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Cellular membraneless organelles are thought to be droplets formedwithin the two-
phase region corresponding to proteinaceous systems endowed with the liquid-
liquid transition. However, their metastability requires an additional constraint—they
arise in a certain region of density and temperature between the spinodal and binodal
lines. Here, we consider the well-studied van der Waals fluid as a test model to work
out criteria to determine the location of the spinodal line for situations in which the
equation of state is not known. Ourmolecular dynamics studies indicate that this task
can be accomplished by considering the specific heat, the surface tension and
characteristics of the molecular clusters, such as the number of component chains
and radius of gyration.
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1 Introduction

Cellular organelles can be either membraneless or membrane-bound. The membranes arise
as droplets during a liquid-liquid phase transition (Brangwynne et al., 2009; Brangwynne et al.,
2011; Shin and Brangwynne, 2017; Boeynaems et al., 2018; Elbaum-Garfinkle, 2019) as a result
of thermal fluctuations. These biological droplets can be micrometers in size and exhibit
hydrodynamical characteristics such as fusion (Caragine et al., 2018; Caragine andHaley, 2019).
Proteinaceous liquids involved in the phase transition have been found to be composed
primarily of intrinsically disordered proteins (IDPs) (Uversky, 2002; Dyson and Wright, 2005;
Fink, 2005; Dunker et al., 2008; Ferreon et al., 2010; Uversky and Dunker, 2010; Babu et al.,
2011; Wright and Dyson, 2015; Banani et al., 2017; Chwastyk and Cieplak, 2020; de Aquino
et al., 2020) that allow for a multitude of ways to bind and aggregate.

The droplets may form only within the coexistence region of the phase diagram of the two
fluids but their functionality requires that they are metastable. The paradigm model that yields
such a coexistence region is the van der Waals (vdW) fluid as described by the well-known
equation of state that generalizes the perfect gas law. In the density (ρ)—temperature (T) plane,
the phase diagram of the vdW fluid includes the coexistence region of gas and liquid that is
bounded by the inverted parabola, as shown in the bottom panel of Figure 1. Its vertex
corresponds to the critical temperature (Tc) above which one cannot distinguish between the
two phases. Such a phase diagram can be obtained for the system of nmmonatomic particles that
interact through the 6–12 Lennard-Jones (LJ) potential (Hensen and McDonald, 1973)
given by:

ΦLJ � 4ε
σ

r
( )12

− σ

r
( )6[ ], (1)
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where ε and σ are the uniform energy and length parameters. A
significant increase in ρ, at any T, results in solidification. A sufficient
decrease in T yields a similar effect. The solids may have several kinds
of symmetry and the more complete schematic phase diagram can be
found in ref. (Schultz and Kofke, 2018).

It should be noted that the separation into the two phases in the
coexistence region can occur either through nucleation or by spinodal
decomposition, depending on ρ and T. Both processes can be triggered
by quenching from a temperature above Tc, but have a different
physical mechanism. Nucleation arises as a result of a rare but large
energy fluctuation and is associated with metastability (Frenkel, 1955;
Feder et al., 1966; Abraham, 1975; Binder and Stauffer, 1976). On the
other hand, phase separation through spinodal decomposition takes
place in an initially unstable system in which all fluctuations grow
because there is no energy barrier (Cahn and Hilliard, 1958; Cahn and
Hilliard, 1971; Langer, 1971; Huang et al., 1974; Binder et al., 1978).
Thus, the generation of metastable droplets can take place only
between the binodal and spinodal lines. The spinodal line for the
vdW system is also an inverted parabola that is placed within the
coexistence region (cf. The bottom panel in Figure 1). The region
within the spinodal line is chaotic, unstable, and beyond a

thermodynamic description. Any short-lived clusters of atoms there
cannot be analogues of the “organelles.” Thus, the determination of
the proper conditions for the droplet formation involves figuring out
not only the position of the binodal line but also of the spinodal
boundary. It should be noted that droplets of a higher (lower) density
than the environment arise in the region that borders with the gas
(liquid) phase. The biophysical context assumes the higher density
situation.

In the absence of theoretically validated equations of state for the
protein solutions, we resort to considering a simpler system: a
homogeneous vdW fluid. This will allow us to test the novel
concepts related to the determination of the phase diagram, giving
us much-needed insight on how to deal with more complicated
situations. In principle, for the vdW fluid, one can derive the free
energy of the system, consistent with the equation of state, and analyze
its stability. Our purpose, however, is to find alternative ways to locate
the spinodal and binodal lines that could be used in molecular
dynamics simulations of proteins.

2 The phase diagram construction

A series of simulations and experimental studies (Nicolas et al.,
1979; Panagiotopoulos, 1994; Baidakov et al., 2000) of the van der
Waals fluids has been reviewed by Stephan et al. (Stephan et al., 2019)
and the data shown in the bottom panel of Figure 1 is based on this
reference. The results are presented in reduced units (the symbols are
denoted by an asterisk) that involve the length parameter, σ, and the
depth of the energy well, ε. Density is given in units of the number of
monomers per σ3. For the cutoff value of 6.85σ, the critical point is at
temperature Tc of 1.31 and density ρc = 0.316 that is consistent with a
direct analysis of the equation of state.

The theoretical and experimental data (Stephan et al., 2019) were
the references for our simulations. We performed molecular dynamics
simulations for two systems of 4,000 particles: one for 4,000 non-
bonded particles and the other one for 200 20-bead chains. During our
simulations we monitored the cluster sizes, appearance of cavities and
their volumes (Chwastyk et al., 2014a; Chwastyk et al., 2016), specific
heat (Chwastyk et al., 2015; Chwastyk et al., 2017) as well as a number
of other parameters to find a way to determine the phase diagram.

2.1 Details of the simulations

Our simulations were conducted by using the LAMMPS software
package (Plimpton, 1995). The cut-off for LJ potential was at a
distance of rc = 6.85σ. We used the Verlet algorithm to integrate
the equations of motion. The time was measured in units of
τLJ ≡

�����
mσ2/ε

√
, where m is the mass of each particle. This time unit

corresponds to the characteristic period of undamped oscillations at
the bottom of a 6–12 potential (Chwastyk et al., 2014b; Zhao et al.,
2017a; Zhao et al., 2017b). We used the integration step of Δt =
0.005τLJ for the simulations of monomers and Δt = 0.001τLJ for chains.
The length of our simulations was 1 000 000 and 5 000 000 steps for
monomers and chains, respectively, which corresponds to 5000 τLJ of
total simulation time. The trajectory analysis was done based on the
last 1666τLJ of the simulation in each case and the other part of the
simulation was the equilibration. Two atoms were considered to be in
contact if the distance between them does not exceed 1.3σ. Two chains

FIGURE 1
The bottom panel: The phase diagram of the van der Waals fluid.
The open black and solid red circles correspond to the binodal and
spinodal lines, respectively and the data originate from a summary of
simulations and experiments presented by Stephan et al. (2019).
The open red circles on the right of the graph represent the upper
density spinodal line obtained based on the average cluster size analysis.
The open red circles on the left of the graph represent low-density side
and they point to the location of the left side of the spinodal line. The
blue squares represent the high density binodal line based on the cubes
occupancy analysis, and the blue circles represent low density binodal
line. The green lines mark the densites at which the different phases are
presented in Figure 5. The TC marks the critical temperature. The top
panels: The method of ρL determination based on the occupancy of
small bins analysis.
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are treated as belonging to the same cluster when they have at least one
inter-chain contact. As a consequence, we define a cluster as a group of
beads (in the case of the simulation of monomers) or chains connected
by at least one contact. The chain is defined as a line of monomers
connected by harmonic potential:

Ubond r( ) � kb r − σ( )2, (2)
where kb = 75000ε/σ2 is a force constant, strong enough to keep two
atoms at distance of σ. This assumption was established according to
the results of Kevin S. Silmore et al. (Silmore et al., 2017). We used the
canonical ensemble (NVT) and the temperature was controlled by
Nose-Hoover thermostat with damping parameter of 1.0τLJ for
monomers and 10.0τLJ for chains.

2.2 The simulations results

Our simulations were conducted for 90 different densities from
ρ* = 0.01 to 0.90, at nine different temperatures for monomers: T* ∈
{0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.25, 1.3} and eight temperatures: T* ∈
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} for chains. The example atomic
configuration is presented in Figure 2 for ρ* = 0.1 and T* = 1.1. The
largest cluster composed of 1160 atoms is positioned in the center and
14 smaller clusters are highlighted by red larger balls. They contain
from 5 to 15 atoms.

The top panels of Figure 1 pertain to our method of determination
of the high-density branch, ρL, of the binodal line. The idea is to divide
the volume into small cubes with a side of order of the size of the
molecule. For polymers or proteins, the radius of gyration, rg would be
an appropriate length scale. For monatomic molecules 2σwas found to
be optimal. The top left panel shows the probability distributions of
the cubic bins to have 0, 1, 2, 3, etc. Atoms. At the low density (ρ* = 0.2)

there is a substantial probability, P0, of having an empty bin. The top-
right panel shows that P0 decreases with ρ* and at around 0.64 it
approaches zero. We take this value as defining ρL. By considering
several other temperatures we get the data points indicated as blue
squares. They agree fairly well with the literature results except at the
very low T*s which appear to require longer averaging.

Let us now consider the average cluster (or droplet) sizes. These
can be characterized by either the radii of gyration, Rg, or the number
of molecules, n, that a droplet contains. The largest possible value of n
is nm. We find it useful to either consider averages over all clusters or
only over the largest clusters. In the latter case, the corresponding
average size will be denoted by nlar. The results for 〈n〉 and 〈nlar〉 are
shown in the top panel of Figure 3. We observe that 〈nlar〉 undergoes a
rapid growth at the low density branch of the binodal line, ρV, which
delineates the vapor phase. The average cluster size of all clusters also
undergoes a rapid growth, but at a higher density, ρsL. The growth
coincides with the upper spinodal line (the open red circles in
Figure 1). The lower panel shows the corresponding plots for 〈Rg〉
and 〈Rg,lar〉. They basically mimic the curves related to n except that
the growth of Rg for the largest cluster is affected by the fluctuating
morphology of the cluster, which affects Rg while not affecting n.

In order to determine ρsV, the low density branch of the spinodal
line, we study the specific heat, Cv. Since Cv is a measure of the energy
fluctuations, we would expect volatile energy changes upon entering
the non-thermodynamic spinodal region. Indeed, we observe sudden
spikes in Cv as a function of ρ, as illustrated in the bottom panel of
Figure 4 for T* = 1.1. The tallest of them is on the low-density side and
its location is marked by open red circles on the left side of Figure 1.

FIGURE 2
The snapshot of the equilibrium state from the simulation at ρ*=0.1
and T*=1.1. The largest cluster contains 1160 atoms and is shown at the
very center. 14 smaller clusters are also highlighted. They contain
between 9 and 15 atoms. FIGURE 3

The panels, correspondingly, show the plots of 〈n〉 and 〈Rg〉 vs. ρ*
for T*=1.1. The data points obtained by considering all clusters are shown
by the solid symbols. The open symbols correspond to the largest
clusters. It would be tempting to identify the density point at which
the lines 〈nlar〉 and 〈n〉merge (the arrow at the top) as corresponding to
ρL. However, the location of this point practically does not depend on T*.
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When going to higher densities, there is a sudden drop in Cv that
coincides with ρsL obtained from 〈n〉.

Yet another way to assess the boundary of the spinodal region is
through the surface tension, σten. It can be derived, both theoretically
and experimentally, by invoking the energy equipartition theorem
(Caragine et al., 2018; Caragine and Haley, 2019) leading to σten = kBT/
u2 where u2 is the fluctuation in the droplet linear size and kB is the
Boltzmann constant. In molecular dynamics, we take u2 to be a
fluctuation of Rg and average it over time. We perform this
procedure for sufficiently large droplets, as they are better defined.
However, to avoid the finite-size effects, we do not consider droplets
that span the whole system. The surface tension, σten, calculated in this
manner is shown in the upper panel of Figure 4 for T* = 1.1. The
behavior of σten as a function of density is rather irregular in the
spinodal region but then there a nearly monotonic increase is observed
between ρsL and ρL. The phase separation induced by the density
changes at T* = 1.1 is presented schematically in Figure 5. The
nucleation process can be observed in panels B and D for light and
dense phases, respectively. Panels A and E represent one-phase
regimes.

3 The phase diagram for chains of
monomers

Proteins differ from the Lennard-Jones atoms discussed so far in
two major ways: first, their molecules are in the form of chains, and
second, the monomers in the chains are of a heterogeneous nature as

FIGURE 4
The top panel shows the coefficient of the surface tension as a
function of ρ*. The lower panel shows the specific heat. Both panels are
for T =1.1*.

FIGURE 5
The phase separation during the density changes at T*=1.1 for system composed of 4,000 atoms. The densities of each box are ρ*=0.01, 0.11, 0.35,
0.57 and 0.8 for boxes (A), (B), (C), (D), and (E), respectively. The clusters are marked by red in panels (A,B). At the dense phase (C,D) the clusters are marked by
blue. The positions on the phase diagram of particular cases are marked by green letters in Figure 1.
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they represent 20 types of amino acid. The second aspect requires
special studies along the lines of Dignon et al. (Dignon et al., 2018a;
Dignon et al., 2018b; Dignon et al., 2019) or Mioduszewski et al.
(Mioduszewski and Cieplak, 2018; Mioduszewski and Cieplak, 2020;
Mioduszewski and Cieplak, 2021) who use different coarse-grained
models to analyze the protein dynamics. In addition, proteins may
have inverted binodal lines when hydrophobic effects intervene (Li
et al., 2002; Urry et al., 2002; Dignon et al., 2019). We now consider the
first of these aspects by performing molecular dynamics simulations
for nm = 400 chain molecules of length 20 each. The atoms in the
chains are connected at a distance of σ. The binodal lines for this
system have been derived by Silmore et al. (Silmore et al., 2017) by
using the procedure of Rowlinson and Widom (Rowlinson and
Widom, 1982) in which one starts with a dense blob of molecules
in the center of an elongated periodic box and reaches a heterogeneous
equilibrium. These results are presented by blue points in Figure 6. The
chains exhibit more cohesion, and therefore the critical point is moved
up in temperature in comparison to the monomeric system.

The clusters that are analogues of the biological droplets are
those that should be present immediately to the left of the left
branch of the spinodal line, i.e. close to the gas phase. To the right of
the right branch of the spinodal line, there are droplets of the low
density regions that are essentially like cavities in the liquid phase.
The cavities disappear on crossing the binodal line towards the
single-component liquid phase. In numerical practice, finding the
left brach of the spinodal line can be achieved by considering Cv.
This works also for the right-hand side spinodal line but
monitoring the surface tension offers an additional tool. Our
results for the determination of the spinodal line, based on the
Cv analysis are presented by red squares in Figure 6.

4 Conclusion

In principle, a precise determination of both the binodal and
spinodal line requires procedures of finite-size scaling. Our purpose
here, however, was to determine quantities to accomplish the task

of determining the region in which the metastable droplets could be
studied theoretically. In previous theoretical studies (Dignon et al.,
2018a; Dignon et al., 2018b; Mioduszewski and Cieplak, 2018;
Dignon et al., 2019; Mioduszewski and Cieplak, 2020) analyzing
proteinaceous droplets, no attempt was made to locate spinodal
lines within the two-phase region. The proposed approach should
help in such cases, as it allows for the determination of binodal and
spinodal line positions for fluids of complex composition.
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from our simulations based on specific heat analysis (red squares).
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