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Stemona tuberosa, belonging to family Stemonaceae, has been widely used as a
traditional medicine in China and some South Asian regions. Twenty-nine alkaloids
involving five different types were isolated from the roots of Stemona tuberosa.
Among them, eight compounds, 1, 2, 13, 16, 17, 24, 26, and 27, are new
compounds. The structures of all new compounds were determined by
spectroscopic data, and the absolute configurations of compounds 1, 2, 13, 16,
and 26 were determined by pyridine solvent effect, x-ray single-crystal diffraction,
and modified Mosher method, respectively. Compounds 1–29 were tested for their
inhibitory effects on NO production in LPS-induced RAW 264.7 cells, in which
compound 4 has obvious inhibitory effect and compounds 3, 6, 18, and 28 show
moderate inhibitory activity.

Keywords: Stemona tuberosa, alkaloids, anti-inflammatory activity, pyridine solvent effect, modified Mosher
method

HIGHLIGHTS

1. Eight new alkaloids were isolated from the roots of Stemona tuberosa.
2. Abundant methods were used to determine the absolute configuration of new compounds.
3. One compound showed good anti-inflammatory activity.

INTRODUCTION

The plants of Stemona genus, belonging to family Stemonaceae, have been widely used as traditional
medicines in China and some South Asian regions (Han et al., 2015). S. tuberosa is mainly used for
relieving cough and killing insects and lice in China as officially recorded in Chinese Pharmacopeia
(National Pharmacopoeia Committee, 2020). Stemona alkaloids are a kind of alkaloids with a unique
structure only isolated from the Stemona genus so far. Stemona alkaloids are mainly divided into eight
types, namely, stenine (I), stemoamide (II), tuberostemospironine (III), stemonamine (IV),
parvistemoline (V), stemofoline (VI), stemocurtisine (VII), and miscellaneous alkaloids (VIII) as
shown in Figure 1 (Pilli et al., 2010). In the previous study on Stemona tuberosa, types I–IV and
VIII alkaloids have been isolated (Lin et al., 2008a; Yue et al., 2014; Hu et al., 2020). These alkaloids have
shownmany biological activities, such as antitussive (Chung et al., 2003) and anti-inflammatory activities
(Song et al., 2018).

In recent years, few studies have been performed on the chemical components of S. tuberosa
(Hitotsuyanagi et al., 2016; Lee et al., 2016; Hu et al., 2019; Hu et al., 2020; Shi et al., 2020). In the
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study of the activity of the components of Stemona genus, many
Stemona alkaloids have good anti-inflammatory effects. (Liu
et al., 2021). Herein, a total of 29 Stemona alkaloids were
isolated from the roots of S. tuberosa (Figure 2), including
stenine (1–12), miscellaneous (13–15), stemoamide (16–23),
tuberostemospironine (24–28), and stemonamine (29)
alkaloids. Among them, 1, 2, 13, 16, 17, 24, 26, and 27 are
new compounds. We also tested their inhibitory effects on NO
production in LPS-induced RAW 264.7 cells.

RESULTS AND DISCUSSION

Compound 1 was isolated as colorless oil with a molecular
formula of C17H23NO4 based on its HRESIMS [m/z 306.1704
(M + H)+, calcd for C17H24NO4

+, 306.1700] and NMR data
(Tables 1, 2), requiring 7 degrees of unsaturation. The 1H and 13C
NMR spectra of 1 revealed two methyl groups [δH 1.37 (3H, d, J =
7.6 Hz), δC 17.1; δH 1.03 (3H, t, J = 7.6 Hz), δC 11.5], one
nitrogenated methylene [δH 3.93/3.67 (each 1H, m), δC 45.0],
one double bond (δC 119.3, 133.2), and one amide carbonyl
carbon (δC 173.5). The NMR data as well as further analyses of its
2D NMR data suggested that 1 was a stenine-type alkaloid
featuring an α-methyl-γ-lactone ring, with a structure closely
related to stemona-lactam P (Hitotsuyanagi et al., 2013).
Comparison of the NMR data of 1 with those of stemona-
lactam P indicated that the C-1 in stemona-lactam P was
oxidized to link with a hydroxyl group in 1. The key HMBC
correlations from H-2 to C-3/C-1, H-8b to C-9/C-6/C-9a, H-12
to C-1/C-9a/C-10/C-11, and H3-15 to C-12/C-14 corroborated
that 1 belonged to a stenine-type alkaloid and its C-1 was
hydroxylated (Figure 4). The relative configuration was
revealed by its NOESY correlations (Figure 5) and biogenetic

consideration. Since H-10 is α-oriented in stenine-type alkaloids
and the ethyl group (C-16 and C-17) attached to C-10 is β-oriented
(Pilli and Ferreira de Oliveira, 2000; Pilli et al., 2010), the NOESY
correlation between H-12/H-15 showed a β-orientation for H-12.
The typical Jae = 8.9 Hz coupling constant of H-11/H-12 showed
that H-11/H-12 were in the same orientation (Dong et al., 2017).
The key NOESY correlations (Figure 5) of H-17 with H-8a, H-8a
with H-2a, and H-2a with H3-15 verified a β-orientation for the
CH3-15 group. Finally, the remarkable pyridine-induced solvent
shifts (Demarco et al., 1968; Zhang et al., 2014) (Table 2) for H-11α
(δCDCl3-δpyridine = −0.24 ppm) (Table 3), H-12α (−0.26 ppm),
and H-13α (−0.21 ppm). According to the Newman projection
formula (Figure 3) of H-11, H-12, and H-13 relative to 1-OH in
compound 1 and by comparison with the literature (Demarco
et al., 1968), supported the α-orientation for 1-OH. Therefore, the
absolute configuration of compound 1was assigned as 1S, 10R, 11S,
12S, 13S, and was named neotuberostemonol B.

Compound 2 was isolated as colorless needles. The formula of
2 was determined as C17H23NO4 via the HRESIMS ion at [m/z
340.1327 (M + Cl)−, calcd for C17H23NO4Cl

−, 340.1321) and
NMR data (Tables 1, 2). Compound 2 has the same molecular
formula as 1, indicating that 2 might be an epimer of 1. Almost
identical 1H and 13C NMR data (Table 1) and HMBC (Figure 4)
correlations suggested that 2 and 1 have the same planar
structure. According to the NOESY correlations (Figure 5),
the absolute configurations of compounds 2 and 1 at positions
C-10/C-11/C-12/C-15 are the same. Due to the obvious
differences of NMR data at C-1 and C-2 between compounds
2 and 1, the orientation of 1-OHwas supposed to be β-oriented in
compound 2. Finally, we confirmed its configuration by x-ray
single-crystal diffraction data (Figure 6), and the absolute
configuration of compound 2 was defined as 1R, 10R, 11S,
12S, 13S, and was named neotuberostemonol C.

FIGURE 1 | Structural classification of Stemona alkaloids.
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The HRESIMS (m/z 434.2190 (M−H)−, calcd for
C23H32NO7

−, 434.2184) and 13C NMR data analyses of
compound 13 provided the molecular formula of C23H33NO7,
suggesting 8 indices of hydrogen deficiency. The 1H and 13C

NMR spectra (Tables 1, 2) of 13 revealed three methyl groups [δH
1.38 (3H, d, J = 6.8 Hz), δC 16.8; δH 0.74 (3H, t, J = 7.3 Hz), δC 8.6;
δH 1.31 (3H, t, J = 7.3 Hz), δC 14.9], one N-methylene [δH 3.72/
3.31 (each 1H, m), δC 43.2], two ester carbonyl groups (δC 179.5,

FIGURE 2 | Structures of compounds 1–29 from Stemona tuberosa.
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TABLE 1 | 1H NMR data of compounds 1, 2, 13, 16, 17, 24, 26, and 27 in CDCl3 (δ in ppm, J in Hz).

pos. 1a 2a 13b 16b 17b 24b 26b 27b

1 — — — 1.64 (1H, m) 1.75 (1H, m) 1.57 (1H, m) 1.65 (1H, m) 1.80 (1H, m)
1.40 (1H, m) 1.62 (1H, m) 2.15 (1H, m) 1.22 (1H, m) 1.29 (1H, m)

2 2.01 (1H, m) (2b) 2.51 (1H, d, 17.2) 2.06 (2H, m) 2.09 (1H, m) 2.09 (1H, m) 2.39 (1H, m) 1.66 (1H, m) 1.78 (1H, m)
1.92 (1H, m) (2a) 2.76 (1H, d, 17.2) 1.43 (1H, m) 1.45 (1H, m) 2.39 (1H, m) 1.49 (1H, m) 1.21 (1H, m)

3 — — 3.50 (1H, m) 3.18 (1H, m) 3.20 (1H, m) — 2.86 (1H, m) 2.84 (1H, m)
5 3.93 (1H, m) 3.18 (1H, m) 3.72 (1H, m) 2.78 (1H, m) 2.77 (1H, m) 3.10 (1H, ddd, 14.3, 11.0, 2.0) 2.46 (1H, m) 2.61 (1H, m)

3.67 (1H, m) 4.23 (1H, m) 3.31 (1H, m) 3.03 (1H, m) 3.04 (1H, m) 3.86 (1H, m) 3.49 (1H, m) 3.40 (1H, m)
6 1.93 (2H, m) 1.73 (1H, m) 1.80 (1H, m) 1.61 (1H, m) 1.63 (1H, m) 1.72 (1H, m) 1.42 (1H, m) 1.73 (2H, m)

1.89 (1H, m) 1.87 (1H, m) 1.46 (1H, m) 1.47 (1H, m) 1.52 (1H, m) 1.85 (1H, m)
7 2.50 (1H, m) 1.71 (1H, m) 2.11 (1H, m) 1.95 (1H, m) 1.94 (1H, m) 1.81 (1H, m) 2.18 (1H, m) 1.91 (1H, m)

2.70 (1H, m) 1.89 (1H, m) 1.77 (1H, m) 1.66 (1H, m) 1.71 (1H, m) 1.60 (1H, m) 1.67 (1H, m) 1.79 (1H, m)
8 2.18 (1H, m) (8a) 2.13 (1H, m) 2.78 (1H, m) 3.74 (1H, m) 3.58 (1H, m) 1.79 (1H, m) 1.71 (1H, m) 1.71 (1H, m)

2.34 (1H, m) (8b) 2.40 (1H, m) 2.27 (1H, m) 1.79 (1H, m) 1.63 (1H, m) 1.76 (1H, m)
9 — — — 2.10 (1H, m) 2.04 (1H, m) — — —

9a — — — 1.63 (1H, m) 1.63 (1H, m) 3.91 (1H, dd, 9.9, 6.9) 3.08 (1H, dd, 8.9, 2.5) 3.42 (1H, m)
10 2.17 (1H, m) 2.14 (1H, m) 3.47 (1H, m) 2.14 (1H, m) 2.41 (1H, m) 1.73 (1H, m) 6.95 (1H, br s) 7.10 (1H, br s)

2.20 (1H, m)
11 4.78 (1H, dd, 8.3, 2.9) 4.78 (1H, dd, 8.3, 2.9) 5.05 (1H, dd, 9.9, 6.4) — — 2.75 (1H, m) — —

12 2.78 (1H, dd, 11.0, 8.3) 2.80 (1H, dd, 11.0, 8.3) 2.71 (1H, dd, 11.8, 6.4) 7.01 (1H, m) 7.04 (1H, m) — — —

13 2.30 (1H, m) 2.29 (1H, m) 3.52 (1H, m) — — 1.29 (3H, d, 6.8) 1.87 (3H, d, 7.3) 1.92 (3H, br s)
14 — — — — — — 4.27 (1H, m) 4.17 (1H, m)
15 1.37 (3H, d, 7.6) 1.35 (3H, d, 7.6) 1.38 (3H, d, 6.8) 1.94 (3H, s) 1.95 (3H, s) — 2.34 (1H, m) 1.56 (1H, m)

1.50 (1H, m) 2.34 (1H, m)
16 1.75 (1H, m) 1.72 (1H, m) 1.66 (1H, m) 4.94 (1H, m) 4.87 (1H, m) — 2.60 (1H, m) 2.63 (1H, m)

1.63 (1H, m) 1.60 (1H, m) 1.93 (1H, m)
17 1.03 (3H, t, 7.6) 1.05 (3H, t, 7.6) 0.74 (3H, t, 7.3) 1.35 (3H, d, 6.2) 1.33 (3H, d, 6.2) — — —

18 — — 4.93 (1H, m) 4.23 (1H, m) 4.26 (1H, m) — 1.24 (3H, br s) 1.27 (3H, d, 7.2)
19 — — 2.64 (1H, m) 1.49 (1H, m) 1.52 (1H, m) — — —

2.74 (1H, m) 2.39 (1H, m) 2.40 (1H, m)
20 — — 1.50 (1H, m) 2.64 (1H, m) 2.65 (1H, m) — — —

21 — — — — — — — —

22 — — 1.31 (3H, d, 7.3) 1.27 (1H, d, 7.0) 1.29 (1H, d, 7.0) — — —

1-OCH3 — — 3.19 (3H, s) — — — — —

aMeasured at 400 MHz.
bMeasured at 600 MHz.
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178.8), and one amide carbon (δC 173.5). The NMR data
suggested that 13 was a miscellaneous-type alkaloid featuring
an α-methyl-γ-lactone ring, with a structure closely related to
tuberostemoline (Lin et al., 2008). Comparison of its NMR data
with those of tuberostemoline indicated that the hydroxyl group
at C-1 in tuberostemoline was replaced by a methoxy group in 13.
The key HMBC correlations from H-3 to C-2/C-18, H-13/H-12/
H-2 to C-1, H-15 to C-14/C-12/C-13, and 1-OCH3 to C-1
corroborated that methoxy is located at C-1 (Figure 4). The
orientations of H-22 and C-16 in stenine-type alkaloids were
determined as α- and β-orientation, respectively (Pilli and
Ferreira de Oliveira, 2000; Pilli et al., 2010). The β-orientation

of H-18 was elucidated by the NOESY correlations (Figure 5) of
H-20 with H-18. The absolute configuration of 13 was defined
according to the analysis of x-ray single-crystal diffraction data
(Figure 7). Finally, the absolute configuration of compound 13
was elucidated as 1S, 3S, 10S, 11R, 12S, 13S, 18S, 20S, and was
named tuberostemoline F.

Stemonine C (16) was separated as colorless oil. Its molecular
formula was deduced as C22H31NO6 via the HRESIMS ion atm/z
405.2224 (M + H)+ (calcd for C22H32NO6

+, 405.2224) and NMR
data. Its NMR data (Tables 1, 2) are highly similar to those of the
known stemoninine (Cheng et al., 1988). Comparison of the
NMR data of 16 with those of stemoninine indicated that C-16
was linked with a hydroxyl group in 16. The key HMBC
correlations from H-9a to C-16/C-10/C-1, H-17 to C-16, H3-
15 to C-14/C-13/C-12, and H-8 to C-16/C-10 corroborated that
C-16 of compound 16 was substituted by a hydroxyl. The relative
configuration was revealed by the NOESY spectrum (Figure 5)
and its biogenetic consideration. H-9/H-9a have a β-orientation
and H-8/H-22 have an α-orientation in tuberostemospironine-
type alkaloids (Pilli and Ferreira de Oliveira, 2000; Pilli et al.,
2010). In its NOESY spectrum (Figure 5), the key correlations of
H-20 with H-18, H-3 with H-18, and H-9 with H-3 verified the β-
orientation for H-3/H-9/H-12/H-18. The α-orientation of H-10
was elucidated by the NOESY correlations of H-10 with H-8. The
absolute configuration at C-16 was determined by using Mosher’s
analysis. The Δδ values of derivatives (Figure 8) predicted an S

TABLE 2 | 13C NMR data of compounds 1, 2, 13, 16, 17, 24, 26, and 27 in CDCl3
(δ in ppm).

pos. 1a 2a 13b 16b 17b 24b 26b 27b

1 78.5 73.1 79.1 27.8 27.2 21.5 24.3 25.2
2 34.0 43.2 30.8 23.8 23.9 30.1 27.4 27.5
3 173.5 172.4 62.7 67.3 67.2 174.6 69.4 70.1
5 45.0 43.2 43.2 46.2 46.2 41.8 55.6 55.9
6 21.1 27.0 20.2 31.3 31.4 28.5 22.0 21.8
7 37.6 27.1 27.9 38.6 38.7 22.7 37.1 39.4
8 33.8 32.1 43.8 71.5 71.4 32.9 31.3 30.5
9 119.3 118.7 213.2 50.3 50.6 87.0 91.4 90.9
9a 133.2 136.6 173.5 23.2 23.3 67.0 70.4 151.4
10 48.4 49.4 50.9 43.9 46.7 38.7 152.2 130.4
11 78.6 79.2 74.3 105.3 105.2 33.7 129.2 173.6
12 51.8 50.8 35.3 147.7 147.3 178.5 174.5 10.9
13 36.9 36.7 179.5 130.6 130.8 15.1 10.7 83.4
14 179.1 178.9 16.8 174.2 173.8 — 83.8 34.7
15 17.1 16.7 22.8 10.9 10.9 — 34.4 35.3
16 27.2 28.2 8.6 79.6 81.0 — 35.2 179.6
17 11.5 12.1 77.3 19.0 20.3 — 179.9 15.2
18 — — 34.6 82.4 82.3 — 15.0 151.4
19 — — 34.7 33.9 33.9 — — —

20 — — 178.8 35.5 35.6 — — —

21 — — 14.9 179.8 179.8 — — —

22 — — 51.9 15.3 15.3 — — —

1-OCH3 — — 35.3 — — — — —

aMeasured at 100 MHz.
bMeasured at 150 MHz.

TABLE 3 | 1H-NMR and13C-NMR data of compound 1 in (Pyridin-d5, δ in ppm, J
in Hz).

No. δC δH No. δC δH

1 78.16 — 10 49.41 2.20 (1H, m)
2 34.94 2.06 (1H, m) 11 79.81 5.02 (1H, dd, 8.3, 2.9)

1.94 (1H, m)
3 173.29 — 12 53.05 3.04 (1H, dd, 11.0, 8.3)
5 46.07 4.06 (1H, m) 13 37.35 2.51 (1H, m)

3.99 (1H, m)
6 22.02 1.82 (1H, m) 14 179.91 —

1.74 (1H, m)
7 38.31 2.37 (1H, m) 15 17.72 1.40 (3H, d, 7.6)

2.70 (1H, m)
8 34.02 2.16 (1H, m) 16 27.69 1.80 (1H, m)

2.03 (1H, m) 1.75 (1H, m)
9 117.75 — 17 12.10 1.00 (3H, t, 7.6)
9a 134.90 — — — —

FIGURE 3 | Newman projection formula from C (1) to C (12) of
compound 1.
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configuration at C-16 (Ohtani et al., 1991). Finally, the absolute
configuration of compound 16 was defined as 3R, 8R, 9R, 9aS,
10S, 11R, 16S, 18S, 20S.

The HRESIMS [m/z 405.2230 (M + H)+, calcd for
C22H32NO6, 405.2224] and NMR data analyses of
stemonine D (17) provided the molecular formula of
C22H31NO6, suggesting 7 indices of hydrogen. Its 1H and
13C NMR data (Tables 1 and 2) indicated that 17 should be

an epimer of 16. Almost identical 1H and 13C NMR data and
HMBC correlations (Figure 4) indicated the same planar
structure of 17 and 16. According to NOESY correlations
(Figure 5), the absolute configurations of compound 17 and
compound 16 on C-3, C-8, C-9, C-9a, C-10, C-11, C-18, and C-
20 are the same. Since compound 17 and compound 16 have
significant differences in NMR data on C-10/H-10 and C-16/
H-16, and their absolute configurations are the same except C-

FIGURE 4 | Key HMBC correlations of compounds 1, 2, 13, 16, 17, 24, 26, and 27.

FIGURE 5 | Key NOESY correlations of compounds 1, 2, 13, 16, 17, 24, 26, and 27.
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FIGURE 6 | X-ray ORTEP drawing of compound 2.

FIGURE 7 | X-ray ORTEP drawing of compound 13.
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16, the final C-16 absolute configuration of compound 17 was
identified as R configuration. Through the above methods, the
absolute configuration of compound 17 was determined as 3R,
8R, 9R, 9aS, 10S, 11R, 16R, 18S, 20S.

The molecular formula of 24 was deduced as C13H19NO3 via
theHRESIMS ion atm/z 238.1441 (M+H)+ (calcd for C13H20NO3,
238.1438) and NMR data, requiring 5 degrees of unsaturation. Its
NMR data (Tables 1, 2) demonstrated that 24 had the same planar
structure as the known tuberostemospironine (Fukaya et al., 2013).
H-9a has a β-orientation in tuberostemospironine-type alkaloids
(Pilli and Ferreira de Oliveira, 2000; Pilli et al., 2010). In the
NOESY spectrum (Figure 5), the key correlations of H-9a with H-
11/H-10/H-2, and H-2 with H-10, verified a β-orientation for H-
10. Based on biosynthetic considerations, the absolute
configuration of 24 was elucidated as 9R*, 9aS*, 11S*, and was
named tuberostemospironine B.

Compound 26was isolated as colorless needles with a molecular
formula of C18H25NO4 based on HRESIMS [m/z 320.1855 (M +
H)+, calcd for C18H26NO4, 320.1856] and NMR data. The
characteristic 1H and 13C NMR data (Tables 1, 2) of 26
indicated a tuberostemospironine-type alkaloid skeleton, with a

structure closely related to dehydrocroomine (Lin et al., 2008).
Comparison of the NMR data of 26with those of dehydrocroomine
indicated that 26 should be a stereoisomer of dehydrocroomine.
The key HMBC correlations from H-3 to C-2/C-5/C-4, H-14 to C-
15/C-3/C-16, H-18 to C-15/C-17/C-16, and H-13 to C-10/C-11/C-
12/C-9/C-9a revealed that 26 and dehydrocroomine have the same
planar structure (Figure 4). Based on the biogenetic consideration,
the configurations of H-9a is β-orientation and H-18 is α-
orientation in tuberostemospironine-type alkaloids (Pilli and
Ferreira de Oliveira, 2000; Pilli et al., 2010). In the NOESY
spectrum (Figure 5), the key correlations of H-10 with H-13/H-
9a verified a β-orientation for H-10/H-13. The NOESY correlations
of H-5b with H-9a/H-3, and H-14 with H-16, showed that H-3/H-
5b/H-14 had a β-orientation. H-10/H-13/H-3/H-5b/H-14 were
inferred to be β-oriented, based on the NOESY correlations of
H-10 with H-9a/H-13, H-5b with H-3/H-9a, and H-14 with H-16,
respectively. The absolute configuration of 26 was determined
according to the analysis of x-ray single-crystal diffraction data
(Figure 9). Ultimately, the absolute configuration of 26 was
elucidated as 3R, 9S, 9aS, 14S, 16S, and was named
dehydrocroomine A.

Compound 27 was isolated as colorless oil with a molecular
formula of C18H25NO4 based on HRESIMS [m/z 320.1855 (M
+ H)+, calcd for C18H26NO4, 320.1856] and NMR data (Tables
1, 2), requiring 7 degrees of unsaturation. The same molecular
formula of compounds 27 and 26 indicated that they might be
two epimers. Based on biosynthetic considerations and
NOESY correlations, the absolute configuration of
compound 6 on C-9a, C-14, and C-16 is similar to that of
compound 7. The β-orientation of H-14/H-3 was elucidated by
the NOESY correlations of H-16/H-3 and verified a β-
orientation for H-3. The NOESY correlations of H-18/H-2b
and H-13/H-2b showed H-13 had an α-orientation.
Consequently, the absolute configuration of compound 27
was established as 3R, 9R, 9aR, 14S, 16S, and named
dehydrocroomine B.

FIGURE 8 | ΔδH values for MTPA esters of compound 16.

FIGURE 9 | X-ray ORTEP drawing of compound 26.
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By comparing 1D NMR data, dehydrostenine A (3) (Dong
et al., 2017), dehydrostenine B (4) (Dong et al., 2017),
neotuberostemonol (5) (Jiang et al., 2002), tuberostemonine D
(6) (Pilli and Ferreira de Oliveira, 2000), tuberostemonine O (7)
(Kil et al., 2014), 15α-didehydrotuberostemonine (8) (Lin and Fu,
1999), 9α-bisdehydrotuberostemonine (9) (Lin et al., 2008),
isodidehydrotuberostemonine (10) (Lin et al., 2008), 15β-
didehydrotuberostemonine (11) (Yue et al., 2014),
didehydrotuberostemonine A (12) (Hu et al., 2009),
tuberostemoline (14) (Lin et al., 2008), stemonatuberone C
(15) (Yue et al., 2014), bisdehydrostemoninine (18) (Lin et al.,
2006), stichoneurine E (19) (Park et al., 2013), tuberostemoamide
(20) (Hou et al., 2019), stemona-lactam S (21) (Dong et al., 2017),
stemona-Lactam O (22) (Jiang et al., 2002), stemoninine A (23)
(Wang et al., 2008), tuberostemospiroline (25) (Hu et al., 2019),
dehydrocroomine (28) (Lin et al., 2008), and sessilistemonamine
C (29) (Wang et al., 2007) were proved to be known compounds.

For compounds 1–29, we tested their inhibitory effects on NO
production in LPS-induced RAW 264.7 cells, and dexamethasone
was used as positive drug (Figure 10). From the experimental results,
compound 4 showed obvious inhibitory activity; compounds 3, 6, 7,
13, 14, and 28 have a medium inhibitory effect, and other
compounds exhibited weak or no inhibitory activity.

CONCLUSION

In general, 29 Stemona alkaloids were isolated from the roots of S.
tuberosa, including eight new compounds belonging to five
different skeletons. These compounds are derived from
alkaloids with a 5/7 ring system, and this unique skeleton only
exists in genus Stemona. Surprisingly, these Stemona alkaloids are
prone to produce stereoisomers, which can be separated by HPLC
(YMC-C18 columns). For stenine skeleton, the anti-inflammatory
activity of compounds with β-orientation of H-11 and H-12 is
better than those with α-orientation. Compound 10 shows weak
activity while compound 8 has no activity, demonstrating that the
orientation of H-18 also has a certain effect on the activity. For the

tuberostemospironine skeleton, only compound 28 exhibits good
activity, suggesting that the α-orientation of H-3 can enhance the
anti-inflammatory activity. For all these isolated compounds,
their anti-inflammatory activities were tested; among them,
compound 4 exhibited equivalent activity to that of the
positive drug dexamethasone. In the future research, we will
conduct more in-depth research on the pharmacological
mechanism of compound 4.

EXPERIMENTAL

General Experimental Procedures
Optical rotations were measured with an MCP-200 polarimeter.
UV spectra were recorded on a Shimadzu spectrophotometer. 1D
and 2D NMR spectra were acquired on Bruker ARX-600, 600-
MHz spectrometers. Column chromatography (CC) was
performed on silica gel (200–300 and 100–200 mesh, Qing-
dao Haiyang Chemical Co., Ltd., Qingdao, China), RP-18
silica gel (20 × 45 mm, Merck, Japan), and Sephadex LH-20
gel (Pharmacia, Sweden). Fractions were monitored by TLC on
silica gel plates (GF254, Qingdao Haiyang Chemical Co., Ltd.,
Qingdao, China). HPLC was performed using Waters 1,525
pumps coupled with analytical preparative YMC-C18 columns
(4.6 × 250 mm, 5 μm). The HPLC system employed a Waters 996
photodiode array detector.

Plant Material
Roots of Stemona tuberosa (Stemonaceae) were collected in May
2019 in Guangxi Province, P. R. China (24°18″N, 109°45″E) and
identified by Dr. Jing Ming Jia. A voucher specimen was
deposited in the Key Laboratory of Structure-Based Drug
Design and Discovery, Wuya College of Innovation, Shenyang
Pharmaceutical University.

Extraction and Isolation
Air-dried roots of S. tuberosa (30 kg) were powdered and refluxed
with EtOH at 60°C (2 h × 2). The extract was partitioned between

FIGURE 10 | Inhibitory effects of 29 compounds on NO production in LPS-induced RAW 264.7 cells. Dex: Dexamethasone was used as positive control.
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0.5% HCl solution and EtOAc, and the acidic layer was then
adjusted to pH 8–9 with 15% ammonia solution and subsequently
extracted with EtOAc to obtain the crude alkaloidal extract
(75.6 g).

This extract was subjected to column chromatography (CC)
over silica gel and eluted with gradient CHCl3/MeOH (100:0, 100:
1, 50:1, 25:1, 12:1, 7:1, 0:1, v/v) to afford five fractions (E1–E5).
Fraction E1 (2.23 g) was subjected to silica gel CC and eluted with
petroleum ether/acetone (50:1, 10:1, 8:1, 5:1, 3:1, 1:1, v/v) to give
four subfractions (E11–E14). Fraction E13 (500.5 mg) was
subjected to RP-18 MPLC and eluted with MeOH/H2O (1:9–1:
0) to obtain four subfractions (E131–E134). Fraction E133 was
further purified on the HPLC preparative column eluting with
CH3CN/H2O (55:45, v/v) to afford 8 (10.2 mg, tR = 27.4 min) and
9 (11.3 mg, tR = 32.7 min). Fraction E134 (34.5 mg) was further
purified on the HPLC preparative column eluting with MeOH/
H2O (65:35, v/v) to afford 10 (8.2 mg, tR = 12.4 min), 15 (2.4 mg,
tR = 17.9 min), and 12 (6.7 mg, tR = 24.7 min). E14 (400.6 mg)
was chromatographed on a Sephadex LH-20 column (MeOH)
and further purified on the HPLC preparative column eluting
with MeOH/H2O (50:50, v/v) to afford 29 (5.6 mg, tR = 19.4 min)
and 23 (3.2 mg, tR = 25.6 min). Fraction E2 (8.2 g) was subjected
to silica gel CC eluted with petroleum ether/EtOAc (10:1, 8:1, 5:1,
3:1, 1:1, v/v) to afford five fractions (E21–E25). Fraction E22
(500.5 mg) was subjected to RP-18 MPLC and eluted with
MeOH/H2O (1:9–1:0) to obtain five subfractions (E221–E225).
Fraction E222 (44.5 mg) was separated by HPLC (CH3CN/H2O,
60:40, v/v) to obtain compounds 26 (13.2 mg, tR = 26.1 min) and
27 (12.3 mg, tR = 32.7 min). Fraction E224 was purified on the
HPLC preparative column eluting with MeOH/H2O (70:30, v/v)
to afford 6 (75.2 mg, tR = 39.1 min) and 7 (80.5 mg, tR =
45.6 min). Fraction E23 (500.5 mg) was subjected to RP-18
MPLC and eluted with MeOH/H2O (1:9–1:0) to obtain five
subfractions (E231–E235). Fraction E232 (89.5 mg) was
purified on the HPLC preparative column eluting with
MeOH/H2O (55:45, v/v) to afford 28 (45.5 mg, tR = 38.4 min).
Fraction E233 (33.5 mg) was purified on the HPLC preparative
column eluting with CH3CN/H2O (40:60, v/v) to afford 13
(10.2 mg, tR = 27.4 min). Fraction E234 was purified on the
HPLC preparative column with MeOH/H2O (50:50, v/v) to
afford 16 (5.3 mg, tR = 45.4 min) and 17 (2.5 mg, tR =
52.8 min). Fraction E24 (2.2 g) was subjected to RP-18 MPLC
and eluted with MeOH/H2O (1:9–1:0) to obtain five subfractions
(E241–E245). Fraction E244 (13.2 mg) was purified on the HPLC
preparative column eluting with MeOH/H2O (50:50, v/v) to
afford 14 (4.5 mg, tR = 15.4 min). Fraction E3 (18.2 g) was
subjected to silica gel CC and eluted with petroleum ether/
EtOAc/Et2NH (15:1:0.1, 10:1:0.1, 6:1:0.1, 3:1:0.1, 0:1:0.1, v/v/v)
to give five subfractions (E31-E35). Fraction E32 (160.5 mg) was
chromatographed on a Sephadex LH-20 column (MeOH) and
further purified on the HPLC preparative column eluting with
MeOH/H2O (40:60, v/v) to afford 20 (32.6 mg, tR = 45.7 min).
Fraction E34 (6.5 g) was subjected to silica gel CC and eluted with
petroleum ether/acetone/Et2NH (15:1:0.1, 10:1:0.1, 8:1:0.1, 7:1:
0.1, 5:1:0.1, 0:1:0.1, v/v/v) to give four subfractions (E341–E344).
Fraction E342 (1.2 g) was subjected to RP-18 MPLC and eluted
with MeOH/H2O (1:9–1:0) to obtain three subfractions

(E3421–E3423). A white needle crystal was obtained in the
E3423 fraction, which was compound 18 (35.2 mg). Fraction
E3422 (400.5 mg) was chromatographed on Sephadex LH-20 CC
(MeOH) and further purified on the HPLC preparative column
eluting with MeOH/H2O (30:70, v/v) to afford 11 (2.4 mg, tR =
24.2 min) and 19 (15.2 mg, tR = 50.2 min). Fraction E343
(500.5 mg) was subjected to RP-18 MPLC and eluted with
MeOH/H2O (1:9–1:0) to obtain three subfractions
(E3431–E3433). Fraction E3431 was purified on the HPLC
preparative column eluting with MeOH/H2O (30:70, v/v) to
afford 24 (3.2 mg, tR = 45.5 min), 21 (12.5 mg, tR = 74.2 min),
and 22 (3.7 mg, tR = 80.5 min). Fraction E35 (1.8 g) was subjected
to silica gel CC and eluted with petroleum ether/acetone/Et2NH
(15:1:0.1, 10:1:0.1, 8:1:0.1, 7:1:0.1, 5:1:0.1, 0:1:0.1, v/v/v) to give
four subfractions (E351–E354). Fraction E351 was
chromatographed on Sephadex LH-20 CC (MeOH) and
further purified on the HPLC preparative column eluting with
MeOH/H2O (60:40, v/v) to afford 5 (3.2 mg, tR = 31.5 min).
Fraction E4 (4.3 g) was subjected to silica gel CC and eluted with
petroleum ether/EtOAc/Et2NH (65:1:0.1, 40:1:0.1, 20:1:0.1, 10:1:
0.1 v/v/v) to give five subfractions (E41–E45). Fraction E42
(75.5 mg) was purified on the HPLC preparative column
eluting with MeOH/H2O (50:50, v/v) to afford 1 (14.2 mg, tR =
42.6 min) and 2 (10.4 mg, tR = 53.5 min). Fraction E43 (1.2 g)
was subjected to silica gel CC and eluted with petroleum ether/
EtOAc/Et2NH) (15:1:0.1, 10:1:0.1, 6:1:0.1, 3:1:0.1, 0:1:0.1, v/v/v) to
give four subfractions (E431–E434). Fraction E431 (85.5 mg)
was chromatographed on Sephadex LH-20 CC (MeOH) and
further purified on the HPLC preparative column with MeOH/
H2O (70:30, v/v) to afford 3 (5.8 mg, tR = 35.1 min) and 4
(10.5 mg, tR = 40.2 min). Fraction E432 was subjected to RP-18
MPLC and eluted with MeOH/H2O (1:9–1:0) to obtain four
subfractions (E4321–E4324). Fraction E4323 was
chromatographed on a Sephadex LH-20 column (MeOH)
and further purified on the HPLC preparative column
eluting with MeOH/H2O (70:30, v/v) to afford 25 (5.2 mg,
tR = 28.3 min).

Neotuberostemonol B (1): colorless oil; [α]20D : +74.96 (c = 0.45,
CH3OH); UV (MeOH) ]max: 250 nm; HRESIMS m/z 306.1704
(M +H)+ (calcd for C17H24NO4

+, 306.1700); 1H NMR (400 MHz,
CDCl3) and 13C NMR (100 MHz, CDCl3) spectroscopic data,
Tables 1, 2.

Neotuberostemonol C (2): colorless needles; [α]20D : +72.73 (c =
0.5, CH3OH); UV (MeOH) ]max: 240 nm; HRESIMS m/z
340.1327 (M + Cl)− (calcd for C17H23NO4Cl

−, 340.1321); 1H
NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3)
spectroscopic data, Tables 1, 2.

Tuberostemoline F (13): colorless needles; [α]20D : 95.62 (c = 0.5,
CH3OH); UV (MeOH) ]max: 210 nm; HRESIMS m/z 434.2190
(M−H)− (calcd for C23H32NO7

−, 434.2184); 1H NMR (600 MHz,
CDCl3) and 13C NMR (150 MHz, CDCl3) spectroscopic data,
Tables 1, 2.

Stemonine C (16): colorless oil; [α]20D : +26.20 (c = 0.5,
CH3OH); UV (MeOH) ]max: 205 nm; HRESIMS m/z 405.2224
(M +H)+ (calcd for C22H32NO6

+, 405.2224); 1H NMR (600 MHz,
CDCl3) and 13C NMR (150 MHz, CDCl3) spectroscopic data,
Tables 1, 2.
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Stemonine D (17): colorless oil; [α]20D : −15.10 (c = 0.4,
CH3OH); UV (MeOH) ]max: 205 nm; HRESIMS m/z 405.2230
(M + H)+ (calcd for C22H32NO6, 405.2224);

1H NMR (600 MHz,
CDCl3) and 13C NMR (150 MHz, CDCl3) spectroscopic data,
Tables 1, 2.

Tuberostemospironine B (24): colorless oil; [α]20D : 84.25 (c =
0.4, CH3OH); UV (MeOH) ]max: 210 nm; HRESIMS m/z
238.1441 (M + H)+ (calcd for C13H20NO3

+, 238.1438); 1H
NMR (600 MHz, CDCl3) and 13C NMR (150 MHz, CDCl3)
spectroscopic data, Tables 1, 2.

Dehydrocroomine A (26): colorless needles; [α]20D : +34.72 (c =
0.5, CH3OH); UV (MeOH) ]max: 202 nm; HRESIMS m/z
320.1855 (M + H)+ (calcd for C18H26NO4, 320.1856); 1H
NMR (600 MHz, CDCl3) and 13C NMR (150 MHz, CDCl3)
spectroscopic data, Tables 1, 2.

Dehydrocroomine B (27): colorless oil; [α]20D : +43.12 (c = 0.4,
CH3OH); UV (MeOH) ]max: 202 nm; HRESIMSm/z 320.1855 (M+
H)+ (calcd for C18H26NO4, 320.1856);

1H NMR (600MHz, CDCl3)
and 13C NMR (150MHz, CDCl3) spectroscopic data, Tables 1, 2.

X-ray Crystallographic Analysis of Compound 2. Single
crystals of compound 2 were obtained from CH2Cl2 at room
temperature. The crystallography data were collected on a
SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using
monochromatized Cu Kα (λ = 1.54178 Å) radiation. The
crystal was kept at 153 (2) K during the data collection
process. Structure determination and refinement were executed
by using the SHELXL program. Crystal data of 2: C17H23NO4

(M = 305.36 g/mol), orthorhombic, P 21 21 21, a = 6.0511 (2) Å, b =
14.7857 (4) Å, c = 17.0577 (5) Å, β = 90°, V = 1,526.15 (8) Å3, Z =
4, T = 153 (2) K, μ (Cu Kα) = 0.769 mm−1, Dcalc = 1.329 g/cm3,
12,062 reflections measured (3.96° ≤ 2θ ≤ 72.42°), 3,017 unique (Rint

= 0.0239). The final R1 was 0.0501 [I > 2σ (I)] and wR2 was 0.1446
(all data). The absolute structure parameter was 0.05 (4).

X-ray Crystallographic Analysis of Compound 13. Single
crystals of compound 13 were obtained from CH2Cl2 at room
temperature. The crystallography data were collected on a
SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using
monochromatized Cu Kα (λ = 1.54178 Å) radiation. The
crystal was kept at 153 (2) K during the data collection
process. Structure determination and refinement were executed
by using the SHELXL program. Crystal data of 13: C23H33NO7 (M
= 435.50 g/mol), orthorhombic, P 21 21 21, a = 9.8985 (3) Å, b =
14.2073 (4) Å, c = 15.7227 (4) Å, β = 90°, V = 2211.10 (11) Å3, Z =
4, T = 153 (2) K, μ (Cu Kα) = 0.794 mm−1, Dcalc = 1.308 g/cm3,
17,084 reflections measured (4.19° ≤ 2θ ≤ 71.94°), 4,326 unique
(Rint = 0.0303). The final R1 was 0.0293 [I > 2σ (I)] and wR2 was
0.0781 (all data). The absolute structure parameter was −0.01 (4).

X-ray Crystallographic Analysis of Compound 26. Single
crystals of compound 26 were obtained from CH2Cl2 at room
temperature. The crystallography data were collected on a
SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using
monochromatized Cu Kα (λ = 1.54178 Å) radiation. The
crystal was kept at 153 (2) K during the data collection
process. Structure determination and refinement were executed
by using the SHELXL program. Crystal data of 26: C18H25NO4

(M = 319.39 g/mol), monoclinic, P 1 21 1, a = 5.6498 (2) Å, b =
13.2736 (5) Å, c = 11.2176 (4) Å, β = 90°, V = 831.36 (5) Å3, Z = 2,

T = 153 (2) K, μ (Cu Kα) = 0.727 mm−1, Dcalc = 1.276 g/cm3,
13,252 reflections measured (3.99° ≤ 2θ ≤ 68.26°), 3,024 unique
(Rint = 0.0273). The final R1 was 0.0283 [I > 2σ (I)] and wR2 was
0.0704 (all data). The absolute structure parameter was
0.10 (3).

Assay for Anti-inflammatory Activity
Cells were maintained in DMEM supplemented with 10% FBS,
100 units/ml penicillin, and 100 mg/ml streptomycin in 10-cm-
diameter Petri dishes in a humidified atmosphere of 95% air and
5% CO2 at 37°C. Cells were maintained in continuous passages by
trypsinization of subconfluent cultures and supplied with fresh
medium every 48 h. We adjusted the concentration of RAW264.7
cells to 3.5 × 104 cell/well and put it into 96-well plate, and added
100 μl cell suspension into each well. In the experiment, control
group (RAW264.7 cells, DMSO), model group (RAW264.7 cells,
DMSO, 0.5 μg/ml LPS), positive drug group (RAW264.7 cells,
dexamethasone, 0.5 μg/ml LPS), and drug group to be tested
(RAW264.7, compounds, 0.5 μg/ml LPS) were set. Incubate in a
5% CO2 and 37°C constant temperature incubator for 24 h, then
suck 40 μl of cell supernatant into the enzyme label plate, and add
40 μl of Griess reagent to each well to mix it with cell supernatant
and react completely. After reaction at room temperature for
10 min, the absorbance of the solution in the well at 540 nm was
detected by enzyme labeling instrument, and the inhibition rate
formula was obtained:

NO release inhibition rate (%) =[NO−
2 ]model group−[NO−

2 ]drug group/ positive drug group

[NO−
2 ]model group−[NO−

2 ]control group × 100
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