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Genetically encoded non-canonical amino acids (ncAAs) with electrophilic moieties are
excellent tools to investigate protein-protein interactions (PPIs) both in vitro and in vivo. These
ncAAs, including a series of alkyl bromide-based ncAAs, mainly target cysteine residues to
form protein-protein cross-links. Although some reactivities towards lysine and tyrosine
residues have been reported, a comprehensive understanding of their reactivity towards a
broad range of nucleophilic amino acids is lacking. Here we used a recently developed
OpenUaa search engine to perform an in-depth analysis of mass spec data generated for
Thioredoxin and its direct binding proteins cross-linked with an alkyl bromide-based ncAA,
BprY. The analysis showed that, besides cysteine residues, BprY also targeted a broad
range of nucleophilic amino acids. We validated this broad reactivity of BprY with Affibody/Z
protein complex. We then successfully applied BprY to map a binding interface between
SUMO2 and SUMO-interacting motifs (SIMs). BprY was further applied to probe SUMO2
interaction partners. We identified 264 SUMO2 binders, including several validated SUMO2
binders and many new binders. Our data demonstrated that BprY can be effectively used to
probe protein-protein interaction interfaces even without cysteine residues, which will greatly
expand the power of BprY in studying PPIs.
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INTRODUCTION

Protein-protein interactions (PPIs) are essential for virtually all cellular processes in all living organisms.
Thus, there is a significant effort inmapping protein-protein interaction networks to understand relevant
biological processes in detail, and many techniques have been developed for this purpose (Low et al.,
2021). Affinity purification mass spectrometry (AP-MS) have been successfully applied to map protein-
protein interactomes inmany organisms (Ho et al., 2002; Butland et al., 2005; Krogan et al., 2006; Gordon
et al., 2020; Richards et al., 2021), although these methods cannot distinguish between direct binders and
indirect binders of a protein of interest (POI) (Morris et al., 2014). Moreover, weak and transient
interactions are typically not comprehensively detected under the conditions of AP-MS (Richards et al.,
2021). Proximity labeling (PL) by introducing covalent labels to proteins proximal to a POI allows large
scale analysis of protein-protein interactions with potential spatial and temporal resolutions in cells (Han
et al., 2018; Roux et al., 2018). However, limited information is available to map the interaction interfaces
to gain further structural understanding of these interactions.
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A complementary method to AP-MS and PL for analyzing
PPIs involves covalent cross-linking (Liu et al., 2015; Wang, 2017;
Nguyen et al., 2018; Yu and Huang, 2018). Genetic code
expansion by amber codon suppression has enabled site-
specific incorporation of non-canonical amino acids (ncAAs)
into proteins (Wang et al., 2001; Wang and Schultz, 2004; Wang
et al., 2006; de la Torre and Chin, 2021; Shandell et al., 2021).
Many ncAAs, including photo-activated ncAAs (Chin et al.,
2002a; Chin et al., 2002b; Zhang et al., 2011; Lin et al., 2014;

Yang et al., 2016) and those with fine-tuned bio-reactivity to
capture protein binders (Xiang et al., 2013; Chen X.-H. et al.,
2014; Furman et al., 2014; Xiang et al., 2014; Xuan et al., 2016;
Cigler et al., 2017; Wang, 2017; Nguyen et al., 2018; Shang et al.,
2018; Wang et al., 2018; Yang et al., 2019; Liu et al., 2020; Liu
J. et al., 2021), has been successfully incorporated into proteins.
One example is a chemical cross-linking ncAA BprY with an
electrophilic alkyl bromide group (Figure 1A), which is typically
unreactive towards biomolecules in cells after incorporation into

FIGURE 1 | Broad reactivity of BprY to nucleophilic amino acids identified by data mining. (A) Scheme of in-situ BprY cross-linking and in-depth data analysis by
OpenUaa. (B)MS/MS fragmentation patterns of cross-linked peptides with different nucleophilic AAs targeted by BprY. (C) Number of cross-linked peptides identified
for different targeted AAs.
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a POI unless there is a proximal nucleophilic cysteine residue
from the binder of this POI through the proximity-enabled
reactivity. Given its ability to cross-link proximal cysteine
residues, BprY has been successfully applied to capture
proteome-wide protein-protein interactions in live cells (Yang
et al., 2017), allowing the development of GECX-MS (Genetically
Encoded Chemical Cross-linking of proteins coupled with Mass
Spectrometry) as a powerful tool to identify direct binding
partners of target proteins (Figure 1A). In GECX-MS, a cross-
linkable ncAA, such as BprY, is genetically incorporated into a
bait protein to covalently capture binder proteins including those
weak and transient PPIs in situ. Analysis of cross-linked peptides
by mass spectroscopy identifies not only binder proteins but also
their corresponding cross-linking sites, which could be used to
map binding interfaces or binding motifs.

One limitation of BprY and related alkyl halide-based ncAAs
is that the cross-linking reaction requires proximal cysteine
residues in binder proteins. Because cysteine residues are in
relatively low abundance and they often form disulfide bonds,
potentially binder proteins without proximal cysteine residues
may not be captured. To maximize the potential of BprY to probe
protein-protein interactions, its amino acid reactivity beyond
cysteine is critical. Although there are some reports of
extended reactivity of alkyl bromide based ncAAs towards
glutamate, lysine and histidine (Chen X.-H. et al., 2014; Xiang
et al., 2014; Cigler et al., 2017), a comprehensive analysis of BprY
reactivity towards different nucleophilic amino acids under
physiological conditions is not available. Here we show that
BprY can target a broad range of nucleophilic amino acid
residues, including Cys, Asp, Glu, Ser, Thr, His, and Tyr,
among which the reactivity to Cys is still the highest. BprY
can also be used to probe PPIs without cysteine at the binding
interface. Finally, we successfully applied BprY to identify
SUMO2-interacting proteins at a whole proteome level.

MATERIALS AND METHODS

Plasmid Construction
pBad-Affibody and mutants. The gene encoding Affibody was
PCR amplified with Affibody-NdeI-F and Affibody-HindIII-R
primers, and the PCR product was cloned into a commercial
pBad vector pre-treated with NdeI and HindIII enzymes.
Affibody-D2N mutant was generated by PCR amplification of
pBad-Affibody with Affibody-D2N-F and Affibody-HindIII-R
primers. Affibody mutants pBad-Afb*(K7X) were generated by
PCR amplification of pBad-Affibody with Affibody-Mutant-F
and Affibody-Mutant-R primers.

Affibody-NdeI-F:
GGAGATATACATATGGTAGACAACGCCTTCAAC
Affibody-HindIII-R:
AAAACAGCCAAGCTTTTAGTGATGGTGATGGTG

ATGA
Affibody-D2N-F:
GGAGATATACATATGGTAAACAACGCCTTCAACAAG
Affibody-Mutant-F:
AACAACGCCTTCAACxxxCAACTATCAGTCGCC

Affibody-Mutant-R:
GGCGACTGATAGTTGxxxGTTGAAGGCGTTGTT
pBad-MBP-Z-24TAG. The gene encoding MBP-Z fusion

protein was PCR amplified with the following primers, and
the PCR product was cloned into the pBad vector pre-digested
with NdeI and HindIII enzymes. pBad-MBP-Z-24TAG was
generated by PCR amplification of pBad-MBP-Z with MBP-Z-
24TAG-E25Q-Mutant primers.

MBP-Z-NdeI-F:
GGAGATATACATATGATGAAAATCGAAGAAGGT

AAACTG
MBP-Z-HindIII-R:
CAAAACAGCCAAGCTTTTAATGATGATGATGATGAT

GCTTAGG
MBP-Z-24TAG-E25Q-Mutant-F:
TTACCTAACCTGAATTAGCAGCAGCGTAATGCCTTC
MBP-Z-24TAG-E25Q -Mutant-R:
GAAGGCATTACGCTGCTGCTAATTCAGGTTAGGTAA
pBad-SUMO2 and mutants. The gene encoding Homo sapiens

SUMO-2 (NCBI Reference Sequence: NM_006937.3) was PCR
amplified with the following primers, and the PCR product was
cloned into the pBad vector pre-treated with NdeI and HindIII
enzymes. Sites of hSUMO2-E49 and R50 were mutated to a TAG
codon respectively.

hSUMO2-NdeI-F:
GGAGATATACATATGATGGCCGACGAAAAGC
hSUMO2-HindIII-R:
AACAGCCAAGCTTTCAGTGATGGTGATGGTGATGGT

AGACACCTCCCGTCT
pET28a-MBP-RNF111293-391. The gene encoding Homo

sapiens RNF111293-391 (NCBI Reference Sequence:
NM_001270530.1) was PCR amplified with the following
primers, and the PCR product was cloned into a pET28a-MBP
vector.

pET28a-MBP-RNF111-F:
AAGTTCTGTTCCAGGGGCCCCATATGATGTCAGGAA

GTATTGATGAAGATGTTG
pET28a-MBP-RNF111-R:
CAGTGGTGGTGGTGGTGGTGCTCGAGTTCATCTTCA

TCAACGGTAAGGTC

Protein Expression
Affibody, SUMO2 and MBP-RNF111293-391. The corresponding
plasmids were individually transformed into DH10B cells, which
were plated on LB agar plates supplemented with 100 μg/mL
ampicillin. Colonies were picked from the plate of each plasmid
and individually inoculated to 100 mL LB (5 g/L NaCl, 10 g/L
Tryptone, 10 g/L Yeast extract). Cells were grown at 37°C and
200 rpm to an OD of 0.6 with good aeration and the relevant
antibiotic selection. For induction of MBP-RNF111293-391,
400 μM IPTG was added. 0.2% L-arabinose was added to
induce the expression of Affibody and SUMO2. The
expression was carried out at 30°C, 200 rpm for 5h. Cells were
harvested by centrifugation at 6,000 g, 4°C for 10 min. The cell
pellet was washed with cold PBS buffer and centrifuged again at
6,000 g, 4°C for 10 min. Cell pellets were then frozen in liquid
nitrogen and stored at −80°C.
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ncAA constructs: MBP-Z(E24BprY), SUMO2*(E49BprY), and
SUMO2*(R50BprY). The corresponding plasmids were
individually transformed into DH10B cells together with
pEvol-BprY plasmid. Cells were plated on LB agar plates
supplemented with 100 μg/mL ampicillin and 30 μg/mL
chloramphenicol. Colonies were picked from these plates and
individually inoculated to 25 mL LB (5 g/L NaCI, 10 g/L
Tryptone, 10 g/L Yeast extract). Cells were grown at 37°C and
200 rpm to an OD of 0.4 with good aeration and the relevant
antibiotic selection. Then the medium was added 1 mM ncAA
BprY and 0.2% L-arabinose. The expression was carried out at
18°C and 200 rpm shaking for 18 h. Cells were harvested by
centrifugation at 3,260 g and 4°C for 20 min. Cell pellets were
washed with cold PBS buffer, centrifuged again at 3,260 g and 4°C
for 20 min. Cell pellets were then frozen in liquid nitrogen and
stored at −80°C.

His-Tag Protein Purification
Frozen cells were rapidly thawed and resuspended in lysis buffer
(50mM Tris, pH8.0, 500 mM NaCl, 0.1% Tween-20). EDTA S3
free protease inhibitor cocktail was added followed by vortexing
for 2 min. Cells were lysed by sonication after which the cell lysate
was clarified by centrifugation at 13,000 rpm and 4°C for 30 min.
The supernatant was collected and incubated with 200 µL Ni-
NTA Affinity resin at 4°C for 1 h. The resin was washed with an
equal volume of wash buffer (50 mM Tris pH8.0, 500 mM NaCl,
20 mM imidazole) for 2 times at 4°C. Elution was done with
200 µl elution buffer (50 mM Tris pH8.0, 100 mMNaCl, 250 mM
imidazole) for five times. The fractions containing the target
protein were determined by SDS-PAGE analysis with 10%
Tricine gel.

Proteins Cross-Linking in vitro
A 20 μL reaction mixture containing MBP-Z(E24BprY) (0.6 mg/
mL) and Affibody (1.2 mg/mL) in HEPES buffer (pH 7.5) was
incubated at 37°C for 8 h. A 20 μL reaction mixture containing
SUMO2 (10 μM) and RNF111 (293-391) (10 μM) in HEPES
buffer (pH 7.5) was incubated at 37°C for 8 h.

Protein Digestion
Protein samples were precipitated by the addition of six volumes
of cold acetone (−20°C) and incubated at −20°C for 30 min.
Precipitated proteins were air dried and resuspended in 8 M
urea, 100 mM Tris, pH 8.5. After reduction with 5 mM TCEP for
20 min and alkylation with 10 mM iodoacetamide for 15 min in
the dark, samples were diluted to 2 M urea with 100 mM Tris, pH
8.5, and digested with trypsin (at 50:1 protein: enzyme ratio) at
37°C for 16 h. Digestion was terminated by adding formic acid to
5% final concentration, and digested peptides were desalted with
StageTips.

Cell Lysate Cross-Linking and Two-step
His-Tag Purification to Enrich Cross-Linked
Peptides
Cell pellets expressing His-tagged SUMO2*(E49BprY) or
SUMO2*(R50BprY) were resuspended in 4 ml lysis buffer

(50 mM Tris, pH 8.0, 500 mM NaCl, 0.1% Tween-20),
separately. Cells were lysed by sonication after which the cell
lysate was clarified by centrifugation at 13,000 rpm and 4°C for
30 min. The supernatants were collected and incubated with
200 µl Ni-NTA Affinity resin at 4°C for 2 h. The resin was
washed with 4 ml of wash buffer (50 mM Tris pH 8.0,
500 mM NaCl, and 20 mM imidazole) for 3 times at 4°C,
followed by a second rinsed with an equal volume of wash
buffer 2 (50 mM Tris pH8.0, 500 mM NaCl, 40 mM imidazole)
for 3 times at 4°C. Then the resin was equilibrated with lysis buffer
and incubated with 293T cell lysates from one 10 cm plate at RT
for overnight. The next day, the resin was washed with 4 mL wash
buffer (50 mM Tris pH 8.0, 500 mMNaCl, 20 mM imidazole) for
3 times at 4°C, and then rinsed with an equal volume of wash
buffer 2 (50 mM Tris pH8.0, 500 mM NaCl, 40 mM imidazole)
for 3 times at 4°C. Elution was done with 200 µl elution buffer
(50 mM Tris pH 8.0, 100 mM NaCl, 250 mM imidazole) for five
times. The eluates were concentrated, and buffer exchanged into
100 µl of protein storage buffer (50 mM HEPES, pH 7.5, and
100 mM NaCl) using 10 k Amicon Ultra columns. Purified
proteins were digested with Lys-C at 37°C for overnight, and
digested peptides were incubated with pre-equilibrated Ni-NTA
Agarose resin (50 µL) at 4°C for 2 h to further enrich cross-linked
peptides (all contain C-terminal His tag after Lys-C digestion).
Resin was rinsed with wash buffer 2 for three times and 50 mM
NH4HCO3 twice. Bound peptides were digested on-bead with
Trypsin at 37°C for 8 h, and digested peptides were desalted with
StageTips before MS analysis.

Tandem MS Analysis
MS experiments were performed on a Q Exactive HF-X
instrument (ThermoFisher) coupled with an Easy-nLC 1200
system. Mobile phase A and B were water and 80%
acetonitrile, respectively, with 0.1% formic acid. Digested
peptides were loaded directly onto analytical column (75 μm ×
20 cm, 1.9 μm C18, 5 μm tip) at a flow rate of 300 nL/min. All
peptide samples were separated using a linear gradient of 6–22%
B for 38 min, 22–35% B for 17 min, 35–90% B in 2 min, 90% B for
1 min, 100% B for 2 min. Survey scans of peptide precursors were
performed from 350 to 1500m/z at 60,000 FWHM resolution
with a 1 × 106 ion count target and a maximum injection time of
20 ms. The instrument was set to run in top-speed mode with 1-s
cycles for the survey and the MS/MS scans. After a survey scan,
tandem MS was then performed on the most abundant
precursors exhibiting a charge state from 3 to 7 of greater
than 1 × 105 intensity by isolating them in the quadrupole at
1.6 m/z. Higher energy collisional dissociation (HCD)
fragmentation was applied with 27% collision energy and
resulting fragments detected in the Orbitrap detector at a
resolution of 15,000. The maximum injection time limited was
30 ms, and dynamic exclusion was set to 30 s with a 10 ppmmass
tolerance around the precursor.

MS Data Analysis
MS/MS spectra were extracted by parsing from RAW file.
Datasets of model proteins were searched against the
corresponding proteins by OpenUaa. OpenUaa was also used
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to search data of two-step purified Trx sample and SUMO
interaction protein sample against E. coli proteome and
human proteome downloaded from the UniProt database and
the reversed decoy proteins, separately. OpenUAA search
parameters: 5% false discovery rate (FDR) at the peptide-
spectrum match (PSM) level, 10 ppm precursor mass
tolerance, 20 ppm fragment mass tolerance, variable
modification Cys 57.02146, and three maximum number of
missed cleavage sites.

Molecular Docking Study
For molecular docking, we first relaxed the structures of SUMO2
and RNF4 (PDB ID: 6JXX and 4PPE, respectively) in the Rosetta
software suite (Leaver-Fay et al., 2011). 1000 models were
generated for each protein and the model with the lowest total
score was chosen for docking. In the protein-protein docking
using Rosetta suite, RNF4 was first randomly orientated relative
to SUMO2, and then 10,000 docking models were generated. The
final docking model was chosen as the model with the largest
binding energy (Rosetta energy term: I_sc). The docking model
was rendered in the UCSF Chimera (Pettersen et al., 2004).

Bioinformatic Analysis
For the analysis of sequence motif around the cross-linked sites,
MEME software was used to scan a ±15 amino acids sequence
window around the cross-linked site to generate a consensus
motif. Gene ontology (GO) term and KEGG pathway enrichment
for functional analysis were performed using the clusterProfiler
package under the R software (Yu et al., 2012). The human
proteome was used as the background for enrichment analysis.
The significance of the enrichment analysis was defined using a
hypergeometric test, and the resulted p values were corrected for
multiple hypothesis testing using the BH method (Hendriks and
Vertegaal, 2016). The final reported enriched terms and pathways
were filtered according to the adjusted p values <0.05. STRING
network analysis was performed using the STRING database,
which integrate multiple information sources for protein
interaction speculation (Szklarczyk et al., 2019). Using all
identified interacting proteins of SUMO2 as input, protein
interactions between SUMO2 interacting proteins were filtered
at a STRING interaction confidence of >0.4. Statistical analysis of
the interaction network was performed based on the interactions
in the networks compared to randomly expected frequency of
interactions. Network visualization was performed using
Cytoscape software version 3.7.2. The MCODE plugin of
Cytoscape was used to extract the 8 interconnected modules
under default settings for other parameters (Bader and Hogue,
2003).

RESULTS

Deep mining of interactome data identified a broad reactivity of
BprY. We chose to investigate those nucleophilic amino acids
known to carry out alkylation reactions (deGruyter et al., 2017).
Nucleophilic substitution reactions with Asn/Gln/Arg sidechains
are rare. Thus, we think they are unlikely to react with BprY. For

Met, alkylation with benzyl bromides has been reported using
model peptides under acidic conditions (Kramer and Deming,
2013). It is also known that iodoacetamide, a common alkylation
reagent used in proteomics, can alkylate Met (Kruger et al., 2005).
Therefore, we think it is possible that Met might also react with
BprY. One concern is that the alkylation product sulfonium can
undergo a dealkylation reaction (Kramer and Deming, 2013) and
can dissociate upon collision to cause neutral mass loss (Kruger
et al., 2005), which can further complicate theMS analysis. Due to
these reasons, we decided to focus on Cys, Asp, Glu, His, Lys, Ser,
Thr and Tyr in the current study. To systematically evaluate the
reactivity of BprY to different types of amino acid residues in
proteins, we re-analyzed previously published direct interactome
data (Yang et al., 2017) of thioredoxin (Trx) probed by BprY
(Figure 1A). Using a recently developed searching algorism
OpenUaa (Liu C. et al., 2021), which allowed deeper mining
of the interactome data, we observed a broad reactivity of BprY to
multiple nucleophilic amino acids—Cys, Asp, Glu, His, Lys, Ser,
Thr and Tyr, supported by high-quality MS/MS spectra (Figures
1B; Supplementary Figure S1). As expected, the reactivity is
dominated by Cys with 118 Cys-targeted peptides identified.
However, we also observed 43 non-Cys cross-linked peptides
which still made a significant contribution to determining the
direct interactome (Figure 1C).

Validate the reactivity using a model interacting protein pair.
To validate this broad reactivity of BprY, we employed a model
interacting protein pair—affibody (Afb) and protein Z fused to
maltose-binding protein (MBP-Z) (Figure 2A). Efficient cross-
linking was observed when a Cys residue and BprY were
introduced to replace residue K7 of Afb and residue E24 of
MBP-Z, respectively (Supplementary Figure S2A), consistent
with a previous study (Yang et al., 2017). Several other AAs were
also introduced at residue 7 of Afb, and the extent of cross-linking
between Afb(K7X, X: variable AA) and MBP-Z(E24BprY) was
evaluated. To our surprise, even some degree of cross-linking was
observed between the “unreactive” control Afb(K7A) and MBP-
Z(E24BprY) (Supplementary Figure S2A), suggesting
nucleophilic amino acid residues adjacent to residue 7 in Afb
can also facilitate cross-linking. We found that a triple mutation
D2N, K4A, and E8Q of Afb completely eliminated cross-linking
of the “unreactive” control (Figure 2B). Therefore, this triple
mutation of Afb, denoted as Afb* thereafter, was further
investigated. As shown in Figure 2B, Afb*(K7C) was
efficiently cross-linked to MBP-Z(E24BprY), suggesting that
the triple mutation didn’t affect the binding of Afb to MBP-Z.
Further cross-linking of MBP-Z with Afb*(K7X) showed that,
compared to Afb*(K7C), several nucleophilic amino acids
displayed reactivity to BprY, although the cross-linking
efficiency as evaluated from the intensity of the cross-linking
band is lower than that of Cys.

Apply BprY to study PPI without Cys at the interface in vitro.
The study with model interacting protein pair further supported
that BprY can target multiple nucleophilic amino acid residues
beyond Cys, suggesting that BprY can be used to probe protein-
protein interactions even without Cys residues at the interaction
interface. To test this idea, we used BprY to capture the
interaction between small ubiquitin-like modifiers (SUMOs)
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and one of their binding partners—RNF111. SUMOs can be
reversibly conjugated to lysine side-chains of target proteins by an
enzymatic cascade involving E1-E2-E3 enzymes, and this
modification plays a key role in genome stability and
transcription. The interaction between SUMOs and their
binding partners is mediated primarily by SUMO-interacting
motifs (SIMs) containing 3-4 aliphatic amino acid residues
(Figure 3A) (Flotho and Melchior, 2013). RNF111 is a

SUMO-targeted ubiquitin ligase with three SIMs and an acidic
stretch adjacent to SIM3 (Poulsen et al., 2013; Sriramachandran
et al., 2019).

To probe the binding between SUMO2 and RNF111, we
generated two SUMO2 constructs with BprY individually
incorporated into SUMO2 at residue E49 or R50, adjacent to
the SIM-binding groove (Figure 3A). In both constructs, residue
C48 was mutated to Ala to prevent intra-protein cross-linking.

FIGURE 2 | Broad reactivity of BprY to nucleophilic AAs demonstrated using a model interacting protein pair. (A) The interaction between protein Z and affibody
(PDB ID 1LP1) shows proximity between residue E24 in protein Z and residue K7 in affibody. (B) Cross-linking between MBP-Z(E24BprY) to Afb*(K7X). * denotes Afb
with triple mutants D2N, K4A, and E8Q.

FIGURE 3 | BprY successfully probed a PPI interface without Cys. (A) The interaction between SUMO2 and SIM (PDB ID 2MP2) shows residues E49 and R50 next
to the SIM-binding groove. A scheme illustrating the incorporation of BprY at residue 49 or 50 of SUMO2 to covalently capture SUMO2 binding proteins. (B) The
construct of MBP-RNF111293-391. (C) SDS-PAGE gel shows cross-linking of MBP-RNF111293-391 and RNF111293-391 with SUMO2* (E49BprY) or SUMO2* (R50BprY).
Gel was stained by Coomassie brilliant blue. * denotes C48A mutation. Red arrows indicate cross-linking bands. (D,E) Representative MS/MS spectra of cross-
linked peptides showing BprY in SUMO2 cross-linked to E391 and D384 of RNF111.
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Mutation of these residues has been known to have a small effect
on SUMO2 binding (Bouchenna et al., 2019; Bruninghoff et al.,
2020). These two constructs SUMO2*(E49BprY) and
SUMO2*(R50BprY) were then individually incubated with
MBP-RNF111293-391 (Figure 3B). As shown in Figure 3C,
both SUMO2*(E49BprY) and SUMO2*(R50BprY) formed
inter-protein cross-links with MBP-RNF111293-391. The same
result was also observed with RNF111293-391, suggesting the
cross-links are specific to RNF111. Incorporation of BprY at
residue 49 of SUMO2* appeared to give more efficient cross-
linking, suggesting that the side-chain of residue 49 might be
better positioned for the cross-linking reaction. Another
possibility is that mutation of R50 caused weaker binding to
SIMs. Further mass analysis identified cross-links between BprY
in SUMO2* to residues D384 in SIM3 and E391 in the acidic
stretch of RNF111 (Figures 3D,E), supporting that this acidic
stretch contributes to the binding of SIM3 in RNF111 to SUMO2.

Proteome-wide identification of SUMO2 interacting proteins by
BprY. We next applied BprY to covalently capture SUMO2
interaction partners at the whole proteome level using
293T cell lysates (Figure 4A). After the expression of
C-terminal His-tagged SUMO2*(E49BprY) and
SUMO2*(R50BprY) in E. coli DH10B cells, both constructs
were purified by Ni-NTA resin, and the resin-bound SUMO2
was incubated with 293T cell lysates to capture SUMO2 binders
by forming cross-links. The resin was then stringently washed
followed by elution to give SUMO2 and SUMO2 cross-linked to
its interacting proteins. Because there is no lysine residue after
K44 in SUMO2, Lys-C digestion followed by a second-step Ni-
NTA purification can further enrich cross-linked peptides
(Figure 4A). Final on-bead trypsin digestion was done before
mass analysis.

A total of 482 cross-linked peptides were detected (399 Cys
and 83 non-Cys, Figure 4B), corresponding to 264 SUMO2
binders among which 139 are proteins with nucleus
localization. Cysteine residues only account for about 2% of
the total residues in proteins and likely have low frequency to

appear at binding interfaces compared with all the other amino
acids investigated here. However, our SUMO interactome data
showed that the number of identified cysteine-targeted cross-
links is four times higher than that of non-cysteine cross-links.
This is mainly due to higher intrinsic reactivity of cysteine
sidechain to BprY. We believe that, for non-cysteine cross-
links to occur efficiently, the interaction needs to be relatively
strong, and the non-cysteine sidechain needs to be in an optimal
geometry to react with BprY. Because SUMO2 is mainly localized
in the nucleus, we first attempted to analyze these nuclear protein
binders. Among them, we observed a previously reported
SUMO2 binder RNF4 as well as many known SUMOylation
substrates, including PCNA, SATB1, etc (Figure 5A). An analysis
using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database showed that most of the SUMO2
binders were situated in a large network in which proteins are
functionally/physically connected. At medium STRING
confidence, 126 of the 139 proteins are in a single interaction
network, with a PPI enrichment p-value < 1e-16, suggesting the
identified SUMO2 binders are functional connected.
Furthermore, we performed MCODE analysis on the SUMO2
binder network and identified 8 highly interconnected clusters
within the core network (Figure 5A), including the spliceosome,
ubiquitin proteasome system, DNA replication factors, and RNA
processing factors. Interestingly, members (MCM3/CHRAC1/
POLA2) of a cluster are all newly identified SUMO2 binders
(Li et al., 2018; Dang and Morales, 2020). Since SUMOylation
plays critical roles in DNA damage response (DDR) and
numerous SUMO conjugates have been identified, the
interaction between SUMO2 and MCM3/CHRAC1/POLA2
may establish a new link between SUMOylation mediated
double strand breaks repair and maintenance of genome stability.

The KEGG pathway enrichment analysis highlighted three
major pathways associated with these binders—spliceosome,
mRNA surveillance pathway, and nucleocytoplasmic transport,
consistent with some of the major functions of SUMOylation
(Figure 5B). Interestingly, de novo motif discovery using MEME

FIGURE 4 | Incorporation of BprY into SUMO2 to identify SUMO2 binders. (A) The experimental workflow. Bead-bound SUMO2 was incubated with 293T cell
lysates for cross-linking. A double protease cleavage strategy was used to enrich cross-linked peptides beforeMS analysis. (B) The number of cross-linked peptides with
Cys or non-Cys residues at cross-linking sites.
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based on sequences flanking the cross-linking site of SUMO2
binders revealed a CXXC motif (Figure 5C), which is commonly
found in zinc finger proteins. Indeed, many identified proteins
have zinc finger domains (ZNF24/346/691/703/768 and
ZC3HAV1). This finding is consistent with previous reports
suggesting that other than SIMs, zinc fingers can also bind
SUMOs (Danielsen et al., 2012; Guzzo et al., 2014; Diehl et al.,
2016). Besides, the enrichment of lysine in the motif suggests a
close distance between cross-linked sites and SUMOylation sites.

One advantage of GECX-MS is the ability to identify cross-
linking sites, which can be used to generate distance restraints for
structural modeling. We focused on RNF4, a known binder of
SUMO2, and attempted to reveal the potential conformation of the
SUMO2-RNF4 complex with molecular docking. RNF4 has four
SIMs and a zinc finger domain. Previous studies have identified
SIM2 and SIM3 as the major contributor to SUMO binding (Kung
et al., 2014; Xu et al., 2014). Interestingly, in this study, we found a
cross-link between SUMO2 to the zinc finger domain of RNF4,

FIGURE 5 | Bioinformatic analysis of SUMO2 interacting proteins. (A) STRING analysis identified eight functionally connected clusters of PPIs. Rectangles
represent genes previously linked to SUMO2 according to the STRING database. (B) KEGG pathways enrichment analysis. (C) De novo motif discovery by MEME
shows a CXXCmotif. (D)Docking model of SUMO2 (blue, PDB ID 6JXX) and RNF4 zinc finger domain (red, PDB ID 4PPE) using the distance restraint from cross-linking.
The cross-linking sites in the SUMO2-RNF4 complex were highlighted in grey.
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suggesting that this domain may also be involved in SUMO
binding. By applying the distance restraint from cross-linking,
we performedmolecular docking of SUMO2 and RNF4 zinc finger
domain using the Rosetta software suite (Leaver-Fay et al., 2011).
The docking model (Figure 5D) revealed a binding interface on
SUMO2 close to the SIM-binding groove. One thing to be noted is
that because the BprY mediated cross-linking in this study was
done in cell lysates with mixed cellular compartments, we also
identified many non-nuclear proteins as SUMO2 binders. Gene
ontology (GO) analysis suggested a potential link between SUMO2
to protein translation and localization (Supplementary Figure S3).
Although there have been studies showing this link (Xu et al.,
2010a; Xu et al., 2010b; Chen L.-z. et al., 2014), more detailed
investigation will be needed in future studies.

CONCLUSION

In conclusion, we have demonstrated that the alkyl bromide
containing ncAA BprY can react with not only cysteine residues
but also a broad range of nucleophilic amino acids. Therefore, the
application of BprY will not be limited to PPIs containing cysteine
residues at the binding interface. Indeed, this aspect has been
successfully demonstrated by our in vitro study of SUMO2/
RNF111 interaction in which there are no cysteine residues at
the binding site. With this broad reactivity, we applied BprY to
covalently capture and identify 264 SUMO2 interacting proteins
at a whole proteome level. This study further demonstrated that
BprY and the relevant alkyl halide ncAAs are excellent tools to
study protein-protein interactions.
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