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Dynamic fluorophore 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine

(DPAC) affords a new platform to produce diverse emission outputs. In this

paper, a novel DPAC-containing crown ether macrocycle D-6 is synthesized

and characterized. Host-guest interactions of D-6 with different ammonium

guests produced a variety of fluorescence with hypsochromic shifts up to

130 nm, which are found to be affected by choice of solvent or guest and host/

guest stoichiometry. Formation of supramolecular complexes were confirmed

by UV-vis titration, 1H NMR and HRMS spectroscopy.
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Introduction

Supramolecular chemistry (Lehn, 2005; Stoddart, 2012; Yan et al., 2012; Yeung and

Yam, 2015; Kolesnichenko and Anslyn, 2017; Liu et al., 2017; Zhou et al., 2017; Gu et al.,

2018; Jana et al., 2018; Xia et al., 2020; Gu and Lehn, 2021; Shen et al., 2021; Zhang et al.,

2021; Zhang et al., 2022a; Zhang et al., 2022b; Huang et al., 2022) is undergoing

tremendous speed of development, being important tools to modulate optical

properties of chemical systems. Multicolor emission has been extensively investigated

over the past decade due to its considerable application prospects in displays (Nie et al.,

2022; Zou et al., 2022), illumination (Lee et al., 2016; Zhang et al., 2019a; Gong et al.,

2019), molecular/ion recognition (Wang et al., 2012; Li et al., 2017; Li et al., 2018a; Zhang

et al., 2019b; Chen et al., 2019; Sun et al., 2020), and biosensing (Zhou et al., 2019; Dong

et al., 2020; Yan et al., 2021; Du and Wei, 2022). Doping (Nie et al., 2022) or hybridizing

(Cui et al., 2017) of different fluorophores are effective methods to generate multicolor

emission, these systems usually requires more than a single excitation wavelength or

stimulation methods to achieve multicolor emissions. However, many chemical systems

exhibiting multicolor emission have been constructed in the presence of only one

chromophore by the modulation of host-guest interaction (Zhang et al., 2016; Li
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et al., 2018a; Wang et al., 2020a; Wang et al., 2020b; Sun et al.,

2020; Wu et al., 2020; Zhang et al., 2022c; Yu et al., 2022), pH (Li

et al., 2018b; Bai et al., 2019; Radunz et al., 2019; Liu et al., 2021),

hydrogen bonding (Wu et al., 2019; Tao et al., 2020), metal

coordination (Lee et al., 2017), and other methods (Feng et al.,

2015; Huang et al., 2015; Shi et al., 2018; Wang et al., 2019; Naren

et al., 2020; Guo et al., 2021; Wang et al., 2022a; Wang et al.,

2022b; Qiu et al., 2022; Zong et al., 2022). Although progresses

have been made in the study of single-chromophore multicolor

emission, it is still of great value to develop new and controllable

multicolor emission systems for a wider range of application

scenarios.

N,N′—diphenyl—dihydrodibenzo [a,c] phenazines (DPAC)

possesses unique photophysical properties including the double

fluorescence emission, large stokes shift and remarkable

responsiveness to various environmental stimuli (Zhang et al.,

2015; Zhang et al., 2020). In solution, the unique saddle-shaped

structures of DPAC units undergo dynamic light-induced

planarization processes upon photoexcitation and emit

orange-red fluorescence. When such vibrational motions of

the molecules are restricted, e.g., in the solid state, only the

intrinsic blue fluorescence could be detected. The described

vibration-induced emission (VIE) behavior of the DPAC

chromophore has provided a new platform for chemists

to build multicolor emission systems by meticulous control of

its molecular geometry (Huang et al., 2015; Shi et al., 2018; Zhang

et al., 2018). For example, in an inspiring work of Tian and Chou

(Chen et al., 2017), a number of DPAC-based macrocycles with

various sizes were systematically investigated. The different

degrees of constraint of the DPAC units resulted in various

emissions from 490 nm to 625 nm, showing the great potential of

these chemically locked DPAC containing macrocycles in both

fundamental studies and optical applications.

Herein, we designed and synthesized a large-size DPAC-

based crown ether macrocycle D-6 whose dynamic DPAC

chromophore was covalently locked by a conformational

flexible hexaethylene glycol chain (see Scheme 1 for the

structure of D-6). The electron-rich cavity of this crown ether

was able to supramolecularly combine electron-deficient

molecules/ions through host-guest interactions and

subsequently increase the constrain of the DPAC wings.

Relying on this understanding, we managed to produce

multicolor fluorescent signals from orange to blue by: 1)

respectively mixing the macrocycle with different ammonium

guests G1-G5 (Scheme 1); 2) titration of an ammonium guest

G5 to the emissive macrocycle D-6.White light emission was also

obtained in this work in a specific stoichiometry of D-6 and G5.

Experiment section

Synthesis of DPAC-crown ether ring (D-6)
and guests

The macrocycle D-6 was synthesized in three steps from N,

N′- diphenyl dihydrodibenzo [a, c] phenazine (the synthetic

route is shown in Supplementary Scheme S1). Compound 3 were

prepared referring to the method described in the literature

SCHEME 1
Chemical structures of conformation-adaptive macrocycle host D-6 and ammonium guests G1-G5, and schematic representations of their
combinations exhibiting diverse emission from orange to blue when equimolar D-6 and different guests were mixed, respectively.
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(Zhang et al., 2015). In the final step, compound D-6 was

produced with a 40% yield by the Williamson etherification

reaction of compound 3 and hexaethylene glycol di

(p-toluenesulfonate) under the templation of sodium hydride.
1H NMR, 13C NMR, and high-resolution mass spectrometry

(HRMS) were used to confirm the chemical structure of D-6

(Supplementary Figures S13–S15). The five ammonium

hexafluorophosphates G1-G5 involved in this paper were

obtained by protonation and ion exchange of commercially

available amines, or direct ion exchange of commercially

available ammonium hydrochloride salts, respectively (see

Supplementary Material for experimental details).

Materials and methods

The 1H NMR and 13C NMR data were measured by AV-400

NMR spectrometer made by Brucker Company, in which the

internal standard reference was tetramethylsilane (TMS), and the

detection temperature was room temperature (25°C, 298 K)

unless otherwise specified. High resolution mass spectrometry

(HRMS) was performed by Waters LCT Premier XE mass

spectrometer, in which electrospray ionization (ESI) was used

for ionization. The UV/Vis absorption spectra data were

documented by a Shimadzu UV-2600 UV-Vis

spectrophotometer and the fluorescent spectra were acquired

by a Shimadzu RF6000 spectro fluorophotometer.

Results and discussion

It should be noted that D-6 is not the first DPAC-

involving crown ether we investigate. In a previous work

of Qu group (Yang et al., 2021), a smaller sized DPAC-ring

with pentaethylene glycol backbone was inserted a

dibenzylammonium guest to show the adaptive emission of

the DPAC-ring (in contrast, the effect of dibenzylammonium

salt on D-6 is detailed in Supplementary Figure S12). There,

the host-guest interaction only caused a small spectral shift of

13 nm (from 490 nm to 477 nm) in acetonitrile with a small

visual variation from light blue to blue. In comparison, the

emission of the present macrocycle D-6 in acetonitrile

reaches 584 nm (Figure 1A), 94 nm longer than the

previously reported macrocycle, indicating a smaller

constraint of D-6 in the guest-free state. Different solvents

including toluene, dichloromethane, tetrahydrofuran, and

acetonitrile were tested here and no significant disparity

was generated (Figure 1A). Surprisingly, when D-6 in

these solvents were respectively added G5, a drastic blue

shift of 130 nm was detected only when dichloromethane

was utilized as the solvent (Figure 1B), achieving a 10-fold

dynamic variation in emission wavelength comparing to the

previous work. Due to this huge variation which is beneficial

to generate multicolor emissions, dichloromethane was

chosen as the main solvent in the present work. And in

every case, a volume fraction of 5% methanol was added to

the solutions of ammonium guests in order to better dissolve

the guests.

UV-vis spectroscopy and fluorescence spectroscopy were

utilized to study the photophysical properties of D-6. All the

spectra were recorded at room temperature. The maximum

UV absorbance of D-6 is approximately 352 nm which is

attributed to the DPAC chromophore rather than the

crown ether moiety (Supplementary Figure S1A), in line

with the earlier studies on DPAC systems showing no

apparent absorption data above 400 nm. Upon excitation of

FIGURE 1
(A) Emission spectra of D-6 in different solvents. (B) Emission spectra of the mixtures of 1 eq. D-6 and 1 eq. G5 in different solvents.
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360 nm UV light, the solution of D-6 emitted orange

fluorescence at 584 nm as shown in Figure 1A, suggesting a

weak constraint of DPAC wings.

The responsiveness of D-6 to the supramolecular guests

G1-G5 were then studied. First, UV-vis titrations were

carried out to investigate the supramolecular complexations

and to determine the binding ratios of the host macrocycle

and the guests (Supplementary Figures S2–S6). All the

absorbances underwent gradual decreases when the guests

were added to the solutions ofD-6. Meanwhile, hypsochromic

shifts of ~5 nm could be observed in the cases of G3-G5,

indicating stronger combinations of D-6 with them. In all

cases, when the molar ratios of guest cations and the host were

1:1, the Job’s Plot curves reached the maximum values,

revealing that all the guests were hosted by D-6 macrocycle

in the ratio of 1:1. Meanwhile, the quantum yields and

fluorescence lifetimes of D-6 and the host-guest complexes

of different guests were also measured as detailed in

Supplementary Table S1.

Fluorescence spectra of the host-guest mixtures were then

recorded at room temperature to examine the impact of

supramolecular complexation on the fluorescence

characteristics of D-6 macrocycle. Different degrees of

variations, both visually and spectrally, were observed when

the solutions of D-6 in dichloromethane were added

equimolar ammonium salts respectively. The emission spectra

FIGURE 2
(A) Normalized fluorescence emission spectra of D-6 alone (black) and in the presence of various guests [in dichloromethane; (D-6) = 10 μM;
λex = 360 nm]. (B) Chromaticity coordinates (CIE) of D-6 and the host-guest complexes in dichloromethane. Inset: images of D-6 and D-6⊃Guests
upon irradiation with 360 nmUV light. (C) Fluorescence curves upon titration of 0.1 eq.G5 to the solution ofD-6 [in dichloromethane; λex = 360 nm;
(D-6) = 10 μM]. (D) CIE diagram ofD-6 solutions containing various quantities ofG5 (every 0.1 eq.). Inset: images of solutions ofD-6 containing
0, 0.4, and 1.0 eq. G5 under irradiation with 360 nm UV light.
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of D-6 before and after the addition of guests were transformed

into CIE coordinates: D-6 (0.45, 0.45), G1 (0.34, 0.40), G2 (0.22,

0.33), G3 (0.20, 0.30), G4 (0.20, 0.27), and G5 (0.17, 0.19)

(Figure 2B and Supplementary Figure S12). The emission of

D-6 and G1 was pale yellow with two peaks at 490 nm and

571 nm (red curve in Figure 2A), probably due to their

insufficient host-guest complexation. In comparison, addition

of all the other four guests G2-G5 brought huge hypsochromic

shifts in emission wavelength (100, 101, 106, and 130 nm for G2,

G3, G4, and G5, respectively), demonstrating the large impact of

host-guest interactions. In particular, the addition of G5 to D-6

produced the largest shift of 130 nm from 584 nm (orange) to

454 nm (dark blue). The large variations of emission color in

response to different guests were most likely caused by the

conformational adaptation of D-6. The originally relaxed

ethylene glycol backbone underwent a stronger resistance in

tension after the insertion of the guests. Simultaneously, the

wings of the DPAC unit were constrained to perform light-

induced structural planarization, resulting in the changes of

fluorescence. Potentially, the D-6 macrocycle could be used as

a supramolecular fluorescent probe to distinguish different

ammonium salts.

Fluorometric titration of G5 to D-6 was then carried out.

As is clearly shown in Figure 2C, upon gradient addition of

0.1 eq. G5, the main emission peak ofD-6 at 584 nm gradually

decreased while a peak around 470 nm arose and increased

simultaneously. Eventually, the new peak stopped to increase

when 1 eq. guest was added. Additionally, noticeable visual

changes could be observed after each 0.1 equivalent G5 was

added. The fluorescence spectra discussed above were also

translated to CIE coordinates as following: 0 eq. (0.44, 0.44),

0.1 eq. (0.40, 0.41), 0.2 eq. (0.38, 0.38), 0.3 eq. (0.35, 0.36),

0.4 eq. (0.32, 0.33), 0.5 eq. (0.29, 0.3), 0.6 eq. (0.25, 0.26),

0.7 eq. (0.21, 0.23), 0.8 eq. (0.17, 0.19), 0.9 eq. (0.17, 0.19),

1.0 eq. (0.17, 0.19). From the CIE chromaticity diagram

(Figure 2D), a linear variation in color was accomplished,

including the white light intermediate spot at (0.32, 0.33).

Thus, multicolor emissions are efficiently obtained in this

system by simple addition of the supramolecular guest to

the host.

FIGURE 3
The 400 MHz 1H NMR of D-6 (blue), G5 (red) and their equimolar mixture D-6 + G5 (green) in dichloromethane-d2/methanol-d4 (v/v = 95:5).
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The formation of the host-guest complexes was further

confirmed by 400 MHz 1H NMR (see Supplementary Figures

S16–S22 for the NMR spectra of the mixtures ofD-6 and G1-G4,

respectively). The spectra of D-6 (blue), G5 (red), and their

equimolar mixture (green) were shown in Figure 3. After the

mixing ofG5 andD-6, the methylene proton Hf ofG5 is observed

to significantly upshifted by 0.48 ppm. Similarly, all the phenyl

protons of G5 shifted to the higher field (0.37 ppm for Ha,e,

0.24 ppm for Hb,d, and 0.13 ppm for Hc). Meanwhile, all of the

protons ofD-6 underwent displacements, especially H5,6, H9, and

H14,15 (−0.11 ppm for H5,6, −0.12 ppm for H9, and ~−0.09 ppm

for H14,15). All the changes could be explained by the insertion of

G5 into the cavity of D-6 and the consequent formation of the

host-guest structure. Similar spectral variations were also found

in the other four cases. In addition, the molecular ion peaks

found for D-6 and its visitors in the HRMS data also support the

complexation of them (Supplementary Figures S17–S25).

By processing the spectra of UV-vis titrations (respective

addition of G1-G5 into the solutions of D-6) using nonlinear

regression methods (Thordarson, 2011), a number of

corresponding binding constants were obtained (Table 1). The

large magnitudes of binding constants further clarify the

formation of supramolecular complexes. It is already known

from the fluorescence spectra of D-6 along and with the five

guests that the degrees of hypsochromic shifts increase in the

order ofG1-G5. Interestingly, the binding constants are perfectly

in line with this sequence, showing the binding constant

dependance of color change. The differences of binding

constants were considered to be partially due to the different

electron deficiency of the ammoniums. Comparing toG1-G3, the

carbonyl groups of G4 and G5 increase the electron deficiency of

their ammonium sites and consequently bring higher affinity in

the complexation with the electron rich crown ether cavity.

However, the relationship of the chemical inputs and the

emission colors in the present work can hardly be contributed

to only this reason. The long hexaethylene glycol backbone gives

access to the guests with different sizes while the strong

topological flexibility of the backbone gives possibility to the

conformational adaptation of the DPAC unit and the whole

macrocycle. Relationally, the different rigidities of the guests

could also affect the binding geometry and the binding constants.

Conclusion

In conclusion, relying on the light induced structural

planarization of DPAC derivatives, we synthesized a new

emissive macrocycle D-6 as a conformation-adaptive

supramolecular host. By the respective incorporation of

various ammonium guests, multicolor emission from

orange to white to deep blue was accomplished. Solvent

and host/guest stoichiometry were found to be effectors

that influence the optical outputs. The supramolecular

host-guest complexation was confirmed by UV-vis titration,
1H NMR, and HRMS data. The guest-dependent emission of

D-6 shown in this work is potential to distinguish different

ammoniums, which would be continuously studied by our

group in future. The use of supramolecular chemistry to

modulate emission wavelengths over a broad range afford

an effective way to obtain multicolor emission within a less

complicated system.
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