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Fibroblast growth factor 2 (FGF2) is a key player in cancer and tissue

homeostasis and regulates renewal of several stem cell types. The FGF2 role

inmalignant glioma is proven and tagged FGF2, a novel druggable target, is used

for developing potent drugs against glioblastoma. In this study, Asinex

51412372, Asinex 51217461, and Asinex 51216586 were filtered to show the

best binding affinity for FGF2 with binding energy scores of −8.3 kcal/

mol, −8.2 kcal/mol, and −7.8 kcal/mol, respectively. The compounds showed

chemical interactions with several vital residues of FGF2 along the compound

length. The noticeable residues that interacted with the compounds were

Arg15, Asp23, Arg63, and Gln105. In dynamic investigation in solution, the

FGF2 reported unstable dynamics in the first 100 ns and gained structural

equilibrium in the second phase of 100 ns. The maximum root mean square

deviation (RMSD) value touched by the systems is 3 Å. Similarly, the residue

flexibility of FGF2 in the presence of compounds waswithin a stable range and is

compact along the simulation time length. The compounds showed robust

atomic-level stable energies with FGF2, which are dominated by both van der

Waals and electrostatic interactions. The net binding energy of systems varies

between −40 kcal/mol and −86 kcal/mol, suggesting the formation of strong

intermolecular docked complexes. The drug-likeness and pharmacokinetic

properties also pointed toward good structures that are not toxic, have high

gastric absorption, showed good distribution, and readily excreted from the

body. In summary, the predicted compounds in this study might be ideal hits

that might be further optimized for structure and activity during experimental

studies.
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1 Introduction

Glioblastoma multiforme is a malignant CNS tumor, and its

median survival rate is less than 2 years (Darefsky et al., 2012).

The tumor progression and recurrence cannot be controlled by

the current treatment, which usually comprises surgery resection,

radiation, and chemotherapy (Juratli et al., 2013). This can be

explained by the presence of heterogeneous cell population in the

tumor, and at the hierarchy top, glioblastoma stem cells are

present (Haley and Kim, 2014). In most cases, the risk factors for

glioblastoma are unknown but may include Li-Fraumeni

syndrome, radiation therapy, and neurofibromatosis (Gallego,

2015). Glioblastomas account for more than 15% of total brain

tumors and can either be generated from low-grade astrocytoma

or from normal brain cells (Young et al., 2015). The treatment of

glioblastoma is less productive, which may be due to several

complicating factors. The tumors are most often resistant to

therapies, and the conventional therapy often damages the

susceptible brain cells. Also, as the brain shows less potential

to repair itself, it also contributes to heavy damage. Majority of

the drugs are often incapable to cross the blood–brain barrier to

act on the tumor (Lawson et al., 2007).

Fibroblast growth factors contain 22 members and function in

fibroblast growth (Jimenez-Pascual et al., 2020). They are significant

in diverse biological functions such as proliferation, transition of

epithelial cells to mesenchymal cells, self-renewal, and invasion

(Haley and Kim, 2014). Likewise, they served as an important

entry portal for downstream signaling pathways (Eswarakumar

et al., 2005). From the cancer perspectives, these factors are

crucial in proliferation of cells, survival, and invasion of cancer

stem cells (Akl et al., 2016). FGF2 is a vital mitogen that plays a key

role in tissue homeostasis and cancer onset. The FGF2 governs

regulation of several stem cell types and their self-renewal. Studies

have shown the FGF2 role in brain tumors, specifically malignant

gliomas (de Almeida Sassi et al., 2012). It is well documented that

FGF2 enhances glioblastoma stem cell renewal. Thus, precise

targeting of the FGF2 signaling pathway can improve

glioblastoma therapeutics (Jimenez-Pascual et al., 2020).

In the recent past, the computer-aided drug design (abbreviated

as CADD) framework has attracted the attention of scientists due to

the many advantages it offers compared to traditional drug

discovery pipelines (Yu and MacKerell, 2017; Lešnik and Konc,

2020). It is a cost-effective, time-saving, and resource-cheap avenue

which can not only speed up drug development but can also increase

the chances of success (Macalino et al., 2015). Several examples of

drugs can be given that are identified by methods of CADD and are

now either in clinical trials or approved as therapeutics. Some of

these drugs are aliskiren, captopril, rupintrivir, oseltamivir,

saquinavir, dorzolamide, boceprevir, zanamivir, and nolatrexed

(Talele et al., 2010). Therefore, in the current study, we

employed variety of CADD applications and computational

chemistry techniques to identify potential binders of FGF2. The

study commenced with crystal structure analysis of FGF2 with

apoptosis inhibitor 5 (AP5) (Bong et al., 2020). This structure is

the most recent and good resolution and could provide an excellent

platform for the structure-based virtual screening process (Cheng

et al., 2012). Previous works identified several pan-FGFR inhibitors

such as JNJ-42756493, FIIN-2, futibatinib, ponatinib (Katoh, 2016),

infigratinib, rogaratinib (Grünewald et al., 2019), DW14383 (Dai

et al., 2021), erdafitinib, pemigatinib (Weaver and Bossaer, 2021),

and derazantinib; however, none of them successfully reached the

market. Therefore, more chemical scaffolds needed to be explored to

identify potential FGF2 lead molecules. The Asinex drug library was

employed in virtual screening, which contains millions of diverse

source compounds and can be easily available for experimental

testing. Furthermore, dynamic behavior of the top binders with

FGF2 was deciphered using molecular dynamics simulation

(Karplus and McCammon, 2002). Validation on compound

binding with the receptor was additionally performed using

atomic simulation trajectory-based binding free energies (Wang

et al., 2019). The findings of this study could be potentially helpful

for experimentalists.

2 Materials and methods

The computational framework used herein is schematically

presented in Figure 1.

2.1 FGF2 3D structure retrieval and
processing

The 3D structure of FGF2 was selected in this study as a drug

target and retrieved from the Protein Data Bank (PDB) by

considering a specific four-digit code of 6L4O. In the given

crystal structure, FGF2 is complexed with API5, both of which

are highly expressed in different cancers including glioblastoma

(Bong et al., 2020). The structure was determined by X-ray

diffraction with a resolution value of 2.60 Å. Immediately, the

structure was processed in UCSF Chimera v1.15 to remove the

AP15 co-crystalized ligand (Kaliappan and Bombay, 2018). The

apo-FGF2 was energy minimized via two algorithms: steepest

descent and conjugate gradient algorithms. Each algorithm was

run for a maximum of 1,500 steps, while the step size was set to

0.02 Å. During the process, the missing hydrogen atoms were added

while appropriate charges were assigned. After minimization, the

structure was saved into a .pdb format to make it ready to be used in

virtual screening processes.

2.2 Drugs library retrieval and processing

In this study, different libraries of Asinex databases were used

against the 3D structure of FGF2. These libraries are the

BioDesign library, elite library, synergy library, and gold and
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platinum library [https://www.asinex.com/screening-libraries-

(all-libraries)]. The compounds in the mentioned libraries can

be easily utilized in a rapid hit to lead optimization and have a

high degree of drug-likeness. Collectively, these libraries contain

~ 575302 compounds that can be easily accessed for experimental

testing. The drug library was imported to PyRx 0.8 (Dallakyan

and Olson, 2015), energy minimized via the MM2 force field, and

subsequently converted into .pdbqt format (Halgren, 1996).

2.3 Virtual screening process

The virtual screening process is a highly efficient technique to

filter hits that bind best to a receptor biomolecule. The structure-

based virtual screening process docked the library compounds

one by one to the receptor molecule with specified coordinates

and ranked the best binders on the lowest binding energy (Lionta

et al., 2014; Shaker et al., 2021). The lowest binding energy

compounds achieved stable conformation and are, thus, used in

further investigations. Herein, the coordinates used were of the

following residues: Asn169, Arg223, Arg262, Thr263, Lys267,

Lys271, and Lys277 (Bong et al., 2020). The number of iterations

generated for each of the library compound was set to 100, and

only the best eight stable iterations were shortlisted. The grid box

set around the aforementioned active site residues were in

12.49 Å on the X-axis, −6.804 Å on the Y-axis, and −47.32 Å

on the Z-axis. The grid box sizes along XYZ planes were 26.50 Å,

25.0 Å, and 28.75 Å, respectively. For validation of the docking

protocol, the co-crystalized ligand AP15 was redocked with

FGF2 at the same site, as reported in the crystal structure.

The exact binding conformation achieved as produced in the

crystal structure denotes accuracy of the virtual screening

process. The top three docked complexes from this process

were used further for additional investigations of binding

conformational analysis and interaction analysis by UCSF

Chimera 1.15 (Kaliappan and Bombay, 2018), Discovery

Studio Visualizer v2021 (Biovia, 2017), and PDBsum generate

tool (Laskowski, 2001).

2.4 Top complexes’ dynamics
investigation

The selected three complexes of compounds that showed a

best binding affinity for FGF2 were opted further for dynamics

studies. This was accomplished using the AMBER20 simulation

package (Case et al., 2020). Initial processing of the complexes

was performed using the Antechamber program (Wang et al.,

FIGURE 1
Schematic presentation of themethod flowutilized in this study. The studywas divided into several phases ranging from the biomolecule (FGF2)
and inhibitor library retrieval to virtual screening, molecular dynamics simulation, and binding free energy evaluation.
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2001). Both the FGF2 receptor and compounds were subjected to

parameter generation using the AMBER tleap interface. The

force field applied for the FGF2 receptor was FF14Sb, while

for the compounds, the force field used was GAFF (Maier et al.,

2015; Sprenger et al., 2015). Each complex was solvated into a

TIP3P water model, followed by neutralization and parameter

correction. Steric clashes of complexes were discarded by

subjecting the complexes to the energy minimization process

for a total of 3,000 steps (the first 1,500 steps were performed via

the steepest descent algorithm, and the last 1,500 steps were

accomplished through the conjugate gradient algorithm).

Heating was then performed to heat the systems up to 310 K.

Systems equilibration was accomplished by running it for 100 ps

in the NVT ensemble. The simulation time length was set to

200 ns, where the SHAKE algorithm was used to restrain

hydrogen bonds (Kräutler et al., 2001). Langevin dynamics

were employed to obtain a stable temperature during a

simulation production run (Izaguirre et al., 2001). The

simulation trajectories were investigated for several structural

parameters based on alpha-carbon atoms of the systems and

performed using the CPPTRAJ module of AMBER (Roe and

Cheatham, 2013). Visualization of different simulation frames

was performed via visual molecular dynamic (VMD) v

1.93 software (Humphrey et al., 1996; Falsafi-Zadeh et al.,

2012). Plots to see the structural stability of complexes were

produced by XMGRACE v 5.1 (Tuccinardi, 2021).

2.5 Calculation of binding free energies

Next, the system intermolecular binding free energies were

calculated by the MMPBSA.py module (Miller et al., 2012).

Two methods were used for this, MM-PBSA and MM-GBSA,

to cross-validate the docking affinity of compounds for FGF2

(Tuccinardi, 2021; Wang et al., 2019). The MM-PB/GBSA

estimates the energy difference between the docked

receptor–ligand complex and the apo protein and ligand

alone (Hou et al., 2011). For the calculation, 1,000 frames

were selected for simulation trajectories at a regular time

interval of 0.2 ns. The MM-PB/GBSA free energy

estimation was performed via equation I. Furthermore, the

residue-based binding free energy was estimated to highlight

favorable contributing residues in anchoring and stabilizing

docked compounds.

ΔGbinding � Ebinding + Eel + Evdw + Gpol + Gnp − TS.

2.6 Radial distribution function analysis

The radial distribution function (RDF) analysis was

conducted for strong intermolecular interactions between

FGF2 and compounds (Donohue, 1954). This analysis was

vital to shed light on how key chemical interactions are vital

for keeping the compound binding conformation stable with

the receptor. The RDF demonstrates the density of

interatomic radii interactions versus time. A high and

stable interaction density plays a crucial role in long-term

inhibition of the receptor and its binding with interacting

partners. The RDF analysis was accomplished through the

simulation length and performed via an AMBER CPPTRAJ

module (Roe and Cheatham, 2013). Plotting of the

interaction data was achieved through XMGRACE v 5.1

(Turner, 2005).

2.7 Entropy energy estimation

The entropy energy contribution to an overall net binding

energy of the systems was estimated using AMBER normal

mode calculations (Genheden et al., 2012). In this calculation,

different entropy energies were generated such as

translational, vibrational, rotational, and net entropy

contribution. For each parameter, average, standard

deviation, and errors were also calculated. As the normal

mode entropy energy calculation is very expensive, only a

limited number of frames from the simulation trajectories

were processed.

2.8 WaterSwap energies

The WaterSwap method is considered more refined than

the conventional MM-PB/GBSA method (Woods et al., 2011;

Woods et al., 2014). This method considered the contribution

of water molecules in the interaction between the ligand and

FGF2 active site residues that are commonly skipped in the

MM-PB/GBSA method (Bergström and Larsson, 2018).

During the procedure, the solvation box buffer was set at

10.0 Å. The iteration number used was 1,000, and the

maximum threads were treated as Auto. The water monitor

distance used was 7.00 Å. Three types of energies were

calculated, namely, thermodynamic integration (TI), free

energy perturbation (FEP), and Bennetts. The lowest energy

implies a strong intermolecular docked stability of the

complexes. The energy value difference among the

algorithm must be less than 1 kcal/mol to get a well-

converged system (Raza et al., 2019).

2.9 Drug-likeness and pharmacokinetic
predictions

The drug-like properties and pharmacokinetics of the filtered

predictions were investigated through SwissADME (Daina et al.,

2017) and pkCSM (Pires et al., 2015).
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3 Results and discussion

This study was designed in order to highlight drugs from the

Asinex library that can bind best with an FGF2 receptor. The

virtual screening processed identified several drugs that showed

robust binding with FGF2; however, due to limited scope of the

study, only the best three drug complexes were investigated for

in-depth analysis.

3.1 FGF2–AP15 crystal structure analysis

AP15 and FGF2 are highly expressed in several cancer

types and associated with poor prognosis. The binding

conformation of these proteins with each other is given in

Figure 2, while the chemical interactions they produced are

provided in Figure 3. The intermolecular interaction produces

seven salt bridges, five hydrogen bonds, and 48 non-bounded

contacts. AP15 interacts with FGF2 through 10 interface

residues, while nine residues from FGF2 contribute their

role in binding with AP15.

3.2 Virtual screening of the Asinex library
against FGF2

The virtual screening process identified 81 compounds that

docked well with the FGF2 receptor. The top stable binding

conformation of these compounds with FGF2 can be categorized

according to their binding energy value, as given in Figure 4. The

top three best binding compounds were chosen: Asinex

51412372 ((E)-2-(3′-benzyl-2′, 5′-dioxo-2.2′, 3.3′, 4′, 5.5′, 6,

10a′, 11′, 14′, 14a′-dodecahydro-1′H-spiro[pyran-4,6′-pyrido
[4,3-e][1,4]diazacyclododecin]-12′ (7′H,10′H, 13′H)-yl)-N-(4-

phenoxyphenyl)acetamide), Asinex 51217461 (2-(2-

(benzylsulfonyl)-3,3-dimethyl-2,8-diazaspiro [4.5]decan-8-yl)-

N-(4-(piperidin-1-ylsulfonyl)phenyl)acetamide), and Asinex

51216586 (2-(3-benzyl-4-tosyl-1-oxa-4,8-diazaspiro [5.5]

undecan-8-yl)-N-(5.6, 7, 8-tetrahydronaphthalen-2-yl)

acetamide) with binding energy scores of –8.3 kcal/

mol, −8.2 kcal/mol, and −7.8 kcal/mol, respectively, for further

analysis. These compounds were prioritized as the best docked

inhibitor upon a repeated docking run and compared to control.

The control AP15 was found to have a binding energy

of −12.31 kcal/mol.

3.3 Binding pose and interaction analysis

Details about compound binding and interactions with the

FGF2 are given in Figure 5. The compounds interact with the

same interface reported in the crystal structure. The Asinex

51412372 N-(4-phenoxyphenyl)acetamide chemical structure

formed a strong hydrogen bond with Asp183, while the rest

of the compound structure ((E)-3′-benzyl-2, 3,3′, 4′,5.6, 10a′, 11′,
12′, 13′, 14′, 14a′-dodecahydro-1′H-spiro[pyran-4, 6′-pyrido[4,

FIGURE 2
Docked conformation of an FGF2 receptor (shown by the
hydrophobic receptor) with AP15 (shown by the red surface).

FIGURE 3
Different chemical bonds formed between an FGF2 receptor
and AF15 molecule.
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3-e][1, 4]diazacyclododecine]-2′, 5′ (7′H, 10′H)-dione)

produced several van der Waals bonds. Asinex

51217461 terminal structures [(hydrosulfonylmethyl) benzene

and 1-hydrosulfonylpiperidine] generated hydrogen bonds with

Arg223 and Arg175, while the central 1-hydrosulfonylpiperidine

made several van der Waals interactions. Asinex

51216586 formed a hydrogen bond with Gln265, and its

oxygen atom of 5.6, 7, 8-tetrahydronaphthalen-2-amine, while

1-hydrosulfonyl-4-methylbenzene is involved in the hydrogen

bond with Arg175. Previously, the pan-fibroblast growth factor

receptor (FGFR) inhibitor termed as LY2874455 was identified

and is currently under phase I of a clinical trial investigation. This

inhibitor is known to inhibit the same active pocket and interact

with the same set of active residues, as reported here by the

filtered molecules (Michael et al., 2017). In another study,

Mahfuz et al. (2022) reported a novel compound (PubChem

137300327) to show stable interactions with FGF2. PubChem

137300327 was docked with several PDBS of FGF2 and reported

a score of –10.3 kcal/mol with 561M, −11.3 kcal/mol with

564F, −11.2 kcal/mol with 564I, −11.0 kcal/mol with 564 M

and −10.5 kcal/mol with 555 L, and −9.6 kcal/mol with 555 M.

3.4 Dynamics investigation

The understanding of the molecular structure and

dynamics is critical toward underpinning molecular

function and biology. Molecular dynamic simulation is

considered an integral part of modern computational drug

discovery as it aids in the study of atomic-level dynamics and

conformational flexibility of protein–drug complexes

(Karplus, 2002). This analysis is important to decipher

biological events of receptor–drug binding and interactions

in theoretical simulations. It is now in regular use in CADD

and provides detail and accurate estimation of receptor–drug

thermodynamics and kinetics (Moradi et al., 2021). The

simulation indicated all the docked complexes including

the control relatively stable from the perspective of the

structure. The FGF2_51412372 and

FGF2_51217461 systems were reported to be more

dynamically stable than FGF2_51216586 and control. The

first 50 ns RMSD of all systems depicted constant

dynamics, followed by divergence. The AP15 control and

FGF2_51216586 afterward to around 150 ns demonstrated

continuous small structural variations. These variations

when dissected revealed regular conformational jumps by

the ligand at the FGF2 docked site to attain more stable

conformation, which can be witnessed in the last phase of

simulation. In the latter part of simulation, conformational

equilibrium can be seen for all systems. The maximum RMSD

touched by the control and FGF2_51216586 is around 3 Å.

The major RMSD jump for FGF2_51412372 noticed is 2 Å,

while that for FGF2_51217461 is 1.5 Å. The structural

deviations in the systems are due to loop dynamically

flexible regions, which upon ligand pressure, behave more

unstable. The RMSD plot of each system can be seen in

Figure 6A. The study by Mahfuz et al. also revealed very

stable dynamics of PubChem 137300327 with GFR2 in 100 ns

of simulation time. The RMSD of the complex touches the

maximum of 2 Å despite some random conformation

FIGURE 4
Classification of the best binding drug molecules to an FGF2 receptor based on the binding energy range in kcal/mol. The first three drug
molecules are placed in the first place as can be seen in the first bar.
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FIGURE 5
Binding pose of the best bindingmolecules (shown in gray sticks) to an FGF2 receptor (shown in 3D coloring where each specific color specifies
a particular secondary structure element). Binding interactions of the compounds with the FGF2 are also provided.
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variations between 20 and 60 ns (Mahfuz et al., 2022). Further

observation on the validation of the system stability was

gained through RMSD analysis to get an understanding

whether the FGF2 residues are stable or unstable in the

presence of compounds/control. A quite similar trend to

that of RMSD was found in this study (Figure 6B). The

maximum RMSF deviation for the systems was seen around

residues 30–40 and 120–130. The maximum RMSF value was

found for control and FGF2_51217461 that is 5 Å. Generally,

all the systems were discovered to have low a RMSF value for

most of the receptor residues. The hydrogen bonds involving

residues of the FGF2 RMSF value are as follows: Arg15

(average 1.44 Å), Asp23 (average 1.68 Å), Arg63 (average

1.02 Å), and Gln105 (average 1.82 Å). Next, RoG analysis

was performed to understand the compactness and the

relax nature of the FGF2 receptor during simulation time

(Figure 6C). A higher RoG reported a highly relaxed nature,

and thus, the detachment of ligand is easy. The control system

is the most unstable complex compared to other studied

systems with an average RoG value of 69.52 Å. The RoG of

PubChem 137300327 with GFR2 showed the same compact

structure, as reported in this study.

Furthermore, RDF analysis of the key interactions

between the compounds and FGF2 residues was performed

to determine how the key intermolecular interaction density

play a role in compound tight stability along the simulation

length. It can be seen that Arg15 and Asp23 provided

considerable contributions in holding the compounds at

the FGF2 docked site. The maximum RDF value noticed

for the Asinex 51216586–Arg15 interaction is at 1.8 Å with

an RDF value of 0.14. For Asinex 51217461–Arg15, the

maximum RDF value is noticed at 0.10 at a distance of

1.96 Å. Last, the maximum RDF observed for Asinex

51412372–Asp23 is 0.3 at a distance of 2 Å. The RDF plots

are given in Figure 7.

3.5 Intermolecular binding energies

The docking study results are often false positive, and

error chances are high. It is usually preferred that the docking

calculations must be revalidated by more sophisticated

methods such as MM-GBSA and MM-PBSA (Genheden

and Ryde, 2015). These methods are considered to be more

accurate than scoring functions and are modest in the use of

computational resources. They are a more preferred choice to

be carried out than the docking algorithms and, thus, are

applied in the current study to verify the binding affinity of the

shortlisted compounds for FGF2. The main difference

between MM-GBSA and MM-PBSA is the way ΔGPB/GB

term is estimated. In the former, this calculation is faster

FIGURE 6
Molecular dynamic simulation analysis of docked
FGF2 complexes. All the analyses are performed on alpha-carbon
atoms of the receptor molecule. The RMSD, RMSF, and RoG plots
for shortlisted best binding molecules and control are shown
in (A–C), respectively.

FIGURE 7
RDF plots for an important interaction between the
compounds and FGF2.

Frontiers in Chemistry frontiersin.org08

Siddique et al. 10.3389/fchem.2022.1071929

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1071929


and provides more approximation of the GB model, while in

the latter, this term calculation is time-consuming. By using

these methods, it was concluded that systems are energy-wise

very much stable. The control in each case was reported to

produce robust binding free energies. The net energy of

control was −86.72 kcal/mol in MM-GBSA and −85.06 kcal/

mol in MM-PBSA. For the control system, both van der Waals

and electrostatic energy terms dominated the overall system

energy and provided a favorable contribution in compounds

binding to FGF2. In MM-GBSA, the ranking of compound

systems in terms of energy stability was in the following order:

FGF2_51217461 (−66.42 kcal/mol) > FGF2_51412372

(−59.24 kcal/mol) > FGF2_51216586 (−42.74 kcal/mol). In

MM-PBSA, FGF2_51217461 achieved the most optimal

energy state with a net energy of −64.17 kcal/mol, followed

by FGF2_51412372 (−56.79 kcal/mol) and FGF2_51216586

(−42.28 kcal/mol). Similarly, like control, for compounds, the

van der Waals energy seems the most favorable in terms of

intermolecular binding, followed by electrostatic energy. The

polar energy in all systems provided unfavorable

contributions. Each energy term calculated for the systems

can be found in Table 1.

3.6 Entropy contribution

The entropy contribution to the net binding free energy of

the systems is given in Table 2. The values demonstrated the

presence of entropy energy in the systems due to the ligand

pressure, as noticed in the simulation plots (Genheden et al.,

2012). However, the entropy contribution is much less than the

net binding energy of the systems and, thus, points to a stable

docked nature of the complexes, hence the long-term inhibition

of FGF2. This analysis again demonstrated the stable nature of

complexes in the presence of compounds. All the simulation-

based analysis proved that docked compounds are energy-wise

very much stable with the receptor and enjoy the intermolecular

interactions.

3.7 WaterSwap binding energies

Although theMM-GBSA andMM-PBSA binding free energy

calculations are reliable in predicting the binding affinity of

compounds to FGF2, still they suffer from several limitations.

In particular, the role of water molecules connects the ligand with

FGF2 active site residues (Woods et al., 2014). The WaterSwap is

a more reliable method and actually swaps the ligand and the

surrounding water molecules. Three algorithms were employed

to revalidate the net binding free energy of the systems. Herein,

the control system was unveiled again to the most stable system

with net energies of −30.25 kcal/mol (Bennetts), −31.43 kcal/mol

(FEP), and −30.25 kcal/mol (TI). Among compound systems,

FGF2_51216586 was found to be the most favorable system with

a net energy of −27.85 kcal/mol, −27.66 kcal/mol,

TABLE 1 Binding interaction energies estimated by two methods (MM-GBSA and MM-PBSA). The score against each parameter is given in kcal/mol.

Compound ΔG
binding

ΔG electrostatic
interaction

ΔG binding van
der Waals
interaction

ΔG binding
gas phase

ΔG polar
solvation

ΔG non-polar
solvation

ΔG
solvation

MM-GBSA

FGF2_51412372
−59.24 −22.67 −42.01 −64.68 15.55 −10.11 5.44

FGF2_51217461
−66.42 −27.33 −48.60 −75.93 19.08 −9.57 9.51

FGF2_51216586
−42.74 −20.51 −25.77 −46.28 15.00 −11.46 3.54

Control −86.72 −35.21 −60.17 −95.38 23.49 −14.83 8.66

MM-PBSA

FGF2_51412372
−56.79 −22.67 −42.01 −64.68 19.00 −11.11 7.89

FGF2_51217461
−64.17 −27.33 −48.60 −75.93 18.33 −6.57 11.76

FGF2_51216586
−42.28 −20.51 −25.77 −46.28 16.67 −12.67 4

Control −85.06 −35.21 −60.17 −95.38 25.87 −15.55 10.32

TABLE 2 Entropy energy of the studied complexes.

System Net value

FGF2_51412372 15.32

FGF2_51217461 16.38

FGF2_51216586 18.25
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and −27.85 kcal/mol in Bennetts, FEP, and TI, respectively. All

the systems were seen to be well converged as the energy

difference among the algorithms is less than 1 kcal/mol

(Ahmad et al., 2019). The WaterSwap energies of the control

and compound systems are given in Figure 8.

3.8 Drug-likeness and ADMET property
analysis

Prediction of drug-like properties of the compounds and

pharmacokinetics holds significant importance in drug

development as they contribute majorly to reduce drug failure

during trial testing (Daina et al., 2017). The oral bioavailability

radar of the studied compounds is given in Figure 9. As the

compounds fulfill most of the radar parameters, they are likely to

be good drug molecules for additional structure optimization. As

can be seen in the figure, most of the parameters of the radar are

within the range of the compounds and are, thus, favorable

candidates from the drug-likeness point of view. This was also

demonstrated by Egan and Veber-like rules that indicated the

compounds fulfilled all the parameters to be considered drug-like

compounds and, hence, have higher chances to be successful in

the experimental studies.

FIGURE 8
WaterSwap-based absolute binding free energy value based on 1,000 iterations. The values are given in kcal/mol.

FIGURE 9
Oral bioavailability radar for the compounds. Here, lipo, insolu, insatu, and flex demonstrate compounds’ lipophilicity, insolubility, insaturation,
and flexibility, respectively.
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The compounds have a lower topological polar surface

area (TPSA). For example, FGF2_51412372, FGF2_51217461,

and FGF2_51216586 TPSA values are 109.00 Å2, 123.86 Å2,

and 87.33 Å2, respectively. These values demonstrated the

good ability of the compounds to cross the cell membrane and

reached the target site, thus increasing the compound

bioavailability for rapid therapeutic action (Veber et al.,

2002). Similarly, the compounds are moderately water

soluble, making them good candidates for oral formulation

(Alex, 2003). The compounds have high gastrointestinal

absorption and do not cross the blood–brain barrier (BBB).

From a drug-likeness point of view, the compounds are

considered drug-like by Veber and Egan’s drug rules

(Veber et al., 2002; Ahmad et al., 2018). The compounds

have a good synthetic accessibility score, which means that

they can be easily synthesized in a laboratory to be used in

in vitro and in vivo experiments. Additionally, the compounds

are predicted to show no toxicity and can be cleared easily

from the body. The different drug-likeness and

pharmacokinetic properties of the compounds are tabulated

in Table 3.

Conclusion

Glioblastoma is a severe type of brain and spinal cord

cancer and has a higher mortality rate. The therapeutic

options are limited as it shows resistance to the treatment;

hence, the exploration of novel therapeutic avenues is

urgently needed. Considering the major role of FGF2 in

glioblastoma occurrence and development, the protein

may serve as an excellent druggable target against

glioblastoma, and drug designing against this target may

stop glioblastoma. The outcomes of the study are three

compounds, namely, Asinex 51412372, Asinex 51217461,

and Asinex 51216586, against FGF2. The compounds form

short-distance interactions with Arg15, Asp23, Arg63, and

Gln105 of FGF2. The FGF2 is dynamically stable in the

presence of compounds and showed favorable net binding

energies with FGF2. The compounds also have favorable

pharmacokinetic properties and are non-toxic.

Considering the good potency of the compounds against

FGF2, further experimental investigation is important to be

conducted.

TABLE 3 ADMET analysis of selected compounds.

Property Compound

FGF2_51412372 FGF2_51217461 FGF2_51216586

Formula C38H44N4O5 C30H42N4O5S2 C34H41N3O4S

Molecular weight 636.78 g/mol 602.81 g/mol 587.77 g/mol

Num. H-bond acceptors 6 8 6

Num. H-bond donors 3 1 1

TPSA 109.00 Å2 123.86 Å2 87.33 Å2

Consensus log Po/w 3.98 3.18 4.73

Water solubility Moderately soluble Moderately soluble Moderately soluble

GI absorption High High High

BBB permeant No No Yes

Lipinski rule No Yes Yes

Veber rule Yes Yes Yes

Egan rule Yes Yes Yes

Bioavailability score 0.55 0.55 0.55

PAINS 0 alert 0 alert 0 alert

Synthetic accessibility 6.32 4.73 5.69

Hepatotoxicity No No No

Skin sensitization No No No

AMES toxicity No No No

Carcino mouse No No No

Total clearance 0.670 log ml/min/kg 0.71 log ml/min/kg 0.511 log ml/min/kg

Renal OCT2 substrate No No No
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