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Activated Cdc42-associated kinase 1 (ACK1/TNK2) has a significant role in cell
endocytosis, survival, proliferation, and migration. Mutations in ACK1 are closely
associated with the occurrence and development of cancers. In this work, a
conceptual density functional theory (CDFT)-based computational peptidology (CDFT-
CP) method is used to study the chemical reactivity of 14 multikinase inhibitors. Optical
properties of these inhibitors are studied by time-dependent density functional theory
(TDDFT). Various biological and pharmacokinetic parameters are studied by Osiris,
Molinspiration, and BOILED-Egg in SwissADME software tools. Physicochemical and
biopharmaceutical (PCB), Salmonella typhimurium reverse mutation assay (AMES)
mutagenicity, toxicity, and risk prediction are estimated by Simulations plus ADMET
Predictor 10.2 software. MD simulations for an active model of ACK1 is carried out by
the CABS-flex 2.0 web server, and potential binding pockets for ACK1 are searched using
the PrankWeb server. SwissTargetPrediction is used to predict the potential targets for the
multikinase inhibitors. Docking studies are carried out for ACK1–multikinase inhibitors
using Autodock 4.2 software. Noncovalent interactions for ACK1–multikinase inhibitor
complexes are studied using the Protein–Ligand Interaction Profiler (PLIP) server. Results
indicated higher binding affinities and strong noncovalent interactions in ACK1–multikinase
inhibitor complexes.
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INTRODUCTION

Activated Cdc42-associated tyrosine kinase 1 (ACK1) is a member of the VIII tyrosine kinase family
(Manser et al., 1993; Lin et al., 2012). The overexpression of ACK1 has a potential impact on other
types of diseases also, but recently research studies are mainly focused on its driving effect on cancers
(Wang A. et al., 2021). ACK1 can integrate signals of various receptor tyrosine kinases (RTKs), can
transfer extracellular signals from receptor tyrosine kinases to cytoplasmic and nuclear effectors, and
in turnmay regulate the expression levels of some RTKs (Mahajan et al., 2010;Mahajan andMahajan
2010; Fox et al., 2019) Previous studies indicated that ACK1 regulates the activity of androgen
receptor (AR) by tyrosine phosphorylation to increase the growth of hormone-refractory prostate
cancers (Mahajan et al., 2005; Mahajan et al., 2012; Mahajan and Mahajan, 2013; Mahajan and
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Mahajan, 2015). Next-generation sequencing (NGS) studies
suggested that recurrent ACK1 gene amplification and somatic
mutations in different types of cancers lead to neoplastic
transformation. ACK1 is an epigenetic regulator (Wang A.
et al., 2021), and its coding gene TNK2 is related to
hematological malignancies and other types of cancers. Since
epigenetics is a reversible process, targeting ACK1 could reverse
the epigenetic changes and the existence of drug resistance in
malignancies. Recently, various approaches, such as fragment-
based drug design, repurposing, skeleton transition, and high-
throughput screening, have been used to design, discover, and
synthesize several highly efficient and specific inhibitors to target
ACK1. Reports indicated that 71 FDA-approved small-molecule
kinase inhibitors (SMKIs) and additional 16 SMKIs are approved
by other authorities. The clinical trials of SMKIs showed that
approximately 110 novel kinases are currently being explored as
targets. Many SMKIs are in clinical development for diseases
other than cancers (Attwood et al., 2021).

The physiological role of ACK1 is involved in human brains
(La Torre et al., 2013), inflammation (Zhao et al., 2018), and
the immune system. To date, the ACK1 gene is seen in 131
missense mutations, 39 nonsense mutations, and three fusion
mutations within domains of ACK1 in 21 types of cancers
(Prieto-Echague et al., 2010; Maxson et al., 2016; Wang Z.-Z.

et al., 2021). The latest trends in the inhibitor design include
allosteric and covalent inhibitors, bifunctional inhibitors, and
chemical degraders (Attwood et al., 2021). FDA has approved
many inhibitors which have good therapeutic effects and are
used for multiple targets. These multikinase inhibitors can
provide potential strategies for simultaneously targeting ACK1
and other targets.

In this study, 14 multikinase inhibitors, namely, GNF-7 (1),
(2), (3), (4), dasatinib (5), bosutinib (6), ceritinib (7), PD158780
(8), vemurafenib (9), ADZ9291 (10), sunitinib (11), flavopiridol
(12), and gefitinib (13), (14) are selected (Wang A. et al., 2021).
Some of these inhibitors have entered clinical trials, and others
are approved by FDA as therapeutics for other targets. GNK-7 (1)
is used to double-target ACK1 for the NRAS-mutated acute
myeloid leukemia cells (Choi et al., 2010; Cho et al., 2018).
Complex (2) has a better impact on Ba/F3-NRAS-G12D cells,
while Complex (3) exhibits good pharmacokinetic properties.
Complex (4) shows inhibitory activities toward Ba/F3-NRAS-
G12D and OCI-acute myeloid leukemia (AML3) stability (Wang
Z.-Z. et al., 2021). The reference Complex dasatinib (5)
(Lombardo et al., 2004) and Complex bosutinib (6) (Stansfield
et al., 2013) are Abelson leukemia virus (ABL) and proto-
oncogene tyrosine-protein kinase SRC (SRC) kinase inhibitors.
Ceritinib (7) is an anaplastic lymphoma kinase (ALK) fusion

FIGURE 1 | Optimized structures of studied 14 multikinase inhibitors with M06-2X/6-31G (d, p) in solvent (water) from the G16 software program.
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protein inhibitor (Verduzco et al., 2018). PD158780 (8) is an
adenosine 5′-triphosphate (ATP) competitive epidermal growth
factor receptor (EGFR) and ACK1 inhibitor (Nur-E-Kamal et al.,
2005), while vemurafenib (9) is a potent inhibitor targeting BRAF
(V600E). Zelboraf (10) showed selectivity toward several non-
rapidly accelerated fibrosarcoma (RAF) kinases (Bollag et al.,
2010). Sunitinib (11), flavopiridol (12), and gefitinib (13) are
identified as ACK1 inhibitors (Phatak and Zhang, 2013).

Complex (14) showed inhibitory activity toward 26 kinases.
(Wang A. et al., 2021). As experimental studies and clinical
trials are expensive and time-consuming, computational
approaches help to predict the chemical and biological
properties of complexes and their binding affinities to targets
in a better manner. Dasatinib (BMS-354825 or Sprycel) and AIM-
100 (Liu et al., 2010; Mahajan et al., 2014) were initially assessed
as inhibitors for ACK1 signaling in vitro and in vivo. Due to its

TABLE 1 | Common names, identifiers, and simplified molecular input line entry system (SMILES) notation for 14 multikinase inhibitors.

SN Inhibitor SMILES notation

1 GNF-7 CAS 839706-07-9 CN1C(=O)N(CC2 = CN = C(NC3 = CC = C(C)N=C3)N=C12)C4 = C(C)C=CC(=C4)NC(=O)C5 = CC(=CC = C5)C(F) (F)F
2 — CN1C(=O)N(CC2 = CN = C(NC3 = CC = C(N=C3)N4CCN(CC4)C(C) = O)N=C12)C5 = C(C)C=CC(=C5)NC(=O)C6 =

CC(=CC = C6)C(F) (F)F
3 — CN1C(=O)N(CC2 = CN = C(N)N=C12)C3 = C(C)C=CC(=C3)NC(=O)C4 = CC(=CC = C4)C(F) (F)F
4 — CN(C)C1 = CN(CC1)CC2 = CC = C(C=C2C(F) (F)F)C (=O)NC3 = CC(=C(C)C=C3)N4CC5 = CN = C(NC6 = CC = C(C)

N=C6)N=C5N(C)C4 = O
5 Dasatinib DB01254 CC1 = NC(=CC(=N1)N2CCN(CCO)CC2)NC3 = NC = C(S3)C (=O)NC4 = C(C)C=CC = C4Cl
6 Bosutinib DB06616 COC1 = C(Cl)C=C(Cl)C (=C1)NC2 = C3C = C(OC)C (=CC3 = NC = C2C#N)OCCCN4CCN(C)CC4
7 Ceritinib DB09063 CC(C)OC1 = CC(=C(C)C=C1NC2 = NC(=C(Cl)C=N2)NC3 = CC(=CC = C3)[S](=O) (=O)C(C)C)C4CCNCC4
8 PD158780 CAS 171179-06-9 CNC1 = CC2 = C(NC3 = CC = CC(=C3)Br)N=CN = C2C = N1
9 Vemurafenib DB08881 CCC [S](=O) (=O)NC1 = C(F)C (=C(F)C=C1)C (=O)C2 = C [NH]C3 = C2C = C(C=N3)C4 = CC = C(Cl)C=C4
10 ADZ9291 DB09330 COC1 = CC(=C (NC(=O)C=C)C=C1NC2 = NC = CC(=N2)C3 = C [N](C)C4 = C3C = CC = C4)N(C)CCN(C)C
11 Sunitinib DB01268 CCN(CC)CCNC(=O)C1 = C(C)[NH]C (=C1C)CC2 = C(O)[NH]C3 = C2C = C(F)C=C3
12 Flavopiridol DB03496 CN1CCC(C(O)C1)C2 = C3OC(=CC(=O)C3 = C(O)C=C2O)C4 = CC = CC = C4Cl
13 Gefitinib DB00317 CN(C)CCNC(=O)C1 = C(C)[NH]C (=C1C)CC2 = C(O)[NH]C3 = C2C = C(F)C=C3
14 — COC1C = C2C(CCC2(N)C(C)C)C=C1NC3 = NC = C(Cl)C (=N3)NC4 = CC = CC = C4 [S](=O) (=O)C(C)C

FIGURE 2 | (A) Crystal structure of the ACK1 protein (PDB code: 6VQM); (B) best model of ACK1 from MD simulations with the RMSF graph (CABS-flex 2.0
server); (C) best binding pockets (blue color) of ACK1 as predicted by the Prankweb server.
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multitarget activity against many tyrosine kinases, dasatinib (5) is
selected as a reference inhibitor in this work. The chemical
structures of these 14 multikinase inhibitors are given in
Supplementary Figure 1. The main objective of this work was
to find out which inhibitors would have the best characteristics as
a drug candidate.

The density functional theory has been an effective method
to predict drug–target interactions in recent years. The
conceptual density functional theory (CDFT), developed by
Prof. R.G. Parr et al. (Parr and Yang 1989; von Szentpaly 2000;
von Szentpaly 2017; von Szentpaly 2018a; von Szentpaly
2018b; von Szentpaly 2020; Kohn et al., 1996; Ayers and
Yang 2003; Parr and Yang 1995; Sarkar and Chattaraj 2021;
Chattaraj et al., 2002; Chattaraj et al., 2003; Parr et al., 1999),
has been used to study the molecular descriptors. The validity,
physical basis, and limitations of these descriptors (Kaya
and Kaya 2015a; Kaya and Kaya 2015b; Von Szentpály
et al., 2020) are being investigated in recent years, and
they provide deep insights into the reactivity of the
complexes. Few parameters from CDFT-based computational
peptidology (CDFT-CP) developed by Prof. Glossmann

Mitnik et al (Frau et al., 2018; Flores-Holguín et al., 2019a;
Flores-Holguín et al., 2019b; Frau et al., 2019; Flores-Holguín
et al., 2020a; Flores-Holguín et al. 2020b; Flores-Holguín et al.
2020c; Flores-Holguín et al. 2021) has been incorporated to
analyze the physicochemical parameters of these multikinase
inhibitors. Previous results related to global descriptors have
shown useful predictions for new drug entities (NCEs)
(Srivastava, 2021a) and also for drug-like small complexes
(Srivastava, 2021b).

MATERIALS AND METHODS

The structures of inhibitors have been optimized with M06-2X
(Zhao and Truhlar, 2008)/6-31G (d,p) basis sets from G16
software suites (Frisch et al., 2016) with the PCM (Marenich
et al., 2009) solvent model. Different conformational structures
are optimized, and then the structure with lower minima is
selected for further studies. Vibrational frequency analysis is

TABLE 2 | Calculated [ionization energy (lP), electron affinity (EA), and global reactivity descriptors; electronegativity (χ), global hardness (η), global softness (S), and global
electrophilicity index (ω)] in eV and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) (au) for 14 multikinase inhibitors.

Complex IP EA χ η S ω HOMO LUMO

1 6.94 0.25 3.47 0.13 7.94 0.0159 −0.2084 −0.0584
2 6.48 0.25 3.24 0.13 7.94 0.0159 −0.1893 −0.0586
3 7.25 0.09 3.63 0.05 21.28 0.0022 −0.2183 −0.0573
4 6.14 0.20 3.07 0.10 10.00 0.0100 −0.1620 −0.0631
5 7.01 0.07 3.51 0.03 30.77 0.0011 −0.2132 −0.0538
6 7.12 0.69 3.56 0.35 2.88 0.1204 −0.2172 −0.0767
7 6.62 0.14 3.31 0.07 14.60 0.0047 −0.1946 −0.0448
8 6.96 0.25 3.48 0.12 8.03 0.0155 −0.2014 −0.0662
9 7.62 0.49 3.81 0.24 4.10 0.0595 −0.2306 −0.0699
10 6.06 0.39 3.03 0.20 5.09 0.0386 −0.1771 −0.0294
11 6.63 0.54 3.32 0.27 3.70 0.0732 −0.1975 −0.0733
12 7.14 0.06 3.57 0.03 32.79 0.0009 −0.2085 −0.0519
13 6.64 0.57 3.32 0.29 3.50 0.0818 −0.1961 −0.0740
14 4.39 2.34 2.19 1.17 0.85 1.3701 −0.1358 −0.0245

TABLE 3 | Wavelength (nm), oscillatory strength (f), and number of transitions for
14 multikinase inhibitors.

S. No. Wavelength (nm) Oscillatory strength (f) Number of transitions

1 275.56 0.0042 H-2→L (86%)
2 300.27 0.7467 H→L+4 (74%)
3 311.68 0.2285 H→L (85%)
4 541.35 0.0545 H→L (98%)
5 319.70 0.8208 H→L (98%)
6 355.84 0.188 H→L (93%)
7 295.54 0.8901 H→L (92%)
8 282.16 0.2783 H→L+1 (58%)
9 246.06 0.0255 H→L+2 (68%)
10 301.39 0.4702 H-1→L+1 (90%)
11 346.71 0.4378 H-2→L (82%)
12 259.17 0.1453 H-2→L (71%)
13 360.55 0.6038 H-2→L (63%)
14 354 0.0654 H-l→L (78%)

TABLE 4 | CLP: clog P, TPSA: topological polar surface area, Natoms: number of
atoms, MW: molecular weight, S: solubility, HBA: number of hydrogen bond
acceptor, and HBD: number of hydrogen bond donor for 14 multikinase inhibitors.

Complex CLP TPSA Natoms MW Solubility HBA HBD

— ≤5 — — <500 — <10 <5
1 4.88 103.35 40 547 −7.41 9 2
2 4.52 126.89 48 659.67 −7.45 12 2
3 3.39 104.45 33 456.43 −6.34 8 3
4 5.08 109.82 49 671.73 −7.4 11 2
5 3.13 106.5 33 488.02 −4.7 9 3
6 4.98 82.89 36 530.46 −5.45 8 1
7 5.76 105.24 38 558.15 −7.93 8 3
8 3.54 62.73 20 330.19 −4.84 5 2
9 5.56 91.92 33 489.93 −9.33 6 2
10 4.16 78.76 37 497.6 −4.45 9 1
11 2.78 84.15 29 400.5 −4.18 6 4
12 3.46 94.13 28 401.85 −3.87 6 3
13 2.02 84.15 27 352.44 −3.58 6 4
14 5.83 119.24 36 532.11 −6.66 8 4
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carried out to confirm that there is no negative frequency for the
lower minima structures. The optimized structures of the
multikinase inhibitors are given in Figure 1. GaussView is
used to draw the optimized structures for the inhibitors
(Dennington et al., 2003). The TDDFT calculations are
carried out on the ground state optimized structures with
M06-2X/6-31G (d,p) basis sets using water as a solvent.
GaussSum is used to visualize the absorption wavelength,
oscillatory strength, and the number of transitions (O’boyle
et al., 2008).

The output (pdb) structures are used to generate the SMILES
notation for the inhibitors from the online SMILES translator and
structure file generator tool, which is given in Table 1.

Various molecular properties and bioactivity scores of
inhibitors are calculated by Molinspiration Chemoinformatics
tools (https://www.molinspiration.com/). (accessed, December
2021) The pharmacokinetic parameters such as mutagenic
effect, irritant effect, tumorigenicity, and effect on the
reproductive system are estimated by Osiris Property Explorer,
2021 (www.organicchemistry.org/prog/peo/). Other toxicity
parameters are predicted by BOILED-Egg in Swiss ADME
(Diana and Zoete 2016). Simulations Plus ADMET Predictor
(Simulations Plus Inc, 2022) is used to predict the
physicochemical and biopharmaceutical (PCB), Salmonella
typhimurium reverse mutation assay (AMES) mutagenicity,
toxicity, and risk prediction. The online SwissTargetPrediction
tool is used to predict efficient protein targets for these drug
complexes (Diana et al., 2019).

The structure of ACK1 (pdb id-6VQM) is optimized with
the MMF4 force field using Avogadro software (Hanwell et
al., 2016), as shown in Figure 2A. Various conformers have
been taken for ACK1 structures, and MD simulations are
carried out for the lower conformational structure using
CABS-flex 2.0 (Kuriata et al., 2018) coarse-grained protein
modeling tools. The protein near-native dynamics were
obtained from 10 nanosecond MD simulations (all-atom,
explicit water, and for all protein metafolds with force
fields). Figure 2B shows the best MD-simulated ACK1
model with the root-mean-square fluctuation (RMSF)
graph. RMSF measures the average deviation of protein
residues over time from the reference values. The
PrankWeb server (Jendele et al., 2019) is used to identify
potential binding pockets (Pitsillou et al., 2020) for ACK1,
which is shown in Figure 2C.

Docking studies for ACK1–inhibitors are carried out by
Autodock 4.2.6 packages (Morris et al., 2009). The empirical
free energy function and the Lamarckian genetic algorithm were
used with other default parameters. Among the top ten binding
poses, the model with lower interacting binding energies was

TABLE 5 | DL: drug-likeliness, DS: drug score, MUT: mutagenicity, TUMO:
tumorigenicity, IRRI: irritant effect, and REPO: reproductive effect for 14
multikinase inhibitors. Green color indicates a low toxic potential, yellow color
means mild toxicity, and red color indicates a high probability of toxicity.

Complex DL DS MUT TUMO IRRI REPO

1 −9.21 0.14

2 −6.19 0.12

3 −9.22 0.23

4 −4.0 0.12

5 8.74 0.2

6 4.57 0.06

7 −4.07 0.07

8 −4.4 0.35

9 −1.11 0.12

10 −4.58 0.09

11 −8.72 0.42

12 6.97 0.7

13 5.69 0.8

14 −3.64 0.18

TABLE 6 | Pharmacokinetic properties of 14 multikinase inhibitors from BOILED-Egg in Swiss ADME software tools.

S.No. GI
absorption

BBB
per

P-gp
substrate

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

Log
Kp

1 Low No No No Yes Yes Yes Yes −6.57
2 Low No Yes No Yes Yes Yes Yes −7.73
3 High No Yes No No Yes No Yes −7.12
4 Low No No No Yes Yes Yes Yes −7.07
5 High No No No Yes Yes Yes Yes −6.73
6 High No No No Yes Yes No No −5.72
7 Low No Yes No Yes No Yes No −5.54
8 High Yes No Yes Yes No Yes Yes −5.94
9 Low No No No Yes Yes No Yes −5.76
10 High No Yes No Yes Yes Yes Yes −6.71
11 High No Yes Yes Yes No Yes Yes −6.12
12 High No Yes No No No Yes Yes −6.44
13 High No Yes Yes No No Yes No −6.48
14 Low No Yes No Yes No No Yes −6.39
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selected to study protein–ligand binding interactions by
protein–ligand binding profiler (PLIP) online tools (Salentin
et al., 2015).

RESULTS

DFT-based molecular descriptors are numerical characterizations of
structural features of complexes. The description of the preferred
sites provides a firm explanation for the reactivity of the complexes.
The formulas used to calculate the global descriptors are given in
Supplementary Information. Global reactivity descriptors and
highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) values are given in
Table 2. The ionization potential (IP) values of all studied
complexes are larger, which reflects the ability to lose electrons
more easily. All complexes have IP values (4.39–7.62 eV) except
Complex 14 (4.11 eV). Electron affinity (EA) reflects the ability of an
atom to gain electrons which is lower (0.06–2.4 eV) for most of the
complexes. The chemical hardness correlates to the stability, and the
reactivity of these inhibitors is measured by the softness. The higher
electrophilicity index represents the more reactive nature of these
inhibitors, i.e., (1.70–5.53) eV. HOMO and LUMO values of
complexes are predictive measures of their interaction with the
target complexes. The higher HOMO energy reflected more reactive
molecules in the reactions with electrophiles, while lower LUMO
energy is necessary for molecular reactions with nucleophiles. The
smaller HOMO–LUMO energy gap for these inhibitors corresponds
to better stability. Comparing the hardness andHOMO–LUMO gap
results, it can be anticipated that hardness can be considered an exact
measure, while HOMO–LUMO gap can be taken as an
approximation for the inhibitors.

The wavelength (nm), oscillatory strength, and number of
transitions for these multikinase inhibitors are given in Table 3.
The TDDFT results showed that the absorption spectra of these
complexes lie in the region (246–361 nm), except for Complex 4,
which has an absorption wavelength in the visible region
(541.35 nm). The percentage for HOMO→LUMO transitions
is higher for all inhibitors, which indicates that the interaction
between HOMO→ LUMO is enough to lower the energy of the
state below one of the HOMO→LUMO states. All DFT results
have positive correlations toward the corresponding results of the
reference complex dasatinib (5).

The molecular parameters such as clog P, topological polar
surface area (TPSA), hydrogen bond donors (HBD), hydrogen
bond acceptors (HBA), and molecular weight (MW) are given in
Table 4. For orally active drugs, Lipinski’s ‘‘rule of five” states that
1) molecular weight (MW) < 500; 2) the calculated octanol/water
partition coefficient (clogP) < 5; 3) there were fewer than five
hydrogen bond donors (HBD) (OH and NH groups); and 4) there
are less than ten hydrogen bond acceptors (HBA) (notably N and
O) (Lipinski et al., 1997). clogP are >5 for complexes 4, 9, and 14,
while complexes 2 and 4 have HBA values >10. All the complexes
have HBD <5. For the drug-like hits based on the Muegge (Bayer)
criteria (Muegge et al., 2001) (200 ≤ MW ≤ 600, −2 ≤ LogP ≤ 5,
TPSA ≤ 150, HBD ≤ 5, HBA ≤ 10, and RotB ≤ 15), only
complexes 2 and 4 have violation for HBA > 10, so they
cannot be considered drug-like hits. It is known that more
violations of the Lipinski rules lead to bioavailability problems.
The drug-likeliness, drug score, mutagenicity, tumorigenicity,
irritant effect, and reproductive effect are given in Table 5.
The result indicates that Complex 5 has high toxicity for

FIGURE 3 | Chemical structures, names, and star plots of
physicochemical and biopharmaceutical (PCB), Salmonella typhimurium reverse
mutation assay (AMES) mutagenicity, toxicity, and risk prediction for 14
multikinase inhibitors as predicted by Simulations Plus ADMET Predictor
10.2. Wedges represent out-of-scope predictions (hatched due to the model’s
applicability domain). PCB [solubility + log P (pink), molecular weight (MW)
(green), and number of free rotations (blue)]; AMES (colors representing
mutagenicity); toxicity (Ser_ALT (blue), Ser_AST (red), herG IC50 (green),
mutagenic risk (gray), and Ser_LDH (violet)); ADMET risk (toxicity (red); ADMET
(green); absorption (blue); CYP risk (pink), and mutagenic risk (yellow)).
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irritant and reproductive effects. Complex 6 has high toxicity for
mutagenicity, tumorigenicity, and reproductive effect, while
Complex 7 shows high irritant effect. Complexes 9 and 10
have higher mutagenic effect, while Complex 11 has higher
irritant effect. Complex 10 has mild toxicity effect for
tumorigenicity, irritant effect, and reproductive effect.

The Biopharmaceutics Classification System (BCS) has defined
five criteria for the permeability of drugs: 1) absolute bioavailability
or mass balance studies in humans, 2) urinary recovery of
unchanged drug in humans, 3) in vivo intestinal perfusion studies
in humans, 4) in vitro permeation studies across a monolayer of
cultured epithelial cells, and/or 5) high metabolism as defined under
Biopharmaceutical Drug Disposition Classification System
(BDDCS) (Ku 2008; Chen et al., 2011). Few of these parameters
are given in Table 6, which are predicted by BOILED-Egg in Swiss

ADME. Most of the studied complexes showed an inhibitory effect
for multitargets. All the inhibitors have Log Kp values that lie in the
range of (−6.0 to 7.0). No BBB permeability is predicted for all
inhibitors except Complex 8. The GI absorption is higher for
complexes 3, 5, 6, 8, and 10–13.

The PCB, toxicity, and risk prediction from Simulations Plus
ADMET Predictor shows varied PCM, ADMET, and risk
prediction for all the inhibitors, as shown in Figure 3. The
transport and metabolic properties of these inhibitors are
given in Supplementary Figure 4 and Supplementary Figure 5,
respectively. All complexes showed good inhibitory activities, but
variation in absorption, distribution, metabolism, excretion,
toxicity (ADMET), biopharmaceutical properties, and risk
prediction indicate that these inhibitors may be used for
combination therapies.

FIGURE 4 | Predicted biological targets for 14multikinase inhibitors using the SwissTargetPrediction online tool. Blue color: kinase, pink: family AG protein-coupled
receptor, light green: voltage-gated ion channel, light pink: protease, green: transferase, light blue: transcription factor, and yellow: primary active transporter.
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SwissTargetPrediction results indicated that these complexes
can be used as multikinase inhibitors. Complexes 1–13 have
kinase as the main potential target (blue color), while
complexes 10, 11, 12, and 14 have the potential to target
protease, transferase, enzyme, family A G protein-coupled
receptor, and voltage-gated ion channel, as shown in Figure 4.
The multitargeting activities of these inhibitors are validated by
the experimental results (Wang Z.-Z. et al., 2021).

The docking of ACK1–inhibitors along with their binding
energies is given in Supplementary Figure 2. It has been observed
that drug-like and lead-like criteria for physiochemical properties
were only applied to ligands whose receptor BE < −6 kcal/mol for
the best docking pose. All the studied complexes have the best
binding energy poses (BE < −6 kcal/mol), which reflect the
importance of these non-receptors as potential druggable
targets for target therapies. The binding of inhibitors is mostly
toward the best binding pocket of ACK1, as predicted in
Figure 3C.

Protein–Ligand Interaction Profiler (PLIP) predicted
hydrophobic interactions (HYs) and hydrogen bonds (HB) in
all ACK1–inhibitors, which enhance the binding affinity and
biological activity of complex molecules and help in stabilizing
the biochemical environments. Other interactions such as salt
bridge (SB) was observed in ACK1-(3–6, 10, 13) complexes. SB
and π–π stacking (perpendicular) interactions were observed in
(ACK1-1, 9) complexes. π–π stacking (parallel) and no SB were
seen in ACK1–9 complexes. ACK1–12 complexes have cation–π
and SB interactions, while only cation–π interactions are seen in
ACK1–10 complexes, as shown in Supplementary Figure 3. The
π–π stacking is essential for the favorable electron correlation,
whereas cation–π contacts produce further electrostatic
contributions (Brylinski, 2018). These noncovalent interactions
promote high-affinity binding of inhibitors to their targets which
is important for the success of rational drug discovery.

CONCLUSION

DFT results showed that the studied 14 inhibitors are highly
stable. Most of the inhibitors are non-mutagenic, non-

tumorigenic, non-irritant, and without effects on reproduction,
and these inhibitors have good drug score values. Since cancer is a
heterogeneous disease and variations have been observed in
toxicity and ADMET results, it is recommended to use these
inhibitors as combination drugs instead of single-drug treatment.
ACK1–multikinase inhibitors show better binding affinities. They
can be used as potential drugs for treating cancers and other
diseases. Due to the multitarget activities of these inhibitors, we
hope that these studies will also provide a reference and
possibility for the study and treatment of other diseases in the
future (Rahman et al., 2021).
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