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The Zagreb connection indices are the known topological descriptors of the

graphs that are constructed from the connection cardinality (degree of given

nodes lying at a distance 2) presented in 1972 to determine the total electron

energy of the alternate hydrocarbons. For a long time, these connection indices

did not receive much research attention. Ali and Trinajstić [Mol. Inform. 37, Art.

No. 1800008, 2018] examined the Zagreb connection indices and found that

they compared to basic Zagreb indices and that they provide a finer value for the

correlation coefficient for the 13 physico-chemical characteristics of the octane

isomers. This article acquires the formulae of expected values of the first Zagreb

connection index of a random cyclooctatetraene chain, a random polyphenyls

chain, and a random chain network with l number of octagons, hexagons, and

pentagons, respectively. The article presents extreme and average values of all

the above random chains concerning a set of special chains, including the

meta-chain, the ortho-chain, and the para-chain.
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1 Introduction

Graph theory is vital to various disciplines, including the chemical and biological

sciences. One of the objectives of chemical graph theory is its primary and significant role

in studying physico-chemical reactions and biological activities and pointing out the

structural properties of molecular graphs, etc., Topological descriptors have played a

significant role in achieving the desired properties of molecular graphs. Topological

descriptors are molecular structural invariants that theoretically and mathematically

explain the connectivity characteristics of nano-materials and chemical compounds.

Therefore, topological indices produce sharper approaches to measuring their behavior

and characteristics.
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For 20 years, hydrocarbons and their derivatives have

received attention from researchers because these compounds

only have two members, carbon and hydrogen. We can acquire

various types of hydrocarbon derivatives by replacing their

molecular hydrogen atoms with different types of other

atomic groups. A large number of valuable hydrocarbons are

available in plants and some valuable characteristics of

hydrocarbons are important to chemical raw materials and fuel.

Throughout this article, the vertex and edge sets of a graphH are

represented as V(H) and E(H), respectively. We denote the degree

of a vertex v ∈ V(H) by dH(v), which is defined as the cardinality of
edges joined with v. Let the order and size of H be n and m,

respectively. The l-degree of a given vertex v ∈ V(H), presented by

dl(v), is the cardinality of set of vertices of V(H) whose distance
from v is l, where d1(v) � dH(v) and d2(v) � τv [this is known as

the connection number of v (Todeschini and Consonni, 2000)].

Suppose that Z is a collection of all connected simple graphs.

There is a function P: Z → R+ that describes a topological

invariant if for any two isomorphic members M1 and M2 of

Z, we have P(M1) � P(M2). Thousands of degree and

distance-related topological invariants have been proposed,

but some are better known because of their high predictive

power for many characteristics like density, boiling point,

molecular weight, refractive index, etc., Topological invariants

have so many implementations in numerous areas of sciences

such as drug discovery, physico-chemical research, toxicology,

biology, and chemistry. To date, topological indices are the most

notable field of graphical research. For more discussion on

numerous invariants, we refer readers to studies by (Gutman,

2013; Akhter et al., 2016; Akhter and Imran, 2016; Akhter et al.,

2017; Akhter et al., 2018; Akhter et al., 2020).

The Zagreb indices are the most notable invariants, and they

have many valuable applications in chemistry. In 1972 Gutman and

Trinajstić (Gutman and Trinajstić, 1972) established the first vertex

degree dependent Zagreb index of a graphH. Two renowned Zagreb

indices of a graph H can be described in the following manner:

M1 H( ) � ∑
x∈V H( )

d2
H x( ),

M2 H( ) � ∑
xy∈E H( )

dH x( )dH y( ).

Motivated by how influential they have become and the many

important applications of primary Zagreb indices, Naji et al. (Soner

and Naji, 2016; Gutman et al., 2017) presented the concept of

Zagreb connection indices (leap Zagreb indices), constructed from

the second degrees of the vertices of a graph H. The first, second,

and modified Zagreb connection indices of H can be defined as:

ZC1 H( ) � ∑
y∈V H( )

τ2y,

ZC2 H( ) � ∑
xy∈E H( )

τxτy,

ZC1* H( ) � ∑
x∈V H( )

dH x( )τx.

The chemical applications of ZC1 were presented in (8),

indicating that the given index has a wide co-relation with the

physical characteristics of chemical compounds, for instance,

boiling point, enthalpy of evaporation, entropy, acentric factor, and

standard enthalpy of vaporization. Let fl present the cardinality of the

subset of vertices of H with connection number l. The next formula

for the first Zagreb connection index is equal to the above definition.

ZC1 H( ) � ∑
0≤l≤n−2

fl G( )l2. (1.1)

Naji and Soner (2018), (Gutman et al., 2017) determined the leap

Zagreb descriptors of some graph operations and families. Leap

Zagreb indices are presented in a recently published survey

(Gutman et al., 2020). In (39), the authors establish sharp

bounds for the leap Zagreb indices of trees and unicyclic

graphs and also determined the corresponding extremal graphs.

For more studies on Zagreb connection indices, we refer the

readers to (Ducoffe et al., 2018a; Ali and Trinajstić, 2018; Shao

et al., 2018a; Basavanagoud and Chitra, 2018; Ducoffe et al., 2018b;

Khalid et al., 2018; Manzoor et al., 2018; Du et al., 2019; Fatima

et al., 2019; Tang et al., 2019; Ye et al., 2019; Raza, 2020a; Bao et al.,

2020; Raza, 2020b; Cao et al., 2020; Naji et al., 2020; Raza, 2022).

Huang et al. (2014) determined the expected values for

Kirchhoff indices of random polyphenyl and spiro chains. Ma

et al. (2017), Yang and Zhang. (2012), and Qi et al. (2022)

independently acquired the expected value of Wiener indices of

random polyphenyl chain and random spiro chain. Zhang et al.

(2020) have provided expected values of the Schultz, Gutman,

multiplicative degree-Kirchhoff, and additive degree-Kirchhoff

indices of random polyphenylene chains. Raza and Imran. (2021)

obtained expected values of modified second Zagreb, symmetric

difference, inverse symmetric, and augmented Zagreb indices in

random cyclooctane chains. Zhang et al. (2021) established the

formulae for expected values of Sombor indices of a general

random chain. Recently, many studies have explored the expected

values of different topological indices. For further information, we

refer readers to the following studies (Raza, 2020b; Fang et al., 2021;

Raza, 2021; Jahanbanni, 2022; Raza et al., 2022).

Motivated by the above research, the present study

determined the explicit formulae for expected values of the

first Zagreb connection index of the random cyclooctatetraene

chain, random polyphenyls chain, and random chain network

with l octagons, hexagons, and pentagons, respectively.

Moreover, we examined the average and extreme values of the

Zagreb connection index among all the above-mentioned

random chains corresponding to their set.

2 The first Zagreb connection index of
random cyclooctatetraene chain

Cyclooctatetraene, having chemical formula C8H8, is an

organic compound whose full name is ‘1, 3, 5, 7 − cyclooctene.
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Its structure is a cyclic polyolefin-like benzene, but it is not

aromatic, see (Willis et al., 1952; Mathews and Lipscomb,

1959; Traetteberg et al., 1970). It has the same chemical

characteristics as unsaturated hydrocarbons and is easy to

construct explosive organic peroxides, (Milas and

NolanPetrus, 1958; Donald and Whitehead, 1969; Garavelli

et al., 2002; Schwamm et al., 2019).

Spiro compounds are valuable types of cycloaltanes in

organic chemistry. A spiro union is a join of two rings that

have a common atom between both rings, and a join of a

direct union among the rings is known as a free spiro union in

spiro compounds. In a cyclooctatylene chain, octagons are

joined by cut vertices or cut edges. A random

cyclooctatetraene chain COCl, has l octagons, and can be

constructed by a cyclooctatetraene chain COCl−1 with l−1

octagons attached to a new octagon Gl by a bridge (see

Figure 1).

The COCl is a cyclooctatetraene chain with l ≥ 2 having G1,

G2, . . . , Gl octagons. The new octagon can be joined by four

different schemes, which give the local orderings. We use these as

COC1
l , COC

2
l , COC

3
l , COC

4
l (see Figure 2).

A random cyclooctatetraene chain COCl(k1, k2, k3) is a

cyclooctatetraene chain constructed by step-by-step

attachment of new octagons. At every step p = 2, 3, . . . , l a

random choice is constructed from one of the four possible

chains:

1 COCp−1 → COC1
p with probability k1,

2 COCp−1 → COC2
p with probability k2,

3 COCp−1 → COC3
p with probability k3,

4 COCp−1 → COC4
p with probability k4 = 1 − k1−k2−k3,

Where all the given probabilities are constant. In this section,

we will discuss the expected value for the first Zagreb connection

index among random cyclooctatetraene chains with l octagons.

Theorem 2.1. For l ≥ 2, the expected value for the first Zagreb

connection index of random cyclooctatetraene chain COCl is

E ZC1 COCl( )( ) � 8k1 + 2k2 + 76( )l − 16k1 − 4k2 − 44.

FIGURE 1
A random cyclooctatetraene chain COCl.

FIGURE 2
The four types of local arrangements of octagons COC1

l , COC2
l , COC3

l and COC4
l .
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Proof. Case-I: When l = 2, we get the result by direct

calculations as:

E ZC1 COCl( )( ) � 10 × 2( )2 + 4 × 3( )2 + 2 × 4( )2 � 108.

Case-II: When l ≥ 3, it is obvious that f2(COCl), f3(COCl),

f4(COCl) and f5(COCl) depends on the four possible cases as

following:

1 If COCl−1 → COC1
l with probability k1, we acquire

f2 COC1
l( ) � f2 COCl−1( ) + 4,

f3 COC1
l( ) � f3 COCl−1( ) + 2,

f4 COC1
l( ) � f4 COCl−1( ) � 2,

f5 COC1
l( ) � f5 COCl−1( ) + 2.

By using the above values in Eq. 1.1 , we get

ZC1 COC1
l( ) � ZC1 COCl−1( ) + 4 × 22

+2 × 32 + 2 × 52

� ZC1 COCl−1( ) + 84.

2 If COCl−1 → COC2
l with probability k2, we acquire

f2 COC2
l( ) � f2 COCl−1( ) + 3,

f3 COC2
l( ) � f3 COCl−1( ) + 2,

f4 COC2
l( ) � f4 COCl−1( ) + 3,

By using the above values in Eq. 1.1, we get

ZC1 COC2
l( ) � ZC1 COCl−1( ) + 3 × 22 + 2 × 32

+3 × 42

� ZC1 COCl−1( ) + 78.

3 If COCl−1 → COC3
l with probability k3, we acquire

f2 COC3
l( ) � f2 COCl−1( ) + 2,

f3 COC3
l( ) � f3 COCl−1( ) + 4,

f4 COC3
l( ) � f4 COCl−1( ) + 2,

By using the above values in Eq. 1.1, we get

ZC1 COC3
l( ) � ZC1 COCl−1( ) + 2 × 22 + 4 × 32

+2 × 42

� ZC1 COCl−1( ) + 76.

4 If COCl−1 → COC4
l with probability 1 − k1−k2−k3, we

acquire

f2 COC4
l( ) � f2 COCl−1( ) + 2,

f3 COC4
l( ) � f3 COCl−1( ) + 4,

f4 COC4
l( ) � f4 COCl−1( ) + 2,

By using above the values in Eq. 1.1, we get

ZC1 COC4
l( ) � ZC1 COCl−1( ) + 2 × 22 + 4 × 32

+2 × 42

� ZC1 COCl−1( ) + 76.

Now

Ei
l � E ZC1 COCl( )( ) � k1ZC1 COC1

l( ) + k2ZC1 COC2
l( ) + k3ZC1 COC3

l( )
+ 1 − k1 − k2 − k3( )ZC1 COC4

l( )
� ZC1 COCl−1( ) + 8k1 + 2k2 + 76.

(2.1)

Note that E[Ei
l] � Ei

l. By applying the expression operator to Eq.

2.1 and also l ≥ 3, we get

Ei
l � Ei

l−1 + 8k1 + 2k2 + 76. (2.2)

The Eq. 2.2 is a first-order non-homogeneous linear difference

result with constant coefficients. We easily see that the general

solution of the homogeneous equation of Eq. 2.2 is Ei = C.

Suppose Ei′ = bl is a particular solution of Eq. 2.2, using Ei′ into
Eq. 2.2, we acquire

b � 8k1 + 2k2 + 76.

Finally the general solution of Eq. 2.2 is

Ei
l � Ei + Ei′

� E ZC1 COCl( )( ) � 8k1 + 2k2 + 76( )l + C.

Applying the initial condition l = 3, we get the following

C � −16k1 − 4k2 − 44.

Therefore

Ei
l � E ZC1 COCl( )( )
� 8k1 + 2k2 + 76( )l − 16k1 − 4k2 − 44.

If k1 = 1 (respectively, k2 = 1) and k2 = k3 = k4 = 0

(respectively, k1 = k3 = k4 = 0), then COCl = Ml (respectively,

COCl � O1
l ). Similarly, if k3 = 1 (respectively, k4 = 1) and k1 =

k2 = k4 = 0 (respectively, k1 = k2 = k3 = 0), then COCl � Q2
l

(respectively COCl = Ll). By Theorem 2.1, we can acquire the

first Zagreb connection index of the cyclooctatetraene meta-

chain Ml, ortho-chains O
1
l , O

2
l and para-chain Ll as:

ZC1 Ml( ) � 84l − 60, ZC1 O1
l( ) � 78l − 48,

ZC1 O2
l( ) � 76l − 44, ZC1 Ll( ) � 76l − 44.

Corollary 2.2. For a random cyclooctatetraene chain COCl(l ≥ 3),

the para-chain Ll and ortho chain O1
l , and the meta-chain Ml

achieves the minimum and the maximum of E(ZC1(COCl)),

respectively.

Proof. Using Theorem 2.1, we acquire

Ei
l � E ZC1 COCl( )( ) � 8l − 16( )k1 + 2l − 4( )k2 + 76l − 44.

By taking partial derivatives, we acquire zE
zk1

� 8l − 16> 0,
zE
zk2

� 2l − 4> 0. When k1 = k2 = k3 = 0 (i.e. k4 = 1), the para-

chain Ll and ortho chainO
1
l achieve theminimum of E(ZC1(COCl)),

that is COCl�Ll or COCl � O1
l . If k3 = 1 − k1−k2 (0 ≤ k1, k2 ≤ 1), we

have
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Ei
l � E ZC1 COCl( )( )
� 8l − 16( )k1 + 2l − 4( )k2 + 76l − 44.

But k1 = k2 = 0 (when k3 = 1), E(ZC1(COCl)) can not attain the

maximum value. If k1 = 1 − k2 (0 ≤ k2 ≤ 1), we acquire

Ei
l � E ZC1 COCl( )( )
� 8l − 16( ) 1 − k2( ) + 2l − 4( )k2 + 76l − 44.

Therefore zE
zk2

� −6l + 12< 0. Thus E(ZC1(COCl)) achieves the

maximum value, if k2 = 0(k1 = 1), that is COCl�Ml.

3 The first Zagreb connection index of
a random polyphenyls chain

Polyphenyls showed a molecular graph corresponding to a

type of macrocyclic aromatic hydrocarbons, and these

molecular graphs of polyphenyls construct a polyphenyl

structure. Polyphenyls and their derivatives have

applications in drug synthesis, organic synthesis, heat

exchangers, etc., and have received attention from chemists.

A random polyphenyl chain PPCl with l hexagons can be

constructed by a polyphenyl chain PPCl−1 using l−1 hexagons

attached to a new hexagon Gl by a bridge (see Figure 3).

The PCCl will be a polyphenyl chain with l ≥ 2 having G1,

G2, . . . , Gl hexagons. PPCl is the meta-chain Ml, the ortho-

chain O1
l and the para-chain Ll. The new hexagon can be

joined in three arrangements, which construct the local

orderings. We use these as PPC1
l , PPC

2
l , PPC

3
l (see Figure 4).

A random polyphenyl chain PPCl(k1, k2) is a polyphenyl

chain constructed by step-by-step attachment of new hexagons.

At every step p = 2, 3, . . . , l, a random choice construct one of the

three possible chains:

1 PPCp−1 → PPC1
p with probability k1,

2 PPCp−1 → PPC2
p with probability k2,

3 PPCp−1 → PPC3
p with probability k3 = 1 − k1−k2,

Where all the given probabilities are constant. In this section,

we discuss the expected value for the first Zagreb connection

index of the random polyphenyl chain with l hexagons.

Theorem 3.1. For l ≥ 2, the expected value for the first Zagreb

connection index of the random polyphenyl chain PPCl is

E ZC1 PPCl( )( ) � 8k1 + 2k2 + 68( )l − 16k1 − 4k2 − 44.

Proof. Case-I: When l = 2, one can get

E ZC1 PPCl( )( ) � 6 × 2( )2 + 4 × 3( )2 + 2 × 4( )2 � 92.

Case-II:When l ≥ 3, it is obvious that f2(PPCl), f3(PPCl), f4(PPCl)

and f5(PPCl) depends on the four possible cases, as follows:

1 If PPCl−1 → PPC1
l having probability k1, we acquire

FIGURE 3
The three types of local arrangements of hexagons PPC1

l , PPC
2
l , and PPC3

l .
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f2 PPC1
l( ) � f2 PPCl−1( ) + 2,

f3 PPC1
l( ) � f3(l−1) + 2,

f4 PPC1
l( ) � f4 PPCl−1( ) � 2,

f5 PPC1
l( ) � f5 PPCl−1( ) + 2.

By using the above values in Eq. 1.1, we get

ZC1 PPC1
l( ) � ZC1 PPCl−1( ) + 2 × 22 + 2 × 32

+2 × 52

� ZC1 PPCl−1( ) + 76.

2 If PPCl−1 → PPC2
l having probability k2, we acquire

f2 PPC2
l( ) � f2 PPCl−1( ) + 1,

f3 PPC2
l( ) � f3 PPCl−1( ) + 2,

f4 PPC2
l( ) � f4 PPCl−1( ) + 3,

By using the above values in Eq. 1.1, we get

ZC1 PPC2
l( ) � ZC1 PPCl−1( ) + 1 × 22 + 2 × 32

+3 × 42

� ZC1 PPCl−1( ) + 70.

3 If PPCl−1 → PPC3
l having probability k3, we acquire

f2 PPC3
l( ) � f2 PPCl−1( ) � 6,

f3 PPC3
l( ) � f3 PPCl−1( ) + 4,

f4 PPC3
l( ) � f4 PPCl−1( ) + 2,

By using the above values in Eq. 1.1, we get

ZC1 PPC3
l( ) � ZC1 PPCl−1( ) + 4 × 32 + 2 × 42

� ZC1 PPCl−1( ) + 68.

Now

Ei
l � E ZC1 PPCl( )( )
� k1ZC1 PPC1

l( ) + k2ZC1 PPC2
l( )

+ 1 − k1 − k2( )ZC1 PPC3
l( )

� ZC1 PPCl−1( ) + 8k1 + 2k2 + 68.

(3.1)

Note that E[Ei
l] � Ei

l. By applying the expression operator to Eq.

3.1 and also l ≥ 3, we get

Ei
l � Ei

l−1 + 8k1 + 2k2 + 68. (3.2)

The result Eq. 3.2 is a first-order non-homogeneous linear difference

equation with constant coefficients. The general solution of the

homogeneous side is Eq. 3.2 is Ei = C. Suppose Ei′ = bl is a particular

result of Eq. 3.2, using Ei′ into Eq. 3.2, we acquire

b � 8k1 + 2k2 + 68.

Finally the general solution of Eq. 3.2 is given by

Ei
l � Ei + Ei′

� E ZC1 PPCl( )( ) � 8k1 + 2k2 + 68( )l + C.

Applying the initial condition l = 3, we get following

C � −16k1 − 4k2 − 44.

Therefore

Ei
l � E ZC1 PPCl( )( ) � 8k1 + 2k2 + 68( )l − 16k1 − 4k2 − 44.

If k1 = 1 (respectively, k2 = 1) and k2 = k3 = 0 (respectively,

k1 = k3 = 0), then PPCl =Ml (respectively, PPCl = Ol). Similarly, if

k3 = 1 and k1 = k2 = 0, then PPCl = Ll. By Theorem 3.1, we can

acquire the first Zagreb connection index of polyphenyl chains

like meta Ml, ortho Ol, and para Ll, as

ZC1 Ml( ) � 76l − 60, ZC1 Ol( ) � 70l − 48,
ZC1 Ll( ) � 68l − 44.

Corollary 3.2. For a random polyphenyl chain PPCl(l ≥ 3), the

para-chain Ll and the meta-chain Ml achieves the minimum and

the maximum E(ZC1(PPCl)), respectively.

Proof. From Theorem 3.1, we obtain

Ei
l � E ZC1 PPCl( )( )
� 8l − 16( )k1 + 2l − 4( )k2 + 68l − 44.

By taking partial derivatives, we acquire zE
zk1

� 8l − 16> 0,
zE
zk2

� 2l − 4> 0. When k1 = k2 = 0 (i.e. k3 = 1), the para-chain

Ll has the minimum of E(ZC1(COCl)), that is PPCl�Ll. If k1 = 1 −

k2 (0 ≤ k2 ≤ 1), we acquire

Ei
l � E ZC1 PPCl( )( )
� 8l − 16( ) 1 − k2( ) + 2l − 4( )k2 + 68l − 44.

Therefore zE
zk2

� −6l + 12< 0. Thus E(ZC1(PPCl)) achieves the

maximum value, if k2 = 0(k1 = 1), that is PPCl�Ml.

4 The first Zagreb connection index
of random chain network PGl

The random chain networks PGl with l pentagons can be

constructed by PGl−1 having l−1 pentagons attached to a new

pentagon Hl by a bridge (see Figure 5).

The PGl will be a random chain network with l ≥ 2, and H1,

H2, . . . , Hl pentagons. For l ≥ 3, there are two ways to attach

pentagons at the end and get PG1
l and PG2

l , (see Figure 6). For

FIGURE 4
A random polyphenyl chain PPCl.
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such a random chain network, any step for q = 2, 3, 4, . . . , l can be

constructed by two possible chains with given probabilities k1
and k2, respectively:

1 PGq−1 → PG1
q with probability k1,

2 PGq−1 → PG1
q with probability k2 = 1 − k1,

Where all the given probabilities are constant.

This section discusses the expected value for the first Zagreb

connection index of the random chain network with l pentagons.

The proof of Theorem 4.1 is the same as the proofs of Theorem

2.1 and Theorem 3.1; therefore, we omit it here.

Theorem 4.1. For l ≥ 2, the expected value for the first Zagreb

connection index of random chain network PGl is E(ZC1(PGl)) =

(6k1+66)L−12k1−48.

If k1 = 1 (respectively, k2 = 1) and k2 = 0 (respectively, k1 = 0),

then PGl � PG1
l (respectively, PGl � PG2

l ). By Theorem 4.1, we

can acquire the first Zagreb connection index of the meta-chain

PG1
l and para-chain PG2

l , as

ZC1 PG1
l( ) � 72l − 60, ZC1 PG2

l( ) � 66l − 48.

Corollary 4.2. For a random chain network PGl(l ≥ 3), the para-

chain PG2
l and the meta-chain PG1

l achieves the minimum and

the maximum of E(ZC1(PGl)), respectively.

5 The average values for the first
Zagreb connection index

This section finds the average values for the first Zagreb

connection index concerning the sets of all cyclooctatetraene

chains with l octagons, polyphenyl chains with l hexagons, and

chain networks with l pentagons. Let Gl, Rl and Ql be the sets of

all cyclooctatetraene chains, polyphenyl chains, and random

chain network, respectively. The average values for the first

Zagreb connection index for the sets Gl, Rl and Ql are given

below:

ZCavg
1 Gl( ) � 1

Gl
∑
H∈Gl

ZC1 H( ),

ZCavg
1 Rl( ) � 1

Rl
∑
H∈Rl

ZC1 H( ),

ZCavg
1 Ql( ) � 1

Ql

∑
H∈Ql

ZC1 H( ).

The average value concerning sets Gl, Rl, and Ql are expected

values for the first Zagreb connection index of the random

chains. From Theorem 2.1, Theorem 3.1 and Theorem 4.1,

we have.

Theorem 5.1. The average value for the first Zagreb connection

index concerning the set Gl is given as:

ZCavg
1 Gl( ) � 157

2
l − 49.

After calculation, we acquire

ZCavg
1 Gl( ) � 1

4
ZC1 Ml( ) + ZC1 O1

l( )(
+ZC1 O2

l( ) + ZC1 Ll( )).

FIGURE 5
A random chain networks PGl.

FIGURE 6
The two types of local arrangements of pentagons PG1

l and PG2
l .
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Theorem 5.2. The average value for the first Zagreb connection

index concerning Rl is

ZCavg
1 Rl( ) � 214

3
l − 152

3
.

After calculation, we acquire

ZCavg
1 Rl( ) � 1

3
ZC1 Ml( ) + ZC1 Ol( )(

+ZC1 Ll( )).

Theorem 5.3. The average value for the first Zagreb connection

index concerning Ql is ZC
avg
1 (Ql) � 69l − 54. It is also:

ZCavg
1 Ql( ) � 1

2
ZC1 PG1

l( ) + ZC1 PG2
l( )( ).

6 Conclusion

This study computed the expected values of the first Zagreb

connection index in a random cyclooctatetraene chain, random

polyphenyls chain, and random chain network with l, octagons,

hexagons, and pentagons, respectively. It has discussed the

maximum chain and the minimum chain of the COCl, PPCl,

and PGl, respectively, concerning the expected values of these

chains. The average values discussed in all of the above are

considered random chains for unique chains.
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