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Aryl acrylonitriles are an important subclass of acrylonitriles in the medicinal

chemistry and pharmaceutical industry. Herein, an efficient synthesis of aryl

acrylonitrile derivatives using a Palladium/NIXANTPHOS-based catalyst system

was developed. This approach furnishes a variety of substituted and

functionalized aryl acrylonitriles (up to 95% yield). The scalability of the

transformation and the synthetic versatility of aryl acrylonitrile were

demonstrated.
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Introduction

Acrylonitriles, especially substituted acrylonitriles, are versatile building blocks widely

occurring in the pharmaceutical industry, natural products and synthetic organic

chemistry (Fringuelli et al., 1994; Fleming, 1999; Fleming et al., 2010; Carta et al.,

2011; Shen et al., 2015; Baker et al., 2020; Sirim et al., 2020; Solangi et al., 2020; Baker et al.,

2021). Among acrylonitrile-containing molecules, aryl acrylonitriles are an important

subclass in the medicinal chemistry and pharmaceutical industry (ANI-7 (Tarleton et al.,

2011), CDCPA (Baker et al., 2018), TPAT-AN-XF (Niu et al., 2019), CC-5079 (Zhang

et al., 2006), Entacapone (Seeberger and Hauser, 2009), and Rilpivirine (Clercq, 2005)

Figure 1). Therefore, the development of efficient and practical approaches for the

synthesis of aryl acrylonitriles remains in demand.

Classical synthetic routes to acrylonitrile derivatives include the Wittig/

Horner−Wadsworth−Emmons reaction (Zhang et al., 1998; Kojima et al., 2002;

Fang et al., 2011; Ando et al., 2013) and Peterson type reactions (Kojima et al.,

2004; Pabmo’ et al., 1990; Palomo et al., 1990). However, these procedures suffer from

limitations such as a poor substrate scope, low efficiency for the synthesis of

polysubstituted acrylonitriles. During the past decade, organic chemists keep
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searching new and efficient reactions, including oxidative

Heck-type reactions (Zou et al., 2003; Zhang and

Liebeskind, 2006), cyanation of alkenyl halides (Stuhl, 1985;

Alterman and Hallberg, 2000; Pradal and Evano, 2014; Ahuja

and Sudalai, 2015; Chaitanya and Anbarasan, 2015; Yang

et al., 2018), alcohols (Oishi et al., 2009; Rokade et al.,

2012; Thiyagarajan and Gunanathan, 2018; Yadav et al.,

2020), aldehydes (Tomioka et al., 2011; Laulhe et al., 2012;

Del Fiandra et al., 2016; Wu et al., 2016), acrylamide/oxime

dehydration (Yamaguchi et al., 2007; Zhou et al., 2009),

carbocyanation of alkynes (Nakao et al., 2007; Cheng et al.,

2008; Minami et al., 2013; Yang et al., 2013; He et al., 2016; Qi

et al., 2017), cross-metathesis (Crowe and Goldberg, 1995;

Randl et al., 2001; Mu et al., 2019), and direct conversion of

allylic carbon to nitrile (Qin and Jiao, 2010; Zhou et al., 2010)

have been developed and could be applied for the synthesis of

acrylonitriles. For example, Jiao developed a series of powerful

synthesis of substituted acrylonitriles, which used allyl esters

or halides and NaN3 or TMSN3 by a tandem Pd-catalyzed

azidation and the subsequent oxidative rearrangement process

(Scheme 1A) (Qin and Jiao, 2010; Zhou et al., 2010; Jiao et al.,

2011; Wang and Jiao, 2014). Engle reported a direct oxidative

cyanation of terminal and internal alkenes to prepare

substituted acrylonitriles using a homogeneous copper

catalyst and a bystanding N–F oxidant (Scheme 1B) (Gao

et al., 2018). Recently, Liu reported an elegant synthesis of aryl

substituted terminal acrylonitriles through Ni/Mn-catalyzed

hydrocyanation of terminal alkynes with Zn(CN)2 (Scheme

1C) (Zhang et al., 2018). Milstein reported an effective

synthesis of aryl acrylonitriles through dehydrogenative

coupling of alcohols with nitriles catalyzed by a pincer

complex of manganese at 135°C for 43–60 h (Scheme 1D)

(Chakraborty et al., 2017).

Despite these advances, these motheds are generally

restricted by the addition of dangerous reagents (cyanide

reagents, azide reagents) and stoichiometric amount of

FIGURE 1
Representative examples of bioactive compounds with an aryl acrylonitrile.

SCHEME 1
General strategies of aryl acrylonitriles.
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oxidants (DDQ, Selectfluor), high catalyst loading, tedious

synthetic procedures, low yielding and high reaction

temperatures. Therefore, an optional method for the efficient

synthesis of aryl acrylonitrile derivatives under mild reaction

conditions using simple, easily available substrates are very

necessary. Herein, we report an efficient synthesis of aryl

acrylonitrile derivatives using a Palladium/NIXANTPHOS-

based catalyst system. This approach furnishes efficient access

to a variety of substituted and functionalized aryl acrylonitriles

(21 examples, up to 95%). The scalability of the transformation

was demonstrated and the derivatizations of the aryl acrylonitrile

were conducted.

Results and discussion

We initiated our reaction optimization by using

phenylacetonitrile 1a and 2-bromoprop-1-ene 2a as the

model substrates. At the outset, based on our experience

with deprotonative cross-coupling processes of weakly acidic

substrates (Yang et al., 2016; Duan et al., 2018; Liu et al., 2018),

we have found that NIXANTPHOS can effectively implement

these conversions. The high reactivity of the Pd/

NIXANTPHOS-based system may be due to the presence of

the main group metal and the deprotonation of the ligand N−H

moiety under basic reaction conditions (Zhang et al., 2014). A

TABLE 1 Optimization of the reaction conditionsa.

Entry Pd source L Base Solvent T (oC) 2a (equiv) Pd/L (mol%) AY (%)b

1 Pd(OAc)2 L1 B1 DME 65 1.5 10/20 10

2 PdCl2(cod) L1 B1 DME 65 1.5 10/20 9

3 [PdCl(allyl)]2 L1 B1 DME 65 1.5 10/20 10

4 Pd(NCPh)2Cl2 L1 B1 DME 65 1.5 10/20 9

5 Pd (dba)2 L1 B1 DME 65 1.5 10/20 4

6 Pd2 (dba)3 L1 B1 DME 65 1.5 10/20 7

7 Pd(PPh3)4 L1 B1 DME 65 1.5 10/20 3

8 Pd(Cy3)2 L1 B1 DME 65 1.5 10/20 8

9 Pd(OAc)2 L2-L8 B1 DME 65 1.5 10/20 0–4

10 Pd(OAc)2 L1 B2-B6 DME 65 1.5 10/20 0–20

11 Pd(OAc)2 L1 B5 Dioxane 65 1.5 10/20 0

12 Pd(OAc)2 L1 B5 CPME 65 1.5 10/20 7

13 Pd(OAc)2 L1 B5 THF 65 1.5 10/20 3

14 Pd(OAc)2 L1 B5 Toluene 65 1.5 10/20 13

15 Pd(OAc)2 L1 B5 DME 80 1.5 10/20 57

16 Pd(OAc)2 L1 B5 DME 100 1.5 10/20 28

17 Pd(OAc)2 L1 B5 DME 80 2.0 10/20 73

18 Pd(OAc)2 L1 B5 DME 80 3.0 10/20 77 (75)c

19 Pd(OAc)2 L1 B5 DME 80 4.0 10/20 68

20 Pd(OAc)2 L1 B5 DME 80 3.0 5/10 57

aReactions conducted on a 0.1 mmol scale using 1a and 2a.
bAssay yield determined by 1H NMR spectroscopy of the crude reaction mixture.
cIsolated yield after chromatographic purification.
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TABLE 2 Scope of vinyl halides/triflatesa.

aReactions conducted on 0.3 mmol scale using 1.0 equiv of 1a and 3.0 equiv of 2a-2k. Isolated yield after chromatographic purification.
b7 h reaction time.
c100°C reaction temperature, 7 h reaction time.
d5 mol% Pd(OAc)2 and 10 mol% NIXANTPHOS, for the reaction.
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variety of palladium source including different Pd0 and PdII

precursors, phosphine ligands and six bases (LiN(SiMe3)2,

NaN(SiMe3)2, KN(SiMe3)2, LiOtBu, NaOtBu and KOtBu)

were examined the coupling of phenylacetonitrile 1a and 2-

bromoprop-1-ene 2a in DME at 65°C for 1 h (Table 1, entries

1–10) (see the optimization of reaction conditions on page S2 in

Supplementary Material). The top Pd/L/base combination from

this screen was Pd(OAc)2/NIXANTPHOS/NaOtBu resulted in

20% assay yield (AY, determined by 1H NMR analysis). Other

four solvents (dioxane, CPME, THF and Toluene) were tested,

which only afforded trace amount of product (0%–13%)

(entries 11–14). Raising the reaction temperature to 80 and

100°C led to increases to 57 and 28% AY, respectively (entries

15 and 16). Changing the equivalent of 2a from 2 to 4 led to

TABLE 3 Scope of arylacetonitrilesa.

aReactions conducted on 0.3 mmol scale using 1.0 equiv of 1b-1j and 3.0 equiv of 2d. Isolated yield after chromatographic purification.
b7 h reaction time.
c5 mol% Pd(OAc)2 and 10 mol% NIXANTPHOS, for the reaction.
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increases of AY (entries 17–19). When a 3 equivalent was

employed, the AY increased to 77% (75% isolated yield,

entry 18). Reducing the Pd/ligand ratio to 5:10, AY dropped

to 57% (entry 20).

L1: NIXANTPHOS, L2: XANTPHOS, L3: PPh3, L4: P

(o-TOL)3, L5: P (1-NAP)3, L6: rac-BINAP, L7: JOHNPHOS,

L8: PCy3
B1: LiN(SiMe3)2, B2: NaN(SiMe3)2, B3: KN(SiMe3)2, B4:

LiOtBu, B5: NaOtBu, B6: KOtBu

With the optimized reaction conditions (Table 1, entry 18),

we explored the structural diversity of vinyl halides/triflates using

phenylacetonitrile 1a as the model substrate. As shown in

Table 2, 2-bromo-1-ene 2a delivered aryl acrylonitrile 3aa in

75% yield, while 2-chloro-1-ene 2a’ gave 55% yield. Vinyl

chloride 1-chloro-2-methylprop-1-ene 2b led to product 3ab

in 54% yield. (E)-(1-bromoprop-1-en-2-yl)benzene 2c provided

product 3ac in 81% yield (67% yield for 5% Pd/10% L). Sterically

hindered bromomethylenecyclohexane 2d rendered product 3ad

with excellent yield of 84% yield (70% yield for 5% Pd/10% L).

Trans- and cis-2-bromobut-2-ene (2e and 2f) furnished products

3ae and 3af in overall 57% and 51% yields. 2-Bromo-3-

methylbut-2-ene 2g afforded product 3ag in overall 65% yield.

Cycloolefin halides/triflates were all suitable reaction partners in

this transformation and provided a series of cycloalkane-

functionalized aryl acrylonitriles in moderate yields. 1-

Chlorocyclopent-1-ene 2h led to product 3ah in 50% yield.

Six/seven/eight-membered cycloolefin triflates proceeded the

corresponding products 3ai, 3aj, and 3ak in 65%, 61% and

55% yields, respectively.

We next explored the scope of arylacetonitriles using

sterically hindered bromomethylenecyclohexane 2d as the

model substrate. As shown in Table 3, in general,

arylacetonitriles bearing electron-donating and electron-

withdrawing Ar groups or heterocyclic rendered good to

excellent yields under the standard conditions (Table 3).

Arylacetonitriles possessing alkyl 4-Me (1b) and 2-Me (1c)

reacted with bromomethylenecyclohexane 2d to give aryl

acrylonitriles 3bd and 3cd in 84% and 81% yields (69% and

63% yields for 5% Pd). Arylacetonitrile with electro-donating (4-

OMe, 1d) substituents provided product 3dd in 67% yield.

Arylacetonitriles bearing electron-withdrawing 4-F (1e), 4-Cl

(1f) and 4-Br (1g) generated the products 3ed, 3fd and 3gd

in 83% (78% yield for 5% Pd), 95% (79% yield for 5% Pd) and

50% yields, respectively. The sterically demanding 2-naphthyl

acetonitrile (1h) was well tolerated, led to product 3hd in 67%

yield. Interesting, medicinally important heterocyclic-containing

acetonitriles were suitable reaction partners. 2-(1-Methyl-

1H-indol-3-yl)acetonitrile (1i) reacted with 2d to generate the

aryl acrylonitrile 3id with excellent yield of 93% (79% yield for

5% Pd). 2-(Thiophen-2-yl)acetonitrile (1j) provided product 3jd

in 47% yield.

To evaluate the scalability of our transformation, we next

carried out the reaction of phenylacetonitrile 1a and 2-bromo-1-

ene 2a on a gram-scale under the optimal conditions (Scheme 2).

The desired aryl acrylonitrile 3aa was isolated in 1.03 g (70%

yield), demonstrating the scalability of our method.

Finally, to illustrate further the synthetic versatility of the

resulting aryl acrylonitrile, a series of derivatizations were

performed on 3aa (Scheme 3). Thus, the selective reduction

of the carbon-carbon double bond of aryl acrylonitrile 3aa

using Pd/C and hydrogen led to the substituted saturated

phenylacetonitrile 4aa in 95% yield. Then, the selective

reduction of the nitrile group of 3aa employing DIBAL-H

in toluene at 0°C generated the corresponding α,β-
unsaturated aldehyde 4ab in 39% yield (Chen et al., 2019).

Meanwhile, the hydrolysis of the nitrile group of 3aa using

30% H2O2 and NaOH in MeOH rendered the corresponding

α,β-unsaturated amide 4ac in 78% yield. Furthermore, the

epoxidation of the carbon-carbon double bond and

hydrolysis of the nitrile group of 3aa using 30% H2O2 and

K2CO3 in DMSO afforded the corresponding α,β-epoxy
amide 4ad in 57% yield.

A possible catalytic cycle is shown in Scheme 4 based on

Walsh’s work on the palladium-catalyzed deprotonative cross-

coupling processes (Hussain et al., 2014; Jia et al., 2014; Mao

et al., 2014; Jia et al., 2015). The deprotonation of aryl acetonitrile

by NaOtBu gives benzyl anions. After oxidative addition of the

vinyl bromide to Pd (0), the vinyl palladium intermediate is

proposed to bind the benzyl anions to form the palladium

complex. Then, reductive elimination occurs to afford the

SCHEME 2
Synthesis of aryl acrylonitrile 3aa in gram scale.
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enenitrile and regenerates Pd (0). Finally, enenitrile isomerizes to

obtain aryl acrylonitrile.

Conclusion

In conclusion, we have successfully synthesized a series of aryl

acrylonitrile derivatives employing a Pd/NIXANTPHOS-based

catalyst system for the first time. In this protocol, commercially

available arylacetonitriles and vinyl bromides/chlorides/triflates

underwent palladium-catalyzed α-alkenylation to furnish

efficient access to a variety of substituted and functionalized

aryl acrylonitriles. The scalability of the mothed was

demonstrated by the gram-scale reaction. A series of

derivatization of aryl acrylonitrile were performed, including the

selective reduction of the double bond or nitrile group, the

hydrolysis of the nitrile group, and the epoxidation of the

double bond, which demonstrated the synthetic versatility of

SCHEME 3
Derivatizations of aryl acrylonitrile 3aa.

SCHEME 4
Plausible reaction mechanism.
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aryl acrylonitrile. It is noteworthy that this approach does not

require dangerous reagents and stoichiometric amount of

oxidants, which enables the synthesis of a range of aryl

acrylonitriles in an effective and straightforward means.
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