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Three new hexadepsipeptides (1–3), along with beauvericin (4), beauvericin D (5),
and four 4-hydroxy-2-pyridone derivatives (6–9) were isolated from the endophytic
fungus Fusarium sp. CPCC 400857 that derived from the stem of tea plant. Their
structures were determined by extensive 1D and 2D NMR, and HRESIMS analyses.
The absolute configuration of hexadepsipeptides were elucidated by the advanced
Marfey’s method and chiral HPLC analysis. Compounds 4, and 7–9 displayed the
cytotoxicity against human pancreatic cancer cell line, AsPC-1 with IC50 values
ranging from 3.45 to 29.69 μM, and 7 and 8 also showed the antiviral activity against
the coronavirus (HCoV-OC43) with IC50 values of 13.33 and 6.65 μM, respectively.
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Introduction

Fusarium, a common genus of filamentous fungi, is considered as a treasure trove of
bioactive secondary metabolites. About 280 compounds, including alkaloids, peptides, amides,
terpenoids, quinones, and pyranones have been discovered from the Fusarium genus (Li
J. et al., 2020; Zhen et al., 2021; Chen et al., 2022; Gu et al., 2022; Zhao et al., 2022). These
compounds exhibited a broad spectrum of bioactivities, such as antibacterial, antifungal,
antiviral, anti-angiogenic, phytotoxic, and cytotoxic effects (Li M. et al., 2020).
Hexadepsipeptides, including typical amide bonds and at least one or two ester bonds, is a
typical class of constituents of this genus (Xu et al., 2007; Urbaniak et al., 2020). Beauvericins
represent a kind of conventional cyclo-hexadepsipeptides, being composed of three N-methyl
amino acids and three hydroxy acid moieties, and displaying a variety of biological activities,
such as cytotoxic (Ivanova et al., 2006), antifungal (Fukuda et al., 2004; Zhang et al., 2007), and
insecticidal (Urbaniak et al., 2020) activity. Among of them, the beauvericin not only can be
used as a co-drug to enhance the antifungal activities of ketoconazole (Nilanonta et al., 2002;
Supothina et al., 2004; Zhang et al., 2007), but also exhibited the growth inhibition of human-
pathogenic bacteria (Meca et al., 2010). In addition, 4-hydroxy-2-pyridone alkaloids bearing
the central 4-hydroxy-2-pyridone moiety linked to two additional substituents at C-3 and C-5
positions are widely distributed in the genus Fusarium (Zhan et al., 2007; Jessen et al., 2010).
Examples such as (−)-sambutoxin (Kim et al., 1995), (−)-4,6′-anhydrooxysporidinone (Zhan
et al., 2007), (−)-oxysporidinone (Jayasinghe et al., 2006), funiculosin (Ando et al., 1969),

OPEN ACCESS

EDITED BY

Fushuang Li,
Massachusetts Institute of Technology,
United States

REVIEWED BY

Zhigang She,
Sun Yat-sen University, China
Guo-Dong Chen,
Jinan University, China

*CORRESPONDENCE

Shuyi Si,
sisyimb@hotmail.com

Minghua Chen,
chenminghua@imb.pumc.edu.cn

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Organic Chemistry,
a section of the journal
Frontiers in Chemistry

RECEIVED 24 November 2022
ACCEPTED 28 December 2022
PUBLISHED 12 January 2023

CITATION

Chang S, Yan B, Chen Y, Zhao W, Gao R,
Li Y, Yu L, Xie Y, Si S and Chen M (2023),
Cytotoxic hexadepsipeptides and anti-
coronaviral 4-hydroxy-2-pyridones from
an endophytic Fusarium sp.
Front. Chem. 10:1106869.
doi: 10.3389/fchem.2022.1106869

COPYRIGHT

© 2023 Chang, Yan, Chen, Zhao, Gao, Li,
Yu, Xie, Si and Chen. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 12 January 2023
DOI 10.3389/fchem.2022.1106869

https://www.frontiersin.org/articles/10.3389/fchem.2022.1106869/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1106869/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1106869/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1106869/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.1106869&domain=pdf&date_stamp=2023-01-12
mailto:sisyimb@hotmail.com
mailto:sisyimb@hotmail.com
mailto:chenminghua@imb.pumc.edu.cn
mailto:chenminghua@imb.pumc.edu.cn
https://doi.org/10.3389/fchem.2022.1106869
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.1106869


TABLE 1 1H NMR (600 MHz) and13C NMR (150 MHz) Data for Compounds 1-3 in DMSO-d6 (δ in ppm, J in Hz).

No. 1 2 3

δC, type δH (J in Hz) δC, type δH (J in Hz) δC, type δH (J in Hz)

N-Me-Phe 1 169.5, C 169.3, C 169.3, C

2 56.8, CH 5.47, m 56.5, CH 5.43, dd (5.4, 12.0) 60.9, CH 4.45, dd (5.4, 11.4)

3 33.9, CH2 3.20, m 34.4, CH2 3.03, m; 3.19, m 34.0, CH2 3.13, m; 3.01, m

4 137.0, C 136.7, C 137.6, C

5 126.3–129.1, CH 7.13–7.28, m 126.6–129.7, CH 7.13–7.26, m 129.5, CH 7.04–7.28, m

6 126.3–129.1, CH 126.6–129.7, CH 128.3, CH

7 126.3–129.1, CH 126.6–129.7, CH 126.6, CH

8 126.3–129.1, CH 126.6–129.7, CH 128.3, CH

9 126.3–129.1, CH 126.6–129.7, CH 129.5, CH

10-NCH3 31.1, CH3 2.85, s 31.5, CH3 2.94, s 34.9, CH3 2.62, s

Hiv 10 173.8, C 169.3, C 168.1, C

11 71.7, CH 3.94, d (4.2) 74.8, CH 4.88, d (8.4) 73.7, CH 5.11, d (9.6)

12 30.5, CH 1.41, m 29.3, CH 1.73, m 29.2, CH 1.91, m

13 15.5, CH3 0.29, d (6.6) 16.8, CH3 0.29, d (6.0) 17.8, CH3 0.71, d (6.6)

14 19.1, CH3 0.61, d (6.6) 16.3, CH3 0.62, d (7.2) 16.9, CH3 0.25, d (7.2)

N-Me-Phe/Phe 15 169.7, C 170.8, C 169.6, C

16 57.0, CH 5.47, m 52.7, CH 4.57, m 55.1, CH 5.50, dd (5.4, 12.0)

17 33.9, CH2 3.26, m 36.6, CH2 3.01, m; 2.86, m 34.4, CH2 3.05, m

18 136.9, C 136.8, C 136.4, C

19 126.3–129.1, CH 7.13–7.28, m 126.6–129.7, CH 7.13–7.26, m 128.8, CH 7.04–7.28, m

20 126.3–129.1, CH 126.6–129.7, CH 128.2, CH

21 126.3–129.1, CH 126.6–129.7, CH 126.4, CH

22 126.3–129.1, CH 126.6–129.7, CH 128.2, CH

23 126.3–129.1, CH 126.6–129.7, CH 128.8, CH

24-NCH3 31.5, CH3 2.97, s 31.0, CH3 3.08, s

24-NH 8.32, d (8.4)

Hiv/HL 24 168.9, C 167.6, C 168.9, C

25 74.8, CH 5.07, d (8.4) 78.3, CH 4.66, d (7.8) 67.4, CH 5.20, q (6.6)

26 28.6, CH 1.49, m 28.9, CH 1.89, m 15.4, CH3 1.16, d (6.6)

27 18.8, CH3 0.66, d (7.2) 17.8, CH3 0.74, d (6.6)

28 15.8, CH3 0.30, d (7.2) 18.0, CH3 0.62, d (7.2)

N-Me-Phe/Phe 29 171.6, C 170.5, C 169.4, C

30 58.9, CH 5.02, m 52.8, CH 4.61, m 55.5, CH 5.58, dd (5.4,11.4)

31 33.5, CH2 3.03, m; 2.93, m 37.0, CH2 3.01, m; 2.86, m 33.0, CH2 3.12, m; 3.01, m

32 137.7, C 136.8, C 136.9, C

33 126.3–129.1, CH 7.13–7.28, m 126.6–129.7, CH 7.13–7.26, m 128.9, CH 7.04–7.28, m

34 126.3–129.1, CH 126.6–129.7, CH 128.2, CH

35 126.3–129.1, CH 126.6–129.7, CH 126.5, CH

(Continued on following page)
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sambutoxins A and B (Yang et al., 2021), and related annalogues
displayed a range of biological activities including antibacterial,
antifungal, antiviral, and antitumor properties.

During our ongoing search for the bioactive products from the special
habitat fungi (Chen et al., 2019; Li J. et al., 2020; Chang et al., 2022; Wang
et al., 2022), Fusarium sp. CPCC 400857, an endophytic fungus isolated
from a stem of tea plant, was investigated. A chemical investigation on the
fungus led to three new hexadepsipeptides (1–3), along with six known
compounds including beauvericin (4), beauvericin D (5), and four 4-
hydroxy-2-pyridinone derivatives (6–9). The absolute configurations of
hexadepsipeptides were assigned by the advanced Marfey’s method and
chiral HPLC analysis. Herein, the isolation, structural elucidation, and
their cytotoxic and anti-coronavirus activity of the compounds 1–9 are
described.

Results

Structural elucidation of the isolated
compounds

SecobeauvericinA (1) was obtained as a white amorphous powder. Its
molecular formula was assigned as C45H59N3O10 by the positive HR-ESI-
MS ion [M + H]+ at m/z 802.4282 (calcd. For C45H60N3O10 802.4279),
corresponding for 18 degrees of unsaturation. The NMR spectrum of 1
(Table 1) displayed resonances of three monosubstituted benzenes, three
pairs of vicinal methyls, three N-methyl groups, three methylenes, nine
methines involving six peptidic α-methines, together with six amide and/
or ester carbonyl carbons (δC 168.7, 168.9, 169.5, 169.7, 171.6, 173.8). A
comparison of the molecular composition and NMR data of compounds
1 and beauvericin (4) revealed that compound 1 could be a linear
hexadepsipeptide (Yuan et al., 2021).

Comprehensive analysis of 2D NMR spectra (Figure 1) revealed
the presence of three hydroxyisovaleric acids (Hiv) and three
N-methyl phenylalanine (N-Me-Phe) moieties. HMBC correlations
fromN-CH3-10 to C-10, H-11 to C-15, N-CH3-24 to C-24, H-25 to C-
29, and N-CH3-38 to C-38 established the sequence of Hiv-(N-Me-
Phe)-Hiv-(N-Me-Phe)-Hiv-(N-Me-Phe), which was supported by

NOESY correlations from N-CH3-10 to H-11, H-11 to H-17,
N-CH3-24 to H-25, H-25 to H-31, and N-CH3-38 to H-39.
Furthermore, the connection of these hydroxy acid and amino acid
residues was confirmed by the HR-MS/MS fragments at m/z
663.3252 [M–(N-Me-Phe)+OH + Na]+, 563.2729 [M–(N-Me-Phe)–
Hiv +OH+Na]+, 402.1890 [M–(N-Me-Phe)–Hiv-(N-Me-Phe)+OH+
Na]+, 302.1373 [M–(N-Me-Phe)–Hiv–(N-Me-Phe)–Hiv + OH + Na]+

and 141.0530 [M–(N-Me-Phe)–Hiv–(N-Me-Phe)–Hiv–(N-Me-
Phe)+OH + Na]+ (Figure 2). Thus, the planar structure of 1 was
determined as shown in Figure 1.

After acid hydrolysis, the absolute configuration of Hiv in 1 was
determined to be R (Supplemnentary Figure S4; Supplementary Table
S2) by chiral HPLC analysis in comparison to the authentic R/S Hiv
units, while the advanced Marfey’s analysis of the hydrolysate of 1
revealed the N-Me-Phe residues was L-configuration (Supplementary
Figure S1) (Tripathi et al., 2009; Wang et al., 2017). Therefore, the
structure of compound 1 was determined and designated as
secobeauvericin A (Figure 3).

Beauvericin M (2) was determined as C43H53N3O9, based on the
HRESIMS peak at 756.3886 [M + H]+ (calcd for C43H54N3O9, 756.3860),
implying 19 degrees of unsaturation. The NMR data of 2 was closely
correlated with beauvericin (4). The extensively analysis of the NMR data
(Table 1) revealed that two N-CH3 in beauvericin were replaced to NH in
2, which were verified by 1H–1HCOSY correlations of NH-24/H-16/H-17,
NH-38/H-30/H-31, together with the HMBC correlations from NH-24 to
C-16 and C-24, NH-38 to C-30 and C-38. The above related information
shows that compound 2 contained twophenylalanine residues. In addition,
the HMBC correlations fromN-CH3-10 to C-10, H-11 to C-15, NH-24 to
C-24, H-25 to C-29, NH-38 to C-38, and H-39 to C-1 indicated that the
cyclic structure of 2 was Hiv-Phe-Hiv-Phe-Hiv-(N-Me-Phe). This
connection was confirmed by cross peaks in the NOESY spectra with
the correlations N-CH3-10 to H-11, NH-24 to H-25 and NH-38 to H-39.
The cleavage method of the MS/MS spectrometer further verified the
above connection of groups (Figure 2). The absolute configuration of
N-Me-Phe, Phe, andHiv units were determined as L, L, andR by advanced
Marfey’s method and chiral HPLC (Supplementary Figures S2, S4).

Beauvericin N (3) was obtained as the white amorphous
powder. On the basis of (+)-HRESIMS data, the formula of 3

TABLE 1 (Continued) 1H NMR (600 MHz) and13C NMR (150 MHz) Data for Compounds 1-3 in DMSO-d6 (δ in ppm, J in Hz).

No. 1 2 3

δC, type δH (J in Hz) δC, type δH (J in Hz) δC, type δH (J in Hz)

36 126.3–129.1, CH 126.6–129.7, CH 128.2, CH

37 126.3–129.1, CH 126.6–129.7, CH 128.9, CH

38-NCH3 32.7, CH3 2.87, s 30.9, CH3 3.00, s

38-NH 8.29, d (8.4)

Hiv 38 168.7, C 168.0, C 168.8, C

39 75.4, CH 5.06, d (8.4) 78.4, CH 4.65, d (7.8) 73.2, CH 5.07, d (9.0)

39-OH 4.15, d (8.4)

40 28.7, CH 1.68, m 29.4, CH 1.80, m 29.4, CH 1.74, m

41 18.6, CH3 0.77, d (6.6) 17.7, CH3 0.47, d (6.6) 17.9, CH3 0.66, d (6.6)

42 15.9, CH3 0.50, d (6.6) 17.7, CH3 0.60, d (7.2) 16.3, CH3 0.15, d (7.2)
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was established as C43H53N3O9. The comparison of NMR data of 3
and 4 suggested that an Hiv unit in 4 was replaced by a 2-
hydroxypropionic acid (HL) moiety in 3, which was verified by
the 1H–1H COSY correlations of H-25/H-26, together with the
HMBC correlations from H-26 to C-24. The connection of those α-
amino acids and α-hydroxy acids in 3 was deduced by the HMBC
correlations from N-CH3-10 to C-10, H-11 to C-15, N-CH3-24 to
C-24, H-25 to C-29, N-CH3-38 to C-38 and H-39 to C-1, as well as
NOESY correlations and HRESIMS/MS analysis (Figures 1, 2).
The absolute configurations of the α-hydroxy acids were
determined as R-Hiv, R-HL by using the chiral HPLC, and the
amino acids were assigned as L-N-Me-Phe by the advanced
Marfey’s method. Accordingly, compound 3 was corroborated
and named as beauvericin N (Figure 3).

Secobeauvericin A (1) is assembled from three R-Hiv-N-methyl-L-Phe
acid dipeptidolmonomers. BeauvericinM (2) is formed as cyclic combined
with two R-Hiv-L-Phe acid dipeptidol monomers and one R-Hiv-
N-methyl-L-Phe acid monomer, while beauvericin N (3) is formed as
cyclic with two R-Hiv-N-methyl-L-Phe acid dipeptidol monomers and one
R-HL-N-methyl-L-Phe acid monomer (Urbaniak et al., 2020) (Figure 4).

The known compounds 4–9 were identified as beauvericin (Isaka
et al., 2011), beauvericin D (Fukuda et al., 2004), (–)-sambutoxin (Kim
et al., 1995), (–)-oxysporidinone (Jayasinghe et al., 2006), fusapyridon A
(Wijeratne et al., 2011), and (–)-fusoxypyridone (Jayasinghe et al., 2006)
by comparison of MS and 1D NMR data in the literature, respectively.

Physicochemical properties and
spectroscopic data of compounds 1-3

Secobeauvericin A (1): White amorphous powder; mp. 90°C–91°C;
[α] –73.3 (c .4, MeOH); UV (LC): 210 nm; IR ]max: 3441, 2966, 2933,
2876, 1739, 1659, 1633, 1456, 1285, 1091, 1023, 828, 748, 700 cm−1; 1H

(600 MHz) and 13C NMR (150 MHz), see Table 1; HRESIMSm/z [M +
H]+ 802.4282 (calcd for C45H59N3O10, 802.4279).

Beauvericin M (2): White amorphous powder; mp. 85°C–86°C; [α]
+6.7 (c .2, MeOH); UV (LC) 217 nm; IR ]max: 3358, 3279, 2927, 1742,
1679, 1457, 1421, 1203, 1134, 1026, 802, 722, 700 cm−1; 1H (600 MHz)
and 13C NMR (150 MHz), see Table 1; HRESIMS m/z [M + H]+

756.3886 (calcd for C43H53N3O9, 756.3860).
Beauvericin N (3): White amorphous powder; mp. 82°C–83°C;

[α] +13.3 (c .2, MeOH); UV (LC) 217 nm; IR ]max: 3400, 3306,
2967, 2935, 1738, 1664, 1640, 1457, 1422, 1203, 1134, 1083, 1029,
835, 722, 700 cm−1; 1H (600 MHz) and 13C NMR (150 MHz), see
Table 1; HRESIMS m/z [M + H]+ 756.3830 (calcd for C43H54N3O9,
756.3860).

Cytotoxicity and anti-coronavirus activity
compounds 1–9

Beauvericins and 4-hydroxy-2-pyridones were shown to display
potent cytotoxic activity against different human cell lines. Therefore,
compounds 1-9 were evaluated the cytotoxic activity in vitro.
Compounds 4, and 7–9 showed the cytotoxicity against human
pancreatic adenocarcinoma cell line AsPC-1 with IC50 values of 3.45,
17.62, 29.69, and 18.81 μM, respectively, while compounds 1–3, 5, and
6 were inactive at 90 μM (Table 2). Compared with the positive drug,
compounds 4, and 7–9 exhibited weaker cytotoxicity than the
gemcitabine. In addition, funiculosin could inhibited both the RNA
and DNA virus in previous report (Ando et al., 1969). Therefore, the 4-
hydroxy-2-pyridones (6–9) were tested for the inhibition against the
coronavirus (HCoV-OC43). Compounds 7 and 8 displayed the antiviral
activity against the coronavirus (HCoV-OC43) with IC50 values of
13.33 and 6.67 μM, and SI values of 1.7 and 1.7, respectively, and
showed slightly better than the positive drug ribavirin (Table 3).

FIGURE 1
Structures of compounds 1-9.
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Materials and methods

Fungal materials

The fungus Fusarium sp. CPCC400857 was isolated from a stem of
tea plant collected from Shaanxi Province, China. The strain was
deposited in the China Pharmaceutical Culture Collection (Institute of
Medicinal Biotechnology, Chinese Academy of Medical Sciences and
Peking Union Medical College, No. CPCC 400857).

Fermentation and extraction

The fungal strain was cultured on slants of potato dextrose agar
(PDA) at 25°C for 7 days. Subsequently, the spores were used to
inoculate in 500 ml Erlenmeyer flasks, each containing 100 ml of
potato dextrose broth at 25°C (180 rpm) for 4 days to obtain the
seed culture. The large-scale fermentation proceeded in 30 Erlenmeyer
flasks (500 mL) containing 100 g of rice and 100 ml of distilled water,
which were autoclaved at 121°C for 15 min. After being cooled to room
temperature, each flask was inoculated with 5 ml of seed culture and
incubated at 25°C for 30 days.

The fermented material was extracted with 95% EtOH (12 L for
2 times) and with 50% EtOH (12 L for 1 time). The solution was
combined and evaporated under the reduced pressure to yield an
aqueous suspension (4.0 L). The aqueous suspension was partitioned

with EtOAc (3 × 4.0 L). The organic solution was concentrated to
dryness, and yielded a dark brown extract (124.3 g).

Isolation and purification

The EtOAc extract (124.3 g) was subjected to silica gel column
chromatography using CH2Cl2/MeOH gradient elution (50:1, 35:1, 25:
1, 20:1, 15:1, 10:1, 1:1, and 1:0) to afford 10 fractions (Fr.1−Fr.10).

Fr. 2 (890 mg) was fractionated by Sephadex LH-20 column
chromatography with CH2Cl2/MeOH (1:1) to afford three subfractions
(Fr. 2-1–Fr. 2–3). Fr. 2–2 (41.0 mg)was further purified by reversed-phase
semipreparative HPLC (Capcell Pak PFP column, 5 μm, 10 × 250 mm,
1.5 mL/min, 60% CH3CN/H2O) to yield 2 (3.1 mg).

Fr. 5 (1.7 g) was separated to seven subfractions (Fr. 5-1–Fr. 5–7)
with reversed-phase (RP) flash column chromatography (5 mL/min,
5%–100% MeOH/H2O), then Fr. 5–3 (27 mg) was further purified by
reversed-phase semipreparative HPLC (Capcell Pak PFP column, 5 μm,
10 × 250 mm, 1.5 mL/min, 66% CH3CN in 0.1% trifluoroacetic acid) to
yield 1 (4.1 mg). Subsequently, the purification of Fr. 5–7 (192 mg) with
Sephadex LH-20 column chromatography (CH2Cl2/MeOH, 1:1) yielded
to seven subfrations (Fr. 5-7-1–Fr. 5-7-7). Then, the compound 4
(46.6 mg) was purified by reversed-phase semipreparative HPLC
(Capcell Pak PFP column, 5 μm, 10 × 250 mm, 1.5 mL/min, 80%
CH3CN/H2O containing 0.1% TFA) from the subfraction Fr. 5-7-1
(72 mg). The subfraction of Fr. 5-7-5 (51 mg) was further isolated by

FIGURE 2
1H–1H COSY, HMBC, and NOESY correlations of compounds 1–3.
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reversed-phase semipreparative HPLC (Capcell Pak MGⅡ column,
5 μm, 10 × 250 mm, 1.5 mL/min, 78% CH3CN/H2O) to yield 3
(2.7 mg), 5 (2.5 mg), and 9 (3.7 mg).

Fr. 10 (1.3 g) was fractionated by reversed-phase (RP) flash column
chromatography with 5–100% MeOH to obtain 8 (3.1 mg) and six
subfractions. Then Fr. 10–3 (33 mg) was isolated by reversed-phase
semipreparative HPLC (Capcell Pak MGⅡ column, 5 μm, 10 ×
250 mm, 1.5 mL/min, 69% CH3CN in 0.1% trifluoroacetic acid) to get
6 (9.6 mg), and 7 (4.2 mg).

Advanced Marfey’s method (Tripathi et al.,
2009; Wang et al., 2017)

Each of the compounds 1–3 (2 mg) in 1 mL of 6 M HCl were
heated at 110°C for 18 h. The crude hydrolysate was divided into three
portions and evaporated to dryness separately. Two of them were
added to 50 μL of 1% (w/v) L and L/D-FDLA (Marfey’s reagent) and
100 μL 1 M NaHCO3 solution, respectively, and the mixtures were
incubated at 40°C for 1 h. After being cooled to the room temperature,

the reactions were quenched by additional 100 μL 1 M HCl, and
diluted with 250 μL MeOH. The L- and L/D-FDLA derivatives were
analyzed by LC/MS on an Agilent 1100 LC/MSD spectrometer using
the following conditions: Capcell Pak MGⅡ column (3 μm, 2.0 ×
100 mm); column temperature at 30°C; mobile phase, solvent A (.1%
FA in H2O) and solvent B (0.1% FA in CH3CN); flow rate, 0.5 mL/min;
UV detection at 340 nm; compounds 1 and 3, under isocratic relatio of
A/B (34:66); compound 2, under a linear gradient elution mode
(5–100% B for 30 min). The retention times of the corresponding L/
D-FDLA derivatives (m/z 474) for 1 and 3were 23.6 min (L-N-Me-Phe-
L-FDLA) and 28.7 min (L-N-Me-Phe-D-FDLA), respectively, while the
L -FDLA derivatives for 1 and 3 were 23.6 min. The retention times of
the corresponding L/D-FDLA derivatives for 2 were 5.6 min (L-N-Me-
Phe-L-FDLA, m/z 474), 9.5 min (L-N-Me-Phe-D-FDLA, m/z 474),
4.6 min (L-Phe-L-FDLA, m/z 460), and 14.0 min (L-Phe-D-FDLA,
m/z 460), respectively, while the L -FDLA derivatives for 2 were
5.6 min (L-N-Me-Phe-L-FDLA, m/z 474) and 4.6 min (L-Phe-L-FDLA,
m/z 460), respectively. Consequently, the absolute configuration of the
N-Me-Phe and Phe moieties in 1–3 were assigned as L (Supplementary
Figures S1, S3).

FIGURE 3
Fragments observed for compounds 1–3 b y HR-ESI-MS/MS.

Frontiers in Chemistry frontiersin.org06

Chang et al. 10.3389/fchem.2022.1106869

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1106869


Chiral HPLC analysis of the hydrolyzate

Above the third portion of hydrolysate was performed by
HPLC analysis using a ligand-exchange-type chiral column:
MCI gel CRS10W, 4.6 × 50 mm, 5 μm; fow rate 1 mL/min,
eluent 2 mM aqueous CuSO4, UV detection at 254 nm (Chen
et al., 2018). Standard R-Hiv, S-Hiv, R-HL and S-HL were used
co-injection experiments and their retention times (tR, min) were
as follows: R-Hiv (43.4), S-Hiv (69.7), R-HL (5.9), S-HL (7.8).
These results of the HPLC analysis established the
R-configuration for Hiv and HL units in 1–3 (Supplementary
Figure S4).

Cytotoxic activity assessment (Chen et al.,
2018)

The cytotoxic effects of all compounds against human pancreatic
cancer cell line (ASPC-1) were evaluated by CCK-8 method. The
gemcitabine (IC50, 1.53 μM) was used as the positive drug.

Antiviral activity assessment (Song et al.,
2022)

Briefly, the H460 cells were inoculated into 96 well culture plates and
cultured at 35°C under 5% CO2 condition, and infected by HCoV-OC43
virus with 100 times 50% tissue culture infective dose (TCID50) 24 h later;
then the positive control drugs and test compounds were added. The half
inhibitory concentration (IC50) and the half toxic concentration (TC50)
were determined by the Reed and Muench method. The selectivity index
(SI) was calculated as the ratio of TC50/IC50. The ribavirin (IC50, 19.24 μg/
mL; SI, 5.2) was used as the positive drug.

Conclusion

In conclusion, three undescribed hexadepsipeptides, together with
six known compounds were separated from the fungus Fusarium
sp. CPCC400857. Their structures including the absolute
configuration were determined by the extensive analysis of
spectroscopic data, advanced Marfey’s method, and chiral HPLC
analysis. Pancreatic cancer is one of the most difficult and invasive
tumors of digestive system, with low resection rate (Wang et al., 2022).
But recent years, few active molecules have been found for pancreatic
cancer from microorganisms. Leucinostatin Y, a peptaibiotic isolated
from the entomoparasitic fungus Purpureocillium lilacinum selectively
suppressesed the growth of human pancreatic cancer cells, including
PANC-1, BxPC-3, PSN-1, and PK-8 (Momose et al., 2019). Two
benzophenone derivatives, pestalones C and E were found to suppress
the pancreatic cancer cell line PANC-1 with IC50 values of 7.6 and
7.2 μM, respectively (Wang et al., 2019). In our previous study, we
have found secoemestrin C, an epipolythiodioxopiperazine
compound, displayed significant cytotoxicity against several

FIGURE 4
Postulated biogenetic pathway of 1–3.

TABLE 2 Cytotoxicity of compounds 1–9

IC50, μM Positive control

1 2 3 4 5 6 7 8 9 Gemcitabine

AsPC-1 >90 >90 >90 3.45 >90 >90 17.62 29.69 18.81 1.53

TABLE 3 Anti-coronavirus (HCoV-OC43) activity of compounds 7–9.

Compd TC50 (μg/mL) IC50 (μg/mL) SI (TC50/IC50)

6 <0.02 - -

7 23.09 13.33 1.7

8 11.55 6.67 1.7

9 11.55 >6.67 -

Ribavirin 100 19.24 5.2
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pancreatic adenocarcinoma cells, and enhanced the endoplasmic
reticulum stress by a unique mechanism with downregulation of
the YAP via the destruction complex (YAP-Axin-GSK-βTrCP)
(Wang et al., 2022). Beauvericin (4) had shown cytotoxicity to the
hepatocellular carcinoma-line Hep G2 and fibroblast-like foetal lung
cell line MRC-5 in previous report (Ivanova et al., 2006). In this work,
compounds 4, and 7–9 exhibited moderate cytotoxicity against the
human pancreatic cancer cell ASPC-1, which indicated that
beauvericins and 4-hydroxy-2-pyridones may be used as the
leading molecules of anti-pancreatic cancer, providing clues for
pharmaceutical chemists and pharmacologists. Comparison of the
cytotoxicity of 1–5 demonstrated that the cyclo-form and nitrogen
methylation at L-phe residue are important for the cytotoxic activity.
Compounds 7–9 showed more cytotoxic than 6 indicating that the 5-
aromatic ring may decrease the toxicity to the ASPC-1 cell.

The global outbreak of the COVID-19 pandemic has caused serious
public health and social problems. Although several drugs, such as
remdesivir, molnupiravir, nirmatrelvir/ritonavir, and azvudine have
been successively approved (Zhang et al., 2021; Zhang et al., 2022), the
effective anti-COVID-19 drugs is still one of the major researches focuses.
Here, we firstly discovered compounds 7 and 8 displayed the antiviral
activity against the coronavirus (HCoV-OC43), but this type of
compounds would need further structural modification, to lower
toxicity and improve their values of selectivity index (SI).
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