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Quantitative and accurate determination of iron ions play a vital role in maintaining
environment and human health, but very few polymeric chemosensors were available
for the detection of Fe3+ in aqueous solutions. Herein, a water-soluble rhodamine-poly
(ethylene glycol) conjugate (DRF-PEG), as a dual responsive colorimetric and fluorescent
polymeric sensor for Fe3+ detection with high biocompatibility, was first synthesized
through Schiff base reaction between rhodamine 6G hydrazide and benzaldehyde-
functionalized polyethylene glycol. As expected, the introduction of PEG segment in
DRF-PEG significantly improved the water solubility of rhodamine derivatives and
resulted in a good biosensing performance. The detection limit of DRF-PEG for Fe3+ in
pure water is 1.00 μM as a fluorescent sensor and 3.16 μM as a colorimetric sensor at pH
6.5. The specific sensing mechanism of DRF-PEG toward Fe3+ is proposed based on the
intramolecular charge transfer (ICT) mechanism, in which the O and N atoms in rhodamine
moiety, together with the benzene groups from benzaldehyde-modified PEG segment,
participate in coordination with Fe3+. Furthermore, DRF-PEG was applied for the
ratiometric imaging of Fe3+ in HeLa cells and showed the potential for quantitative
determination of Fe3+ in fetal bovine serum samples. This work provides insights for
the design of water-soluble chemosensors, which can be implemented in iron-related
biological sensing and clinical diagnosis.

Keywords: Fe3+ detection, fluorescence probe, rhodamine, Schiff base, cell imaging

INTRODUCTION

Iron ion is one of the most abundant transition metal ions in the human body and plays a vital role in
biological metabolism (Guo et al., 2015; Liu et al., 2017; Fan et al., 2019). The deficiency in iron will
lead to the lack of iron-related proteins and cause anemia, cancer, or other health problems (Park and
Lee, 2020), while excess iron can inhibit the absorption of nutrients and cause irreversible damage to
neurological systems and human organs, leading to serious diseases, such as Alzheimer’s disease,
hepatic fibrosis or even death (Nayab and Shkir, 2017; Lin et al., 2020). The determination of Fe3+ in
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natural water or human body fluid is of great importance to
human health and biological environment. Among the numerous
detection assays, such as atomic absorption (Frankowski et al.,
2010), mass spectrometry (Jia et al., 2018), Raman scattering
(Song et al., 2020), and so on, optical spectroscopy methods
combined with molecular sensors have attracted much attention
for the characteristics of easy operation, high sensitivity, and high
throughput (Cao et al., 2014; Jin et al., 2018; Jung et al., 2019).
Many chemosensors for Fe3+ have been developed, but very few
can be directly applied in water or biological samples due to their
intrinsic hydrophobicity and cytotoxicity (Carter et al., 2014; Hou
et al., 2017). Furthermore, background interference from the
testing environment, such as bacteria or proteins in
biosamples, may result in a significant reduction of signal-to-
noise ratio and lead to detection failure (Zhang et al., 2019).
Therefore, fluorescent chemosensors with excellent water
solubility and biocompatibility that can be applied in complex
environmental or biological systems are highly desirable.

Due to the excellent optical properties and unique switching
nature of spirocyclic structures, rhodamine derivatives are widely
employed for detecting metal ions (Song Y. et al., 2019; Jiao et al.,
2018; Wu et al., 2018). The sensing mechanism of rhodamine
sensors is based on the structural transformation from
spirolactam ring to open-loop state when combined with specific
ions, releasing strong fluorescent signals. Most rhodamine-derived
sensors can only work in organic solvent or organic solvent-water
mixtures owing to their inherent poor water solubility, which greatly
inhibits their applications in practical biological and environmental
systems (Zhang Y. et al., 2020; Geng et al., 2017; Choudhury et al.,
2020; Shi et al., 2016). Many efforts have been devoted to inventing
fluorescent sensors with good water solubility and biocompatibility,
which can be achieved by introducing water-soluble carbohydrates
(Chen and Fang, 2018) or hydrophilic polymer segments (Li et al.,
2015; Li et al., 2016; Geng et al., 2017; Rong et al., 2017; Wu et al.,
2017) into rhodamine fluorophores.

Because of the excellent biocompatibility and hydrophilicity,
poly (ethylene glycol) (PEG) is commonly used in biomedical
research (Liu et al., 2015). By virtue of the antifouling properties
of PEG toward proteins, it is expected that the detection
performance of PEG-derived polymeric sensors would be
improved and the background interference from biological
contamination should be reduced (Liu et al., 2015). A few
water-soluble polymeric sensors obtained by combining PEG
segment and rhodamine moiety have been designed for the
detection of Cu2+, Hg2+, and Al3+ (Li et al., 2016; Geng et al.,
2017; Li et al., 2018). However, the rhodamine-PEG-conjugated
polymeric sensors, which can be applied in detecting Fe3+ in pure
aqueous solutions with high biocompatibility, have not been
reported. This work aims to develop a highly water-soluble
rhodamine-PEG-conjugated polymeric sensor for Fe3+ and
evaluate its potential applications in biological systems.

Herein, rhodamine 6G hydrazide (Rh) is selected as the
fluorescent/colorimetric sensing receptor, and PEG segment is
chosen as the hydrophilic segment. The polymeric sensor (DRF-
PEG) containing both PEG chain and rhodamine moiety is
synthesized through a facile Schiff base reaction between the
amine group (−NH2) of Rh and the aldehyde group (−CHO) of

di-benzaldehyde terminated poly (ethylene glycol) (DF-PEG).
The rhodamine moiety of DRF-PEG serves as a sensing
fluorophore in detecting metal ions, while the PEG segment
improves the sensor’s water solubility and biocompatibility.
DRF-PEG is highly sensitive and selective for Fe3+ in water
with dual-responsive fluorescent and colorimetric response.
MTT assay suggests that DRF-PEG possesses low cytotoxicity
and good biocompatibility, which can be utilized for intracellular
imaging. Furthermore, the detection performance of DRF-PEG
for Fe3+ is evaluated in fetal bovine serum. This work provides a
facial and typical model for designing polymeric sensors with
high biocompatibility and water solubility, which can be applied
in living cell imaging or metal ion detection in biological systems.

EXPERIMENTAL SECTION

Materials
Rhodamine 6G (95%), 1,3-dicyclohexylcarbodiimide (DCC,
99%), N,N-dimethylpyridin-4-amine (DMAP, 99%), and 4-
carboxybenzaldehyde (98%) were obtained from Aladdin
Chemistry Co. Ltd. (Shanghai, China). Polyethylene glycol
(PEG, MW 4,000 Da), hydrazine monohydrate (50%), silver
nitrate, chloride salts of K+, Na+, Mg2+, Ca2+, Cu2+, Hg2+,
Co2+, Cd2+, Zn2+, Ni2+, Mn2+, Al3+, Cr3+, and Fe3+ were
purchased from Sinopharm Chemical Reagent Co. Ltd. MTT
(thiazolyl blue tetrazolium bromide) was obtained from Thermo
Fisher Scientific (China). Ultrapure water (18.2 MΩ cm) was
obtained from the Milli-Q system and applied throughout the
experiment. Other solvents and chemicals were of analytical
reagent grade and used without further treatment.

Instrumentation
1H NMR spectra were obtained on a Bruker Advance 400
spectrometer (Germany). FT-IR spectra were obtained on a
TENSOR II FTIR routine spectrometer from Bruker
(Germany) after pelleting samples with KBr. The UV-Vis
absorption measurement was carried out on a Hitachi U-4100
UV/Vis/NIR spectrometer (Japan). Fluorescence spectra were
performed on a FluoroMax-4 high efficiency integrated
fluorescence spectrometer (Horiba. United States), and each
measurement was repeated three times. The pH of the
solution was measured by a Mettler Toledo SevenCompact pH
meter S210. Confocal laser scanning microscopy (CLSM) images
were recorded on a Leica TCS SP8 lighting confocal microscope
(Germany).

Synthesis
Rhodamine 6G hydrazide was prepared through the reduction of
rhodamine 6G by hydrazine monohydrate using the reported
procedure (Yang et al., 2002).

Synthesis of Di-Benzaldehyde Terminated
Poly (Ethylene Glycol)
DF-PEG was synthesized by following the previously reported
method (Zhang et al., 2011; Yan et al., 2017). Under a nitrogen
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atmosphere, PEG4000 (8.0 g, 2.0 mmol) in dry THF was mixed
with 4-formylbenzoic acid (0.90 g, 6.0 mmol) and DMAP
(0.09 g). After complete dissolution of all the compounds by
sonication, DCC (1.65 g) in 50 ml of THF was added. The
mixture was thoroughly stirred at 25°C for 48 h and then
filtered. Filtrates were dried through vacuum rotary
evaporation and precipitated by ethyl ether three times. The
obtained precipitate was dried under vacuum for 2 days to
give DF-PEG as a white waxy solid. Yield: 6.4 g (75%). 1H
NMR (400 MHz, CDCl3) δ: 3.40–3.90 (m, 360 H;
−OCH2CH2–), 4.48–4.53 (m, 4 H; −COOCH2−), 7.95 (d,
J = 8.4 Hz, 4 H; −ArH), 8.21 (d, J = 8.4 Hz, 4 H; −ArH), 10.10
(s, 2 H; −ArCHO).

Synthesis of Polymeric Sensor Containing
Both PEG Chain and Rhodamine Moiety
The solution of R6G hydrazide (0.11 g, 0.25 mM) in 20 ml of
acetone was slowly added into 30 ml of acetone with DF-PEG
(0.53 g, 0.13 mM). After refluxed at 58°C for 8 h and cooled
overnight, the mixture was then filtered. The obtained filtrate
was concentrated under vacuum to give DRF-PEG as a purple
solid. Yield: 1.0 g (80%). 1H NMR (400 MHz, DMSO-d6) δ: 1.20
(t, J = 7.2 Hz, 12 H; −CCH3), 1.85 (s, 12 H; −ArCH3), 3.06–3.17
(m, 8 H; −NCH2−), 3.40–3.80 (m, 360 H; −OCH2CH2−),
4.40–4.46 (m, 4 H; −COOCH2−), 5.01 (t, J = 5.2 Hz, 4 H;
−NH−), 6.16 (s, 4 H; −ArH), 6.21 (s, 4 H; −ArH), 6.94–6.99
(m, 2 H; −ArH), 7.48–7.53 (m, 4 H; −ArH), 7.76–7.81 (m, 2 H;
−ArH), 8.06 (d, J = 8.4 Hz, 4 H; −ArH), 8.16 (d, J = 8.4 Hz, 4 H;
−ArH), 10.12 (s, 2 H; −NCH−).

Spectroscopic Study
Stock solutions of Fe3+ and other metal ions (1.0 × 10–3 mol/L)
were prepared by dissolving the related inorganic salts in Milli-Q
water for the fluorescence and absorption experiment. Stock
solution of DRF-PEG was prepared in Milli-Q water with a
concentration of 1.0 mg/ml. All the spectral experiments were
conducted in an aqueous solution except for the absorption test
related to Rh because of its poor water solubility. For the
absorption and fluorescence selectivity experiment, DRF-PEG
solution (0.1 mg/ml) was mixed with different metal ions
(10–4 M). For the sensitivity experiment, DRF-PEG solution
(0.1 mg/ml) was mixed with different concentrations of Fe3+.
The fluorescence emission spectra of DRF-PEG were collected
from 520–680 nm with an excitation wavelength of 500 nm. The
quartz cuvette with a 1-cm path length was used for the
absorption and emission studies. For the pH test, the pH of
the tested solution was adjusted by using 0.1 mol/L of HCl, and
0.1 mol/L of NaOH solutions at 25°C.

Cytotoxicity Investigation
The cytotoxicity of DRF-PEG was evaluated by a standard MTT
assay on HeLa cells (human cervical carcinoma cells) obtained
from Shanghai EK-Bioscience Biotechnology Co., Ltd.

HeLa cells were seeded at a density of 1 × 104 cells/well and
cultured in DMEM medium with 1% antibiotic and 10% FBS
(fetal bovine serum). After cell attachment, the cells were

incubated with different concentrations of DRF-PEG (0, 6.25,
12.5, 25, 50, 100, 125, 250, 500 μg/ml) and maintained at 37°C
under 5% CO2 for 24 h. After washing with PBS buffer three
times, fresh culture medium containing MTT (10 μl, 5 mg/ml)
was added and incubated for another 4 h. Then the culture
medium was removed and washed with PBS buffer. The
samples were then dissolved in 150 μl of DMSO and shook for
10 min. Compared with the control sample, the cell viability was
estimated through the optical density of the mixture at 450 nm.

Living Cell Imaging
HeLa cells (1 × 104 cells/well) were first cultured in DMEM
medium at 37°C with 10% FBS for 24 h under 5% CO2. Then
the culture medium was removed, and fresh medium containing
0.1 mg/ml DRF-PEG was added. Following incubation for 0.5 h,
the samples were washed with PBS buffer to remove the residual
DRF-PEG in the culture medium. Subsequently, cell culture
media with different concentrations of Fe3+ (0, 5, 20, 100 μM)
were added and cultured for another 30 min to allow effective
uptake of Fe3+. Before imaging, the cells were rinsed with PBS
buffer three times to remove the residual Fe3+ in the culture
medium. CLSM images of the cells were captured at ambient
temperature under an excitation wavelength of 488 nm, and the
fluorescent signals were collected between 500 and 600 nm.

Determination of Iron in Fetal Bovine Serum
Fetal bovine serum obtained from Gibco (Germany) was used to
investigate the potential application of DRF-PEG in biosystems.
To reduce background interference, bovine serum lipids were
removed with chloroform–methanol mixture before the test by
referring to the reported procedure (Park and Lee, 2020). Stock
solutions of diluted fetal bovine serum (10%) with 0.1 mg/ml
DRF-PEG were prepared. After adding different concentrations
of Fe3+ (100–1,000 μM), the fluorescent emission signals of serum
samples were recorded.

RESULTS AND DISCUSSION

The rhodamine-derived polymeric sensor (DRF-PEG) was
facilely synthesized through Schiff base reaction between DF-
PEG and Rh with a reaction ratio of 1:2. DF-PEG was synthesized
through esterification reaction among poly (ethylene glycol) and
4-carboxybenzaldehyde acid in the presence of DCC/DMAP at
ambient temperature. PEG chain in DF-PEG contributes to
improve the water solubility of DRF-PEG, while the terminal
benzaldehyde group acts as a connecting bridge and will react
with amine groups in rhodamine 6G hydrazide. One DF-PEG
molecule is covalently bonded with two Rh molecules via Schiff
base (imine, −N=CH−) linkages. The synthetic route of DRF-
PEG is illustrated in Scheme 1. The successful preparation of
DRF-PEG was confirmed by FT-IR and 1H NMR spectra
(Figure 1 and Supplementary Figures S1–S3).

As shown in Figure 1 (red line), the prominent peak located at
1,721 cm−1 originated from the stretching vibration of a carbonyl
(–C=O) comes from the benzaldehyde groups or the newly
formed ester groups in DF-PEG. Compared with the FT-IR
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spectrum of PEG, newly emerged peaks below 900 cm−1 were
observed in DF-PEG, which can be ascribed to the characteristic
absorption of benzene rings due to the introduction of
benzaldehyde groups (Zhang et al., 2011). After combination
with rhodamine 6G hydrazide, DRF-PEG with two rhodamine
moieties is formed, and characteristic absorption signals of
rhodamine moieties (1,419, 1,468, 1,591, and 1,685 cm−1)
appear on the FT-IR spectrum (blue line). The transmission
band at 1,419 cm−1 is caused by the C–N deformation of
rhodamine moieties, and the peak at 1,519 cm−1 can be
assigned to the deformation of aromatic rings (Guo et al.,

2015; Maity et al., 2018). The sharp peak at 1,623 cm−1

suggests the formation of Schiff base linkage (imine,
−N=CH−) in DRF-PEG (Jia et al., 2015). The result of FT-IR
and 1H NMR spectra clearly confirms the successful grafting of
rhodamine moieties to DF-PEG.

Figure 2A shows the absorption spectra of Rh, DF-PEG, and
DRF-PEG. Because of the poor water solubility of Rh, the
absorption experiment herein was conducted in ethanol to
ensure the authenticity. DRF-PEG shows two intense
absorption bands at 241 and 298 nm, which can be ascribed to
intramolecular π–π* and n–π* transition of anthracene moieties
in rhodamine units originated from Rh. For DF-PEG, the
shoulder peak around 300 nm is weaker than that of Rh and
DRF-PEG because there are no anthracene structures in DF-PEG,
which possess fewer benzene groups. The intense absorption of
DRF-PEG from 250 to 320 nm confirms the successful grafting of
rhodamine moieties to DF-PEG (Maity et al., 2018; Dewangan
et al., 2019). No absorption above 500 nm is observed for all the
solutions in the absence of Fe3+. However, with the addition of
Fe3+, a new absorption peak centered at 532 nm is observed for
Rh and DRF-PEG due to the ring opening of spirolactam
structure in rhodamine moieties, resulting in the orange color
of the solution (Figure 2B). This suggests that the rhodamine
units from Rh are successfully conjugated onto DF-PEG, and
DRF-PEG can be applied for the recognition of Fe3+.

The selectivity of DRF-PEG for the detection of Fe3+ in water
was investigated by both fluorescence and absorption
measurements (Figure 3). After the addition of various metal
ions, the spectroscopic measurements were carried out
immediately, and the response process was completed
instantaneously. As shown in Figures 3A,B, the fluorescence
emission intensity of DRF-PEG or DRF-PEG in the presence of
most monovalent and divalent metal ions (K+, Na+, Ag+, Mg2+,
Ca2+, Cu2+, Co2+, Cd2+, Zn2+, Ni2+, and Mn2+) was very weak at
543 nm. The addition of Hg2+ and Cr3+, and Al3+ gave rise to a

Scheme 1 | Schematic illustration for the synthesis of di-benzaldehyde terminated poly (ethylene glycol) (DF-PEG) and polymeric sensor containing both PEG chain
and rhodamine moiety (DRF-PEG).

FIGURE 1 | FT-IR spectra of poly (ethylene glycol (PEG), di-benzaldehyde
terminated poly (ethylene glycol) (DF-PEG), and polymeric sensor containing
both PEG chain and rhodamine moiety (DRF-PEG).
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slight increase in fluorescence intensity (4.5- to 6.7-fold) at
553 nm, and a bathochromic shift was observed, whereas the
presence of Fe3+ induced the most prominent fluorescence
enhancement (15-fold) at 555 nm and the largest
bathochromic shift (12 nm), suggesting the selective and
specific recognition of DRF-PEG toward Fe3+. The affinity
between Fe3+ and DRF-PEG should be the strongest, which
has a relationship with the metal-ion radius and ligand
configuration (Dey et al., 2017). The chelation of Fe3+ induces

the structural transformation of rhodamine moiety from
spirolactam ring to ring-opened form and brings about
fluorescence “turn-ON” effect (Yang et al., 2002). For the
selective absorption measurement (Figures 3C,D), an obvious
absorption band at 532 nm emerged, and the relative intensity of
253 nm peak was enhanced for DRF-PEG in the presence of Fe3+,
while for other metal ions, only the band at 253 nm and the
shoulder peak at 298 nm were observed. The absorbance at
532 nm by the DRF-PEG-Fe3+ complex results in the solution

FIGURE 2 | Absorption spectra of rhodamine 6G hydrazide (Rh), DF-PEG, and DRF-PEG (A) before and (B) after the addition of iron(Fe3+).

FIGURE 3 | Fluorescence (A) and UV-Vis (C) spectra of DRF-PEG (0.1 mg/ml) in the presence of various metal ions (10–4 M) in water (pH 6.5). Fluorescence
emission intensity at 555 nm (B) and absorption intensity at 532 nm (D) of DRF-PEG (0.1 mg/ml) with various metal ions before and after the addition of Fe3+. The black
bars are the absorption/fluorescent response of DRF-PEG to various metal ions (10–4 M). The red bars are the absorption/fluorescent response after the subsequent
addition of Fe3+ (10–4 M) to the above aqueous solution.
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color change from colorless to orange (Supplementary Figure
S4). Therefore, DRF-PEG can be invoked as a sensitive
colorimetric/fluorescent chemosensor for Fe3+ detection in
aqueous solutions. It is worth noting that the detection of Fe3+

herein by DRF-PEG does not need the assistance of any buffer
medium or organic additives, which is much desirable for
practical applications.

Anti-interference ability of DRF-PEG to Fe3+ is also assessed
by fluorescence and UV-Vis absorption spectroscopy at pH 6.5
(Figures 3B, D). Competition experiments are carried out in the

presence of Fe3+ mixed with equivalent amount of interfering
metal ions (K+, Na+, Ag+, Mg2+, Ca2+, Cu2+, Co2+, Cd2+, Zn2+,
Hg2+, Ni2+, Mn2+, Cr3+, and Al3+). Both the fluorescence emission
and absorption enhancement of DRF-PEG in the presence of Fe3+

were not influenced by all the investigated interfering ions. These
results reveal that DRF-PEG shows high selectivity and anti-
interference capability for detection of Fe3+ over other metal ions.
DRF-PEG can serve as a dual-responsive fluorescence turn-on
and colorimetric chemosensor for detection of Fe3+ with high
selectivity in pure aqueous solution. This application of

Scheme 2 | Proposed coordination mechanism of DRF-PEG toward iron (Fe3+).

FIGURE 4 | Fluorescence (A) and absorption (C) titration of DRF-PEG (0.1 mg/ml) with the addition of various concentrations of Fe3+ (0–400 μM) in water (pH 6.5).
Plot of fluorescent emission intensity at 555 nm (B) and UV-Vis absorption intensity at 532 nm (D) as a function of [Fe3+].
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DRF-PEG does not need the assistance of organic solvent, which
makes the detection of Fe3+ convenient, environmental friendly,
and demonstrating great potential in practical environmental and
industrial monitoring.

The specific sensing mechanism of DRF-PEG toward Fe3+ can
be explained by the strong coordination ability of rhodamine
moieties toward Fe3+ based on our previous reports (Qiu et al.,
2013; Qiu et al., 2014; Qiu et al., 2015). As shown in Figure 2, free
DRF-PEG is colorless with almost no fluorescence emission. As
the nitrogen atoms of Schiff base groups together with the O, N
atoms of the five-membered spirolactam ring in DRF-PEG are
rich in electrons, they are prone to share electrons with positive
metal ions (Yuan et al., 2018). After the addition of Fe3+, DRF-
PEG starts to coordinate with Fe3+, and the coordination will
induce intramolecular charge transfer (ICT) in rhodamine
moiety, resulting in the ring opening of spirolactam structure
and strong fluorescence emission (Scheme 2). As mentioned in

Figure 2, the absorption before 320 nm is ascribed to the
intramolecular π–π* and n–π* transition in benzene groups.
With the increase in Fe3+ concentration, the coordination
interaction of benzene group and the molecular charge
transfer in rhodamine moiety is enhanced. It is supposed the
benzene ring from benzaldehyde modified PEG segment in
DRF-PEG also participated in the coordination process, and
a strong electrostatic interaction is formed between the benzene
ring and Fe3+. Therefore, the absorption intensity of DRF-PEG
before 320 nm increases with Fe3+ concentration, which is the
reason why DRF-PEG can also act as a colorimetric sensor
for Fe3+.

As shown in Figure 4, both the fluorescence intensity
(555 nm) and UV-Vis absorbance (532 nm) exhibited a linear
relationship with Fe3+ concentration for a wide range
(0–400 μM). Based on the titration curves, the detection limit
of DRF-PEG to Fe3+ can be calculated separately from the
fluorescence and absorption data through the following
equation (Li et al., 2014; Zhou et al., 2017):

Detection limit(DL) � k SD/S

where k is the signal-to-noise ratio (k = 3), SD is the standard
deviation of blank DRF-PEG solution, and S is the slope of
regression line of the titration curve (Zhou et al., 2017). From
fluorescence titration data, the limit of detection for DRF-PEG as
the fluorescent chemosensor toward Fe3+ in water is determined
to be 1.00 μM at pH 6.5, which is much lower than the maximum
US EPA limit for Fe3+ in drinking water (5.4 μM) (Nandre et al.,
2014). Similarly, the DL value of DRF-PEG as a colorimetric
sensor in water for Fe3+ at pH 6.5 is estimated to be 3.16 μMbased
on the absorbance titration results.

For the efficient detection of metal ions in practical
applications, sensors should possess the ability to be operated
in a broad pH range. Namely, the fluorescent/absorption
response of the sensor should take place and not be affected
by the solution pH (Li et al., 2014; Li et al., 2015). The effect of pH
on the absorption and fluorescent emission of DRF-PEG to Fe3+

is checked in the pH range of 2.0–13.3 (Figure 5). Hydrogen ions
can also induce ring opening of the spirolactam structure in

FIGURE 5 | (A) Influence of pH on the fluorescent emission intensity of DRF-PEG (0.1 mg/ml) at 555 nm before and after addition of Fe3+ in water. (B) Influence of
pH on the absorption intensity of DRF (0.1 mg/ml) at 532 nm before and after addition of Fe3+ ions in water.

FIGURE 6 | Cell viability values of human cervical carcinoma cells (HeLa)
vs. the concentration of DRF-PEG. HeLa cells were incubated with different
concentrations of DRF-PEG (0–500 μg/ml) for 24 h.
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rhodamine moiety (Song Y. et al., 2019; Jiao et al., 2018). At pH
3–5, free DRF-PEG exhibits strong fluorescence/absorption due
to the existence of abundant hydrogen ions in the solution.
However, the marked increase in the fluorescence/absorption
intensity after the addition of Fe3+ suggests that DRF-PEG can
be applied for the recognition of Fe3+ in this pH range. It is
proposed that the existence of H+ will restrain the coordination
of Fe3+ with DRF-PEG. The fluorescence/absorption intensity
first decreased with the increase in pH (5 < pH < 7), then
increased when the amount of H+ is very few because the
interference from hydrogen ions disappeared (7 < pH < 10).
At pH >10, a large amount of Fe3+ would be precipitated by
OH− according to the solubility product rule, so the
fluorescence/absorption intensity of DRF-PEG decreases
dramatically since pH 10. As shown in Figure 5, DRF-PEG
can be used as a fluorescent chemosensor for Fe3+ in the pH
range of 3.0–10.0 and served as a colorimetric sensor for Fe3+ in
the pH range of 3.2–13.3. Therefore, DRF-PEG has great
tolerance to the solution pH, suggesting the diverse
applications of DRF-PEG in metal ion detection.

Biocompatibility and cytotoxicity are important criteria to
assess the potential application of chemical sensors in
biological and medical studies (Shi et al., 2016; Dong et al.,
2017). The cytotoxicity of DRF-PEG (0–500 μg/ml) to HeLa
cells was evaluated through MTT assays. As shown in
Figure 6, the cell viability for all the tested samples is higher
than 95% even under a high concentration of DRF-PEG at
500 μg/ml after incubation for 24 h. The high cell viability of
HeLa cell indicates the high biocompatibility and low cytotoxicity

of DRF-PEG, suggesting high potential in living cell imaging or
in vitro tests.

Encouraged by the biocompatibility and high sensing
performance of DRF-PEG, intracellular detection of Fe3+ and
bio-imaging capability of DRF-PEG are tested in living HeLa cells
by CLSM. HeLa cells were first incubated with 0.1 mg/ml DRF-
PEG for 30 min, washed by PBS buffer, and then cultured with
different concentrations of Fe3+ for another 30 min. As shown in

FIGURE 7 |Confocal laser scanningmicroscopy (CLSM) images of HeLa cells treated with DRF-PEG (0.1 mg/ml) and different concentrations of Fe3+ (0, 5, 20, and
100 μM). The upper panel: bright field images, the middle: dark field, and the lower: overlays of the bright and dark field images. HeLa cells were first incubated with
DRF-PEG (0.1 mg/ml) for 30 min and thenwith different concentrations of Fe3+ as 0 μM (A, E, and I), 5 μM (B, F, and J), 20 μM (C, G, andK), and 100 μM (D, H, and L)
for another 30 min at 37°C.

FIGURE 8 | Fluorescence spectra of DRF-PEG in diluted serum (10%)
with different concentrations of Fe3+ (100–1,000 μM). The inset is the
fluorescence intensity as a function of [Fe3+].

Frontiers in Chemistry | www.frontiersin.org February 2022 | Volume 10 | Article 8456278

Qiu et al. Water-Soluble Fluorescent Polymeric Chemosensor

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Figure 7, controlled cells without additional supplement of Fe3+

display faint fluorescence emission because of a trace amount of
free iron or non-transferrin-bound ions in the culture medium,
while bright and strong green fluorescence is observed for HeLa
cells incubated with extra Fe3+ from 5 to 100 μM. The fluorescent
signals are specifically located in the intracellular areas suggesting
that DRF-PEG possesses good cell membrane permeability and
can be used for the monitoring of Fe3+ in living cells without any
transfection agents. Intracellular fluorescence emission intensity
of HeLa cells is enhanced with the amount of Fe3+ added
(Figure 7 and Supplementary Figure S5). When the
concentration of Fe3+ is low (5 μM), the fluorescence is mainly
concentrated in the cytoplasm area of HeLa cells. With the
increase in Fe3+, intracellular uptake of Fe3+ increases, and
fluorescent signals start to spread over the whole cell area.
Obviously, HeLa cells incubated with 100 μM of Fe3+ exhibit
the strongest fluorescent emission after the same incubation
period (30 min) with bright green fluorescence in the nucleus.
According to the distribution of fluorescence signals, DRF-PEG
can be implemented to monitor the intracellular absorption path
of Fe3+, showing enormous potential in intracellular imaging and
visually monitor Fe3+ in living systems.

As a proof of concept, the detection performance of DRF-PEG
toward Fe3+ in fetal bovine serum is examined. As shown in
Figure 8, the fluorescence emission intensity of DRF-PEG in 10%
bovine serum shows an increasing trend with the concentration
of additive Fe3+ in the range of 100–1,000 μM, and the minimum
responsive concentration of Fe3+ is 100 μM. The biosensing
performance of DRF-PEG toward Fe3+ can be ascribed to the
anti-fouling properties of PEG chains from benzaldehyde-
modified PEG segments. Results showed that the DRF-PEG
possesses sensing capability toward Fe3+ in biological samples,
implying its potential applications to serve as a bio-sensor in
biomedical fields. In comparison with the recent rhodamine-
based chemosensors for Fe3+ (Table 1), DRF-PEG shows
excellent detection performance in pure aqueous solution with
potential biological applications.

CONCLUSION

In summary, a water-soluble dual colorimetric/fluorescent
responsive chemosensor (DRF-PEG) for the detection of Fe3+

with good biocompatibility was constructed by combining the

specific binding effect of rhodamine moiety and the excellent
water solubility of difunctionalized PEG. Based on the strong
coordination of N and O atoms from rhodamine moieties and
benzene groups from DF-PEG with Fe3+, DRF-PEG can be used
for colorimetric/fluorescent sensing of Fe3+ in pure aqueous
solutions without any aid of organic solvent or buffer
medium in a wide pH range. DRF-PEG possesses excellent
biocompatibility for living cell imaging and the intracellular
detection of Fe3+ in HeLa cells. By virtue of the anti-fouling
properties of PEG groups, DRF-PEG shows great potential in
detecting iron ions in complex biological samples, which is
promising in biological imaging and medical diagnosis.
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TABLE 1 | Comparison of polymeric sensor containing both PEG chain and rhodamine moiety (DRF-PEG) with other rhodamine-based chemosensors for iron (Fe3+).

Sensor Solvent DL (μM) pH range References

Probe M3 Acetonitrile/Tris-HCl (3:7, v/v) 5.2 4.2–8.8 Zhang M. et al. (2020)
Rh-AQ CH3CN/HEPES (50%) 3.5 NA Huang et al. (2014)
RhBNC THF 0.16 NA Vijay et al. (2019)
Probe 1 MeOH/H2O (1/1, v/v) 3.76 NA Liu et al. (2020)
RBPO EtOH/H2O (3:1, v/v) 0.067 NA Song F. et al. (2019)
RDG2 Water 2.09 4.0–7.0 Chen and Fang (2018)
RL DMSO/H2O(1：1, v/v) 0.28 4.0–11.0 Zhou et al. (2017)
DRF-PEG Water 1.0 3.2–13.3 This work

DL, detection limit, NA, not available.
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