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The alkali mercerizing process of semicrystalline cotton fiber (CF) is widely used in the
printing and dyeing industry. The crystallinity change in the mercerizing process has been
studied and certain laws have been obtained, but there is still a certain distance between
the theoretical research results and the practical applications. CF is almost composed of
cellulose, combined with the photoluminescence (PL) phenomenon of cellulose; herein,
the varying crystallinity is correlated with its PL behavior after being treated with different
concentrations of NaOH. In line with the characteristics of nonconventional luminogens, CF
enjoys excitation-dependent emission and persistent room temperature
phosphorescence (p-RTP) behavior. The emission spectra of all samples under the
same excitation wavelength indicate that the change of CF crystallinity has a significant
impact on its fluorescence and p-RTP emission. As the concentration of NaOH increases,
the varying trend of quantum efficiency (QY) is consistent with the changed crystallinity of
CF. Interestingly, the lifetime of p-RTP is exactly the opposite of the crystallinity change law.
Clustering-triggered emission (CTE), crystallization-Induced Phosphorescence (CIP)
mechanism, and the swelling due to hydrated sodium ions can reasonably explain
these interesting photophysical processes, which also can be supported by theoretical
calculations. The above studies have basically clarified the inherent law between the
crystalline change of CF and the PL emission behavior during the alkali treatment process,
which can be used as a theoretical reference for real-time monitoring of CF crystallinity
changes using the spectral method in the actual cotton mercerizing process.
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clustering-triggered emission

INTRODUCTION

Cotton fiber (CF) is one of the most common fibers in the textile printing and dyeing industry. In
order to obtain excellent gloss and dyeing properties, CF will be alkali-treated through the alkali
mercerizing process (Yazdanshenas and Shateri-Khalilabad, 2013; Ramamoorthy et al., 2015;
Rajkumar et al., 2016). The cellulose content of CF is more than 90%, which is the source of
natural cellulose with the highest purity (Abidi et al., 2014; Moon et al., 2011; Roche et al., 1978).
Generally, after the CF is alkali mercerized, due to the fiber puffing, the light reflection behavior of CF
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is more regular, thus enhancing the luster (Akerholm et al., 2004).
At the same time, the increase of the amorphous fixed area of the
fiber increases the dye uptake rate during dyeing (Tsuboi, 1957;
Okano and Sarko, 1985; Samsudin et al., 2020). In the current
process, in addition to some research on the online control system
of alkali concentration in the mercerizing process, there is almost
no means to accurately monitor the crystallinity conversion of CF
during the mercerizing process (Ujhelyiova et al., 2007). In case,
sensitive monitoring methods such as light or electricity can be
used to accurately control the entire mercerizing process to
achieve fiber quality, which is very meaningful. The
photoluminescence (PL) property of cellulose discovered in
recent years has brought hope and feasibility to the
abovementioned solutions (Gong et al., 2013; Du et al., 2019;
Jiang et al., 2021; Lee et al., 2004). In 2013, Yuan et al. reported the
luminescence behavior of natural polymers such as rice, starch,
and cellulose, and found that they can emit bright light under
ultraviolet (UV) light, and proposed a clustering-triggered
emission mechanism (CTE), namely, the clustering of
nonconventional chromophores with π and n electrons, and
subsequent through space conjugation result in extended
electron delocalization and conformation rigidification, to
rationalize the emission, and to explain their intrinsic
luminescence (Gong et al., 2013). In 2019, Du et al. (2019)
found that microcrystalline cellulose (MCC) and its derivatives
have room temperature phosphorescence (RTP) emission and
used the CTE mechanism to explain such emission behavior.
These substances also exhibit aggregation-induced emission
(AIE) property (Dong et al., 2022).

Moreover, the luminescent compounds poly(amidoamine)s
(PAMAM) (Lee et al., 2004; Lin et al., 2011; Lu et al., 2015),
poly(amino ester)s (PAE) (Wu et al., 2005), poly(ether amide)s
(PEA) (Lin et al., 2009), polyethylenimines (PEI) (Pastor-Pérez
et al., 2007), and peptides, as (Guan et al., 2017) reported earlier,
should be able to explain their luminescence behavior using the
CTE mechanism. Subsequently, many researchers used the CTE
mechanism to explain a series of newly discovered non-
conjugated luminescence phenomena, such as Xylitol (Wang
et al., 2018), non-conjugated amino acid (Chen et al., 2018),
1,1,2,2-tetraphenylethane (Zhang et al., 2017), and MDM2
proteins (Liu et al., 2020), this mechanism has been
recognized by more and more researchers. Furthermore,
persistent room temperature phosphorescence (p-RTP)
phenomenon has been observed from many non-conjugated
organic compounds, such as poly(acrylic acid) (PAA) (Zhou
et al., 2020), polyacrylamide (PAM) (Wang et al., 2020),
cyanoacetic acid (Fang et al., 2018), sodium polymethacrylate
(PMANa) (Cai et al., 2019), and oxalic acid (Zheng et al., 2020).
Moreover, non-conjugated luminescent compounds have a
unique excitation wavelength dependence emission property,
generally RTP phenomenon and its wide application prospects
in multiple anti-counterfeiting and encryption fields have become
research hotspots (Liao et al., 2021a; Xu et al., 2021a; Liao et al.,
2021b; Xu et al., 2021b). However, at present, the
phosphorescence ability of such compounds is weak at room
temperature, and it can even be observed only in a vacuum for
some compounds, for example, BSA (Wang et al., 2019). In order

to enhance the p-RTP emission of such materials it may be
possible to learn from the currently more recognized
crystallization-induced phosphorescence (CIP) mechanism
(Yuan et al., 2010; Shen et al., 2017; Chen et al., 2019; Nitti
et al., 2020; Xing et al., 2020), that is, to build a rigid environment
by increasing crystallization to inhibit non-radiative transitions
(Sudhakar and Radhakrishnan, 2019; Yang et al., 2020).
Therefore, the change in crystallinity has a significant impact
on its luminescence behavior.

In order to explore the changes in the crystalline structure of
CFs during alkali treatment (Supplementary Figure S1), the PL
detection method is combined with crystallinity changes, so that
it can macroscopically characterize the changes in the
mercerization process of CFs through luminescence. In order
to obtain a variety of CFs with adjustable crystallinity, we use
traditional NaOH treatment solutions that cannot be
concentrated. A series of CF samples with different
crystallinity were prepared via different concentrations of
NaOH aqueous solution, and the changes in crystallinity with
luminescence behavior were carried out. The results showed that
with the increase of alkali treatment concentration, the
crystallinity of CF showed a trend of first decreasing and then
increasing, and the QY change trend was the same as mentioned
above. It is very interesting that in this process the p-RTP lifetime
of CFs changes in the opposite direction to their crystallinity, and
the most probable reason has been proven that the CF gradually
swells due to hydrated sodium ions, resulting in the formation of
more and stronger triplet emission centers.

RESULTS AND DISCUSSION

As shown in Figure 1, the crystallinity of CF calculated fromXRD
firstly drops and then rises with the increased NaOH
concentration (Supplementary Figure S2), and then reaches
the lowest value at 18 wt% (36.01%) (Figure 1C,
Supplementary Table S1). In the above process, the violently
evolved crystallinity is very likely to change the structure of the
cluster and the degree of conformation rigidification. Thus,
according to the CTE and CIP theory, these changes will have
a huge impact on the FL and p-RTP emission of CFs. In order to
prove our guess, these CFs were investigated under different UV
lamps (254, 312, and 365 nm). It can be seen that all the samples
emit blue light under different UV lamps (Figure 1A), and the
excitation spectra of the emission peak at 410 nm shows that the
best excitation of these samples is around 352 nm
(Supplementary Figure S3). Furthermore, these samples have
excitation-dependent emission under different excitation
(Figure 1B, Supplementary Figure S4), which implied the
existence of multiple launch centers.

The QY data also revealed a higher consistency of crystallinity,
indicating that crystallization can contribute to improve QY
(Figure 1C). Specifically, the CF-5 enjoys the highest
crystallinity and QY (70.70%, 5.19%), and the crystallinity and
QY of CF-18 reached the lowest value (36.01%, 2.24%), while the
crystallinity and QY of CF-21 increased simultaneously (43.86%,
3.01%) (Table S1). The above observations are macroscopic, and
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FIGURE 1 | (A) Photographs of CF samples taken under varying UV lights (254, 312, 365 nm) at ambient conditions. (B) PL spectra of CF-5 with different λex
values. (C) Trend graph of crystallinity and QY (%) of samples. (D)Confocal image recorded under excitation at 405 nm of the CF cross-section and (E) bright field image.

FIGURE 2 | (A) SEM images of CF cross-sections with different crystallinity (scale bar = 5 um). (B) Photographs of samples after ceasing the 254 nm irradiation at
ambient conditions. (C) Phosphorescence of CF sample at excitation wavelength of 280 nm (td = 0.1 ms). (D) Phosphorescence ms lifetimes of different fiber samples
(λex = 280 nm). (E) Change trend of ms lifetime and crystallinity of samples.
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the nature of the macro is always determined by the micro
structure. Thus, do the internal cross-sections of CF have
similar phenomena? The image of the radial cross-section of
the CF taken by the laser confocal microscope shows that the
inside also has a relatively strong PL behavior (Figures 1D,E).
Moreover, the PL emission phenomenon of CFs observed in a
microscopic scale has hardly been reported.

In the process of alkali treatment, the crystallinity also
changes the morphology of the fiber. This can be seen from
the SEM images of the cross-sections of these samples
(Figure 2A). As the alkali treatment concentration increases,
the CF gradually swells. The type changes to an elliptical cross-
section, which is caused by the swelling of the amorphous region
and the transformation of the crystalline region into the
amorphous region and the realignment of the molecules. In
the above morphological changes, the more important thing is
that the changes in molecular arrangement will lead to change in
intermolecular interactions, which will affect various physical
parameters of CFs, especially the changes in the structure of the
cluster emission center, thereby changing its PL behavior.
Combining CIP theory and CTE mechanism, changes in
crystallinity are likely to affect RTP emission property.
Unsurprisingly, after turning off the UV lamp of the same
wavelength, the p-RTP emission of samples with different
crystallinity have a certain difference in emission peaks and
lifetime (Figures 2B,C, Supplementary Figure S5 and
Supplementary Video S1), which indicates that the emission
ability of the emission center is different. The ms lifetimes are
greatly increased as the crystallinity decreases until CF-18
(Figures 2D,E, Supplementary Table S2), and then it
increased, basically contrary to the changing trend of
crystallinity.

According to the mechanism of CTE and CIP, the increase of
crystallinity should increase the emission ability of fluorescence and
p-RTP. In general, the arrangement of cellulose molecules in the
crystalline region must be denser than that in the amorphous region,
resulting in a closer average distance between oxygen atoms in the
crystalline region. It is easier for electrons to be delocalized and
conjugated to form cluster emission centers with strong emission
ability. With the increase of crystallinity, the number and emission
ability of the cluster also increase. The above finding can be reasonably
understood by the CTE mechanism. The increase of crystallinity
makes the distance between some other atoms closer, which leads to
the increase of interaction and the rigidity of the conformation of the
cluster, and improves the radiation transition probability, which can
be reasonably explained by the CIP mechanism.

The change of QY emission ability and the change of
crystallinity can support the above conclusion, but p-RTP has
the opposite conclusion which is probably because when the
crystallinity increases, the per unit volume of CF also increases,
and the volume of air decreases, which is defined as the swelling
effect (Figure 3A and Supplementary Figure S6). This effect has
been recognized as a phenomenon, and its mechanism is
generally believed to be derived from the destruction of the
lattice and the reconstruction of bonds by hydrated sodium
ions (Gert et al., 2000). Because of the presence of Na+ ions,
which apparently bond with the cellulose hydroxyl groups, almost
all of the interchain hydrogen bonds that ordinarily stabilize the
cellulose structure have been broken. New types of interchain
bonds were formed by the help of Na+ ions and water molecules
present in the system (Klemm et al., 1998). Sodium ions partially
remain in the amorphous region due to ionic interactions with
oxygen anions, and its content increase with the increase of the
amorphous region which can be supported from their mapping

FIGURE 3 | (A) SEMmapping images of CF cross-sections with different crystallinity (scale bar = 10 um), area scans of C and Na elemental distribution. (B) Partial
hydrogen bond interactions in CFs. (C) The oxygen clusters in CFs are mainly formed by the interaction of oxygen atoms. (D) LUMO and HOMO electron densities of the
dimer and trimer.
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elements (carbon, oxygen, and sodium) results calculated by
deducting the background and integral area (Figure 3A,
Supplementary S7–S9, Supplementary Table S3). The
interaction of Na+ and O− ions (removal of H from hydroxyl
groups on cellulose) to form part of ionic bond greatly increases
the molecular conformation rigidity. It can form an emission
center with stronger triplet emission capability, so that the CF
with low crystallinity has a longer afterglow instead.

The PL phenomenon of CF can be explained by the CTE
mechanism, the clustering of oxygen atoms created enriched
energy levels and narrowed the energy gaps, thus promoting
SOC and allowing the consequent ISC transitions. It can be seen
from the above analysis that the influence of crystallinity
conversion process on the PL performance of CF has been
partially obtained. How do the molecules in the CF affect its
emission? In-depth analysis, it can be found that strong hydrogen
bond interactions are formed between the hydroxyl groups on the
cellulose molecular structure, especially in the crystalline region
(Figure 3B). The remaining Na ions in the intermolecular and O
atoms form partial ionic bonds, resulting in a more rigid cluster
emission center. In addition, the interaction between the lone pair
of oxygen atoms forms an oxygen cluster structure, which
increases the rigidity of the cluster’s conformation under the
action of hydrogen bonds, and makes it have PL ability. In order
to further understand why the cellulose molecule has PL and
p-RTP emission capability, the preliminary theoretical
calculations were conducted. LUMO and HOMO electron
densities of the dimer (the smallest unit of cellulose) and
trimer of the cellulose unit were calculated, and their
molecular conformations are optimized. Although the results
remain preliminary, the electron density distribution clearly
indicates the intramolecular O···O electron delocalization for
the leftmost single molecule in the dimer and trimer
(Figure 3D). In addition, the HOMO and LUMO levels of
aggregates clearly illustrated the extended delocalization
among the neighboring molecules in excited states, which
agreed well with the postulated hypothesis.

CONCLUSION

In conclusion, CF enjoys excitation-dependent emission and
p-RTP behavior. Moreover, the emission spectra of all samples
under the same excitation wavelength indicate that the change of
CF crystallinity has a significant impact on its fluorescence and

p-RTP emission. The increased QY is attributed to the increase in
crystallinity, whereas the emission ability of p-RTP exhibits a
negative correlation. These interesting phenomena can be
reasonably explained by CTE and the swelling due to hydrated
sodium ions. Furthermore, these findings, in turn, offer more
fundamental implications to the underlying mechanism of
nonconventional chromophores. The exploration of the CIP
and CTE laws of CF is likely to fill the gap in the study of
photoluminescence behavior in the process of crystallization
conversion of the natural polymer (fiber). More meaningful is
that these results can be used as a theoretical reference for real-
time monitoring of CF or other natural fiber in the actual
mercerizing process.
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