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Two-dimensional antiferromagnetic semiconductors have triggered significant

attention due to their unique physical properties and broad application. Based

on first-principles calculations, a novel two-dimensional (2D) antiferromagnetic

material MnSi2N4 monolayer is predicted. The calculation results show that the

two-dimensional MnSi2N4 prefers an antiferromagnetic state with a small band

gap of 0.26 eV. MnSi2N4 has strong antiferromagnetic coupling which can be

effectively tuned under strain. Interestingly, the MnSi2N4 monolayer exhibits a

half-metallic ferromagnetic properties under an external magnetic field, in

which the spin-up electronic state displays a metallic property, while the

spin-down electronic state exhibits a semiconducting characteristic.

Therefore, 100% spin polarization can be achieved. Two-dimensional

MnSi2N4 monolayer has potential application in the field of high-density

information storage and spintronic devices.
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Introduction

In 2004, the successfully prepared graphene opened a new era of two-dimensional

materials (Novoselov et al., 2004). Subsequently, numerous new systems have already

been discovered, greatly promoting the development of the two-dimensional material

family. Two-dimensional materials have a wide variety of electronic properties, including

metallic, semi-metallic, semiconducting and insulating properties. For example, 1H-MoS2
is a semiconductor with a direct band gap, 1T phaseMoS2 is a metal, while 1T’ phaseMoS2
is semimetal (Hung et al., 2018). In addition, hexagonal boron nitride (h-BN) shows

insulating properties (Liu et al., 2003), and graphene is semimetal (Sheng et al., 2019).

However, many 2D materials lack intrinsic magnetism, such as graphene and MoS2,

which motivates researchers to induce magnetism through defect engineering, adsorption

or insertion of magnetic atoms. However, these schemes are difficult to construct stable
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long-range magnetic order. Therefore, two-dimensional intrinsic

ferromagnetic materials have aroused tremendous attention.

According to Mermin-Wagner theory, the long-range

magnetic order is predicted to be unstable in 2D material

and can be easily destroyed by thermal fluctuations (Mermin

and Wagner, 1966). Until 2017, the magnetism in the two-

dimensional material CrI3 at the monolayer limit was

observed experimentally (Gong et al., 2017; Huang et al.,

2017). Hereafter, more 2D magnetic materials have been

found, such as Fe3GeTe2 (Xian et al., 2022), FePS3 (Lee et al.,

2016) and VSe2 (Bonilla et al., 2018). Two-dimensional

magnetic materials possess a wide variety of excellent

physical properties. For instance, monolayer magnetic

metal materials have been widely used as electrodes in

electronic devices, such as Fe3GeTe2 based van der Waals

tunnel junctions (O’Hara et al., 2018). Furthermore,

magnetic tunnel junction with antimagnetic

semiconductor CrI3 tunnel barrier has been reported to

possess a giant magnetoresistance effect due to the

significant difference of energy band in the ferromagnetic

and antiferromagnetic states (Song et al., 2018), which has

achieved a huge breakthrough in spintronic devices. Hence

antiferromagnetic semiconductor materials have become a

hot research topic because of their novel band

characteristics. However, such materials are very rare, the

prediction of new antiferromagnetic semiconductor

materials becomes the key to the development of

spintronic devices.

In this paper, the electronic structure and magnetic

properties of monolayer MnSi2N4 are explored based on

first-principles calculations. The results demonstrate that

2D MnSi2N4 is a stable antiferromagnetic semiconductor in

which the ground state is an antiferromagnetic state. The large

magnetic exchange parameter indicates a strong

antiferromagnetic coupling between the magnetic Mn

atoms. When an external magnetic field is applied, the

MnSi2N4 monolayer turns into a half-metal with a magnetic

state transition from an antiferromagnetic state to a

ferromagnetic state. In which the spin-up electronic state

displays a metallic nature, while the spin-down electronic

state exhibits a semiconducting feature. Therefore, the

MnSi2N4 monolayer has great application prospects in

spintronics and nanosensors.

Computational details

All calculations were conducted using the Vienna ab initio

simulation package (VASP) (Kresse and Furthmuller, 1996;

Kresse and Joubert, 1999). The projection plane wave (PAW)

method was adopted to describe the interaction between ions and

electrons (Blöchl, 1994). The cutoff energy is set as 500 eV. The

generalized gradient approximation (GGA) of the form

Perdew–Burke–Ernzerhof (PBE) was employed to describe the

exchange correlation (Perdew et al., 1996). The convergence

criteria for electronic iteration and ionic relaxation were

10–6 eV and 0.001 eV/Å, respectively. An 18 Å vacuum layer

was added in the out plane direction of the monolayer

MnSi2N4 to eliminate interlayer interactions. The Brillouin

zone was sampled with a 13 × 13 × 1 k-point mesh. Due to

the strong correlation effect of Mn atoms, the DFT + U method

proposed by Dudarev et al. (Dudarev et al., 1998) was adopted,

and the effective parameter Ueff was set to 3.9 eV (Wang et al.,

2006; Jain et al., 2011; Ling and Mizuno, 2012; Togo and Tanaka,

2015). The phonon spectrum of monolayer MnSi2N4 was

calculated by the PHONONPY software (Togoet al., 2015)

using a 5 × 5 supercell.

Results and discussion

Similar to the two-dimensional MoSi2N4, the monolayer

MnSi2N4 is a two-dimensional material with a hexagonal

lattice structure and D3h point group as shown in Figure 1.

MnSi2N4 monolayer consists of seven atomic layers stacked with

the order N-Si-N-Mn-N-Si-N, which can be regarded as a 1H-

phase MnN2 triple-layer sandwiched between two buckled N-Si

layers. The lattice constant of unit cell is 2.88Å, the bond length

between Mn and N atoms is 2.02 Å and the bond length between

Si and N atoms is 1.74 Å.

FIGURE 1
Top (A) and side (B) views of MnSi2N4. The balls are highlighted
with blue (Si atom), purple (Mn atom) and silvery (N atom). The
rhombic unit cells are marked with black dashed lines.
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The cohesive energy of the monolayer MnSi2N4 was

evaluated to confirm the stability of monolayer MnSi2N4 using

the equation:

Ecoh � EMnSi2N4 − EMn − 2ESi − 4EN( )/7 (1)

Where EMnSi2N4 represents the energy of MnSi2N4, EMn , ESi and

EN represent the energy of isolated single Mn, Si and N atoms,

respectively. The calculated results show that the cohesive energy

of MnSi2N4 is -5.03 eV/atom which is comparable to the value of

MoS2 monolayer (−5.12 eV/atom) (Canton-Vitoria et al., 2020)

and MoSi2N4 (−8.46 eV/atom) (Bafekry et al., 2021). We also

calculated the phonon spectrum to check the stability, and there

is no imaginary phonon frequency throughout the Brillouin

zone, indicating that the structure is dynamically stable.

Consequently, the MnSi2N4 monolayer has excellent stability

and thus may be experimentally prepared in Figure 2.

The magnetic properties of monolayer MnSi2N4 were

investigated. We first determined the ground-state magnetic

ordering with two possible magnetic order ferromagnetic

(FM) and antiferromagnetic (AFM) states. The total energies

of the AFM and FM phases of MnSi2N4 are -218.650eV and

-217.658 eV, respectively. The energy of the AFM state is lower

than that of the FM state, hence MnSi2N4 has an AFM ground

state. The AFM order in monolayer MnSi2N4 sourced from the

superexchange interactions between twomagnetic atoms bridged

by nonmetal atoms, following the Goodenough-Kanamori rules

(Goodenough, 1955; Kanamori, 1959). In this case, the net

magnetic moment is zero and the four Mn atoms in the

supercell have an antiparallel magnetic state along with the

same value of magnetic moments (3.05 μB). The spin-

polarized charge density and the schematic diagram for FM

and AFM order are plotted in Figure 3. The spin-polarized

charge density map shows that Mn atoms possess an high

spin-polarized charge density, while spin-polariztion of N

atoms is tiny with small magnetic moments (0.05 μB).

The electronic properties of AFM states are investigated to

further explore potential applications of MnSi2N4. The electronic

band structure and density of states (TDOS) are calculated as

FIGURE 2
Phonon spectrum of monolayer MnSi2N4.

FIGURE 3
(A,B) spin-polarized charge densities of the FM and AFM case for MnSi2N4. The yellow and light blue isosurface with an isosurface value of
0.05 e/Bohr3 represent the spin-up and spin-down charge densities, respectively. (C,D) The scheme represents spin orientation of Mn atoms in FM
and AFM case.
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illustrated in Figure 4. It is clear that MnSi2N4 exhibits indirect

semiconducting property without band cross Fermi level,

which is different from nonmagnetic direct bandgap

semiconductor MoSi2N4 monolayer (Yuan et al., 2022). The

conduction band minimum (CBM) and the valence band

maximum (VBM) are located at K point and M point,

respectively. The band gap is small (0.26 eV). The bands are

degenerate and the TDOS is symmetrical for spin-up and spin-

down states. Furthermore, no states exist near the Fermi level

along with a small energy gap.

The projected density of states (PDOS) for Mn atom and the

nearest neighbor N atom are depicted in Figure 5 to better

analyze orbit contribution for electron structure and magnetic

properties. One can notice that the density of states for the five 3d

orbitals are all asymmetric as shown in Figure 5A, indicating the

large spin splitting for an isolated Mn atom. The magnetic

moment (3.04 μB/Mn) is mainly dominated by the spin-up

(majority-spin) states of d orbitals which is much more than

the spin-down electron. For the N atom, the difference in PDOS

between the spin-up and spin-down states is not obvious,

resulting in a smaller magnetic moment. In addition, the DOS

mainly comes from Mn-d and N-p in the energy range from

0.5 to 1.5 eV indicating that the hybridizations between the N-p

and Mn-d orbitals are strong.

FIGURE 4
(A) The band structures and (B) total density of states (TDOS) of MnSi2N4 monolayer in the AFM states, the spin-up states and spin-down states
are represented by the black lines and red dotted lines, respectively.

FIGURE 5
Projected density of states (PDOS) for (A) Mn-d orbital and (B) N-p orbital.
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Furthermore, the ground antiferromagnetic states will

transition to ferromagnetic states under an external

magnetic field. The band structure and density of states

for FM state are depicted in Figure 6. It is clear that the

spin-up and spin-down energy bands are not degenerate. The

spin-polarized states can be noticed around the Fermi

level. In the spin-up channel, several flat bands near the

Fermi level existe and the others band display dispersion

along Γ–M and K–Γ, which behave as a metal. But for the

spin-down channel, a direct bandgap of 2.07 eV is observed

with the VBM and CBM located at Γ point. Hence, MnSi2N4

monolayer behaves half-metallic properties in the FM case.

The spin polarization is obvious with an asymmetric density

of states distribution for spin-up and spin-down states as

depicted in Figure 6B. One can find that a peak of spin-up

states can be seen near the Fermi level and a large bandgap

exists in the spin-down states, which further confirms the

metallic behavior for the spin-up states and semiconducting

property for spin-down states, respectively. Therefore, the

2D MnSi2N4 in FM state is a half-metal with 100% spin

polarization.

Strain is an effective means of manipulating electronic

structure and magnetic properties which is widely utilized to

modulate the electronic structure and magnetic properties of

monolayer system. In this paper, the strain is defined as

ε = (a − a0)/a0, where a0 is the relaxed lattice constant in

the equilibrium state. The magnetic moment of the Mn atom

remains about 3 μB per unit cell under strain. The effective

spin Hamiltonian based on the Heisenberg model can be

expressed as

FIGURE 6
(A) The band structures and (B) total density of states (TDOS) of MnSi2N4 in the FM states, the spin-up states and spin-down states are
represented by the black lines and red dotted lines, respectively.

FIGURE 7
(A) Magnetic exchange parameter J and (B) magnetocrystalline anisotropy energy EMAE as a function of strain.
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H � −∑< i,j> Jijμiμj (2)

where Jij is the magnetic exchange parameter, and μi/μj is the

magnetic moment at nearest neighbor sites i and j, respectively

(Kan et al., 2013). The magnetic exchange parameter J is a

significant parameter, which can be evaluated by calculating

the total energy of the system in different magnetic states. For

the FM case, the total energy can be written as EFM = E0 − 3 J |

μ |2, where E0 represents the total energy without spin

polarization. For the AFM case, the total energy can be

expressed as EAFM = E0 + J | μ |2. Thus, the exchange

parameter can be extracted by J = (EAFM − EFM)/4 | μ |2.

According to Figure 7A, although the value of J increases

nearly linearly with biaxial strain, the energy difference

between AFM case and FM case remains positive over the

range of applied biaxial strain, indicating that MnSi2N4

behaves as AFM phase and no transition from AFM to FM

phase is observed. Furthermore, the magnetic exchange

parameter J increases with tensile strain and decreases with

compressive strain. According to this trend, an extremely

large tensile strain may be needed to turn the AFM to the

FM ordering.

To identify the easy axis of MnSi2N4, we computed the

magnetic anisotropy energy (MAE). The MAE of the

magnetic crystal is defined as EMAE = Ein-Eout (Webster

and Yan, 2018), that is, the energy difference between the

in-plane (Ein) and out-of-plane (Eout) of MnSi2N4. For the

strain-free monolayer MnSi2N4, the MAE is −345 μeV/Mn

atom, indicating that the easy axis of MnSi2N4 prefers in-plane

and the spin of the Mn atoms is arranged parallel to the

basal plane. The MAE of monolayer MnSi2N4 is mainly

derived from Mn atoms since Mn atoms have relatively

stronger spin-orbit coupling than other atoms. The MAE is

depicted as a function of strain in Figure 7B. When the

structure is compressed, this value fluctuates

around −350 μeV/Mn, hence the effect of compressive

strain on MAE is not obvious. While MAE increases

significantly with increasing tensile strain. MAE changes

from -345 μeV/Mn to −290 μeV/Mn under the 5% tensile

strain.

Conclusion

The electronic and magnetic properties of monolayer

MnSi2N4 are explored based on first-principles calculations.

Monolayer MnSi2N4 is an intrinsic antiferromagnetic

semiconductor with a small indirect band gap (0.26 eV). The

MnSi2N4 has strong antiferromagnetic coupling along with

strong in-plane magnetocrystalline anisotropy energy

(−345 μeV/Mn). Furthermore, the MnSi2N4 monolayer

exhibits half-metallic properties with a metallic spin-up state

and a semiconducting spin-down state. The effect of biaxial

strain on magnetism is also investigated. The magnetic

exchange parameter J and MAE increase with biaxial tensile

strain. The tunable magnetic properties may enrich the 2D

antiferromagnets community and stimulate potential

applications in spintronic devices.
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