyanobacteria had chemical stability

at pH 5-8 and temperature up to 50°C. The addition of the

pigments to skim milk fortified allowed for higher scores in

sensory tests (Galetović et al., 2020). In another study, three types

of milk bases were compared: milkshakes, liquid yogurts, and

yogurts. Successfully, all the products evaluated exhibited the

pink color of B-PE, with proven stability (García et al., 2021).

One technique used to improve pigment stability is

microencapsulation, which consists of protecting some

material from the environment in which it is contained.

Ganesan and Shanmugam (2020) encapsulated PE with

kappa-carrageenan and guar-gum to enhance the stability and

functionality of the pigment in ice cream, resulting in better

rheology and augmented intensity of pink color over 90 days of

storage.

Nutraceutical and pharmaceutical
applications

Oxidative stress is the imbalance between free radicals and

antioxidants in the body. This imbalance can cause various

diseases such as diabetes, cancer, and inflammation, just to

mention a few. To prevent and treat these diseases, there are

already some phytochemicals such as tocopherol, caffeic acid,

and zeaxanthin (Pagels et al., 2019). PC and PE have also been

studied for this purpose due to their antioxidant, antibacterial,

anticancer, and anti-inflammatory activities. The antioxidant

activity of PC isolated from Anabaena biomass proved to be

good against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS

(2.2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) free

radical and was able to attenuate the liver structural

deformations caused by carbon tetrachloride (CCL4) in rats

(Osman et al., 2020). Fernández-Rojas et al. (2015) were the

first to report that C-PC prevents mitochondrial dysfunction and

increases oxidative defense in mice. This study motivated Wang

et al. (2020) to study the effects of PC against doxorubicin

(DOX), a chemotherapeutic agent that causes Chemotherapy-

Induced Cognitive Impairment (CICI), a common detrimental

effect of cancer treatment. Studies in mice have shown that PC

has the potential to treat CICI as it improves established DOX-

induced cognitive deficits, due to the inhibition of

neuroinflammatory and oxidant stress and attenuation of

mitochondrial and synaptic dysfunction. In addition to the

antioxidant activator, PE is also known to be effective against

age-related diseases. In in vitro experiments, the antioxidant and

immunomodulation potential of C-PC extracted from Spirulina

were also evaluated, without revealing any toxicity in the mice

(Grover et al., 2021). Yoshimoto et al. (2019) also found

immunomodulation activity, as well as anti-inflammatory

actions in the mucosal immune responses. R-PE can inhibit

the growth of subcutaneous transplanted tumors, repair

damaged mucosa to protect the intestinal barrier, and regulate

the immune function of mice (Qi et al., 2019). Regarding PC,

studies have indicated that this pigment can induce apoptosis,

one of the important mechanisms in the inhibition of cancer cell

proliferation, of multiple non-small cell lung cancer cells and

colorectal cancer cells (Hao et al., 2019; Hamdan et al., 2021).

Photodynamic therapy (PDT) is a treatment that combines

light and photosensitizing agents to destroy cancer cells.

Phycobiliproteins can be used as photosensitizers because they

can emit strong fluorescence after being irradiated with a laser (Li

et al., 2019). A study on the inhibition of β-site amyloid precursor

protein cleaving enzyme-1 (BACE1) by PE revealed potential in

the application of C-PE as a therapeutic agent in Alzheimer’s

disease (Chaubey et al., 2019). Lian et al. (2020) found that

treatment in rats with C-PC attenuated gastric ulcers by

suppressing oxidation and inflammation and increasing

gastroprotection. β-carotene and PC added to the standard

diet of Nile tilapia, allowed us to conclude that the fish with a

diet supplemented with PC had a higher survival rate, with an

increase in intestinal digestive enzymes such as amylase, trypsin,

and lipase, and improved hematological parameters such as

immunoglobulin M (IgM), catalase, and total antioxidant

capacity (T-AOC) (Hassaan et al., 2021).

Fluorescence applications: Sensing and
solar energy harvesting and conversion

Besides the application of phycobiliproteins in

photodynamic therapy, another application is their use as

fluorescent probes for analyte sensing. You et al. (2020)

developed a luminescent nanoprobe based on the

upconversion of nanoparticles conjugated with PC to detect

the bioactivity of myeloperoxidase, a protein that causes

inflammation-related diseases. Yang et al. (2020) have found a

viable method for the detection of ochratoxin A and zearalenone,

a quantitative fluorescence image analysis based on multicolor

upconversion nanocrystal (UCN)-encodedmicrospheres. PE was

also used for the detection of transcription factors and as a

fluorescent label in the microsphere (Sun et al., 2021).

Metals are by-products of several industrial processes that

present toxic, corrosive, and malodorous properties. The study of

PE as a hydrosulphide selective optical probe has shown

promising results in freshwater and effluent samples through

the fluorescence ‘turn off’ phenomenon, (Ghosh and Mishra

2020). The same mechanism was applied to mercury, in which

C-PE was successfully used as a natural agent for the selective

detection of environmentally hazardous Hg2+ (Ghosh et al.,

2020). R-PE has shown potential when conjugated with silver

nanoparticles (AgNPs) for the detection of Cu2+. Xu et al. (2019)

reported that the addition of the ion Cu2+ to R-PE-AgNPs leads

to a decrease in fluorescence and color change due to the
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increasing size of the particle diameter. This change in

fluorescence was directly proportional to the concentration of

Cu2+, therefore this method can be applied to real wastewater

samples.

Ghosh et al. (2020b) developed a natural protein-based DNA

sensor with PC and graphene oxide, a complex which allowed

differentiating DNA from a mixture of other biomolecules

(amino acids, sugars, polydispersed exopolysaccharides, other

proteins) through ‘turn off, turn on fluorescence. The detailed

study of the structure and composition of phycobiliproteins can

be an obstacle to their use as proteins from natural sources.

Studies have found that the central subunits of PC and PE

complexes, although absent from the crystal structures, may

be crucial for their stability, and even that PE is the best

phycobiliprotein to be used as a fluorescent probe due to the

stabilizing effect of its γ subunits (Leney et al., 2017; Kaldmäe

et al., 2019).

Another field where R-PE stands out due to its fluorescence is

bio-based luminescent solar concentrators (LSCs, Figure 1A).

Frias et al. (2019) used R-PE aqueous solutions to fabricate planar

and cylindrical LSCs with maximum optical conversion

efficiency values of 6.88%, being the largest among other

biomolecules studied such as chlorophyll or Green Fluorescent

Protein, Table 6. The high figures of merit arise from the

photoluminescence features of the R-PE, namely the emission

in the absorption region of typical Si photovoltaic devices

(Figure 1B) and high spectral overlap between the R-PE

absorption and the sunlight (Figure 1C), which indicated that

the most concentrated aqueous solution has the potential to

absorb ≈27% of the solar photon flux on the Earth (4.3 × 1021

photons·s−1·m−2) (Frias et al., 2019).

Combining the sensing ability with that of sunlight

harvesting, Correia et al. (2022) reported a surprising example

of a novel application by fabricating a sustainable solar optical

temperature sensor based on PC aqueous solutions (Figure 2A).

As PC optical features are temperature-dependent (Figures

2B,C), the electrical output of the PC-based LSC also varies

(Figure 2D). After calibration, this device allows us to infer the

temperature values from the output voltage of the photovoltaic

cell coupled to the LSC. Moreover, the electrical power delivered

by the coupled PV cells under solar radiation was enough to

power a small circuit able to read voltage values, convert it to

temperature and send real-time data through Wi-Fi to a

smartphone app or website, bridging these sensors to the

Internet of Things (IoT). The goal here was the building

integration of photovoltaic and sensing units as smart

windows, which could contribute to the future design of zero-

energy buildings with enhanced energy consumption

management (Correia et al., 2022).

To improve the processability of the phycobiliproteins, the

PC molecules were entrapped into solid matrices, such as poly

(vinyl alcohol (PVA) (Dias et al., 2022). It was demonstrated that

the ability to down-shift the UV radiation observed for the

biomolecules in solution (Figure 2) was kept after their

incorporation into the host, Figure 3. Nonetheless, it was

observed a decrease in the emission quantum yield (0.09 ±

0.01) when compared to the value found for the aqueous

solution together with poor photostability, which suggests

molecular aggregation (Zhao et al., 2021). Therefore, this

preliminary study reinforces the need for further optimization

of the incorporation procedures.

Conclusion and future perspectives

In this work, the downstream processes reported to recover

phycobiliproteins from marine and freshwater biomass were

reviewed. The different sources were highlighted (macroalgae,

microalgae, and cyanobacteria), and the solvents and techniques

used in the extraction and purification of the fluorescent proteins,

as well as their main applications taking advantage of being

fluorescent/luminescent, were assessed. Most articles reviewed in

this work focus only on conventional approaches to extraction

and purification, at a laboratory scale paying attention only to the

extraction yield and purity level obtained. However, some

disadvantages remain, such as poor selectivity, high energetic

costs, and high investment in equipment, for example

considering the chromatographic techniques (Bleakley and

Hayes, 2017). From the publications analysed, it seems that

the majority is still using the most conventional solvents,

without considering their low selectivity. In this sense, the use

of more task-specific solvents is advised. Some authors briefly

started to evaluate the effect of some ILs, however, there is a need

of choosing the best ones only by their capacity to extract the

phycobiliproteins, however without considering too much their

economic, environmental impact, safety, or even their potential

to develop processes appropriate to scale-up. Taking this into

consideration, some other solvents are being used in other fields,

but not so much in the marine biorefinery field, although the best

results were obtained. Examples of these classes of eco-solvents

are the eutectic solvents and more recently, the bio-solvents.

Indeed, eutectic solvents were applied in the solid-liquid

extraction of proteins as performance boosters (Yue et al.,

2021). These are composed of a hydrogen bond acceptor and

a hydrogen bond donor and are prepared by mixing natural

starting materials with a high melting point, in different molar

ratios, to form a liquid. They are simpler to prepare and purify,

and of lower costs (Wahlström et al., 2016). Also, they form

aqueous biphasic systems (ABS) capable to perform the

separation/purification of proteins in a single-step [9], without

using chromatography. Bio-solvents, by their turn, are solvents

prepared from natural sources, with high biodegradability,

abundance, and green credentials, being cyrene the most

popular up to now (Sherwood et al., 2014). The set of bio-

solvents although small is expanding, and with this expansion

more task-specific bio-solvents will be produced on industrial
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scale, allowing thus to consider them as good alternatives for the

development of downstream processes of lower environmental

and economic impact, while maintaining or even increasing their

capacity as solvents. Nevertheless, aiming at a possible

application of some of these processes at an industrial scale

much more needs to be defined and investigated, namely the

economic and environmental impact of the overall process and

stability of the fluorescent proteins. Promising food and

pharmaceutical applications of PE were demonstrated

primarily at the laboratory scale as pigments and potent

antioxidants. Additionally, the photosensitizing and

fluorescent properties of these proteins show great potential in

varied fields including photodynamic cancer therapy and as

organic sunlight harvesters for the improved efficacy of solar

panels.

Some works approached the question of the chemical

stability of these fluorescent proteins. However, little is known

regarding their optical stability. Considering that part of the

applications with the highest interest from an economic point of

view is related to the optical activity of the phycobiliproteins, the

development of strategies to improve the optical stability is a

crucial demand, not only in liquid samples but also very

important in solid matrices.
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