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Aqueous rechargeable zinc-ion batteries (ZIBs) have recently shined in energy storage and
transmission, which are due to high safety and low cost. However, the extremely stubborn
by-products in the Zn anode severely inhibited the Zn2+ adsorption/desorption and
exacerbated the dendrite formation. Herein, we report a facile strategy to eliminate
inert Zn4(OH)6SO4·xH2O for the improvement of ZIBs according to the coordination
effect by employing ethylenediaminetetraacetic acid-diamine (EDTA-2Na) as a
coordination additive in traditional electrolyte. Zn2+ is coordinated with the carboxyl
group of the four acetyl carboxyl groups and the N in C–N bonds, forming a new
chelating structure, and thus stubborn deposition will be dissolved in the electrolyte.
As a result, the discharge capacity of 102 mAh g−1 in the ZnSO4/Li2SO4 with EDTA-2Na
electrolyte at a current density of 4 C and a stable cycle life with a capacity of 90.3% after
150 cycles are achieved. It has been concluded that the coordination effect strategy
provides a valuable idea for solving the defects of ZIBs.

Keywords: aqueous zinc-ion batteries, electrolyte additive, coordination effect, interfacial by-products, insulating
layer

INTRODUCTION

The huge advantages in energy density, cycle stability, and output voltage make lithium-ion batteries
(LIBs) available and popular (Clément et al., 2020; Liu et al., 2021; Zhang et al., 2021), while frequent
reports on fire and explosion of LIBs, due to the flammability of organic electrolytes, raised people’s
concerns on their safety (Zhu et al., 2021; Xu and Jiang, 2021). Aqueous rechargeable zinc-ion
batteries (ZIBs) with high theoretical capacities (volumetric capacity of 5,855 mA h cm−3 and
gravimetric capacity of 820 mA h g−1), low cost, and absolute security characteristics are
practical alternatives (Liu et al., 2019; Qiu et al., 2019; Wu H Y et al., 2021). However, ZIBs face
a series of severe challenges especially for zinc anodes, including dendrite growth and related
parasitic reactions caused by free water (such as HER and by-product) (Yang et al., 2020; Sun H et al.,
2021). Many methods have been reported to improve the performance of ZIBs by inhibiting
hydrogen evolution or dendrite in aqueous electrolytes and proved to be effective, such as electrolyte
additives (Soundharrajan et al., 2020; Guo et al., 2021; Hao et al., 2021; Guan et al., 2022), artificial
SEI layers (Hao et al., 2020; Di et al., 2021; Hong et al., 2021; Shin et al., 2021), and zinc anode
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modification (Yang et al., 2021; Zhang et al., 2021; Zhang et al.,
2021; Zhou et al., 2021). Nevertheless, the side reactions between
Zn and aqueous electrolyte have rarely been paid attention to,
which closely caused the decreased capacity and poor stability of
the battery.

In the local alkaline environment caused by the hydrogen
evolution, Zn electrode would be corroded by increased
concentration of hydroxide ions to generate ionic-insulating
Zn4SO4(OH)6·xH2O, which becomes the barrier for ion/
electron diffusion, such as Eqs 1, 2 (Cao Z et al., 2020).

2H2O(l) + 2e− → H2(g) + 2OH−(aq) (1)
4Zn2+(aq) + 6OH−(aq) + SO2−

4 (aq) → ZnSO4(OH)6(s) (2)
The inert and stubborn depositions would adhere to the Zn

anode, deteriorate electrical contact, and severely attenuate the
capacity, which seriously hinders the commercialization of ZIBs
(Pang et al., 2020; Sun H et al., 2021). In the water-based
electrolyte, the insoluble passivation layer seriously affects the
transfer of solvated zinc, which greatly reduces the capacity and
life of the battery (Xu and Jiang, 2021a; Du et al., 2021).
Unfortunately, once this insulating passivation layer has been
deposited on the zinc anode, the Zn plating/stripping
performance of ZIBs will drastically decrease due to the
increase in charge transfer resistance (Zhang et al., 2020;
Zhang et al., 2021; Du et al., 2022). What is more, owing to
part of the electrolyte converted into the insoluble passivation
layer, the concentration of the electrolyte becomes unstable with
the operation of the battery, and even the water solvent in the
electrolyte will continue to decrease due to the continuous
generation of the layer, which intensifies the deterioration of
the battery (Liu et al., 2021; Song and Zhong, 2021).

Herein, we report a facile strategy to eliminate inert
Zn4(OH)6SO4·xH2O for the improvement of ZIBs by

employing ethylenediaminetetraacetic acid-diamine (EDTA-
2Na) as coordination additive in traditional electrolyte
(Figures 1A,B). During the charging/discharging process, the
carboxyl group of the four acetyl carboxyl groups and the N in
C–N bonds will coordinate with Zn2+ and a new [ZnEDTA-
2Na(H2O)]

+ chelating structure forms in the prepared electrolyte
(Cao et al., 2019). In the local alkaline environment generated by
the side reaction, the generated basic zinc sulfate will be dissolved
in the electrolyte and complexed in the aqueous electrolyte in the
form of EDTA-Zn. During the whole process of dezincification
and intercalation, Zn2+ can be uniformly transferred and
deposited in the electrolyte due to the easier de-solvation
process, which can be evidenced by lower overpotential during
Zn deposition in symmetric battery. The prepared electrolyte
significantly improved Zn plating/stripping Coulombic efficiency
(CE) to 99.2% at 5 mA cm−2 and 2.5 mA h cm−2. After 150 cycles,
at a current density of 4 C (1 C = 148 mA g−1), the discharge
capacity is 102 mA h g−1, and the capacity retention rate is 90.3%.
This optimization strategy for the passivation layer has greatly
expanded our thinking and provided inspiration for solving the
problem of ZIBs stability.

RESULTS AND DISCUSSION

The aqueous electrolyte with 1M ZnSO4 and 3M Li2SO4 in water
is employed as control. As shown in Figure 2A, after cycling in
the control electrolyte, the surface of the zinc anode is covered by
an insulating layer. The peak at about 9.8o in the x-ray diffraction
(XRD) (Figure 2B) spectrum confirms that the insulating layer is
Zn4(OH)6SO4.5H2O (Jiao et al., 2021). This is due to the
hydrogen evolution reaction of water in the aqueous
electrolyte causing the partial formation of an alkaline
environment in the electrolyte, which reacts with Zn2+ to form

FIGURE 1 | Schematic illustration of Zn surface evolution. (A) Stubborn insulated deposition and dendrite formation caused by attack from desolvation process on
Zn foil. (B) Function mechanism of EDTA-2Na chelating agent to eliminate deposition and forms a stable chelating state in aqueous electrolyte.
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an insoluble insulating solid precipitation and prevent the
transfer of ions and electrons at the interface. As a contrast,
the zinc anode cycled in the EDTA-2Na-containing electrolyte
exhibits much cleaner surface and the XRD pattern shows no
obvious peak at 9.8o. The insulating zinc salt Zn4(OH)6SO4.5H2O
presents fine white granular insoluble matter in the water phase as
shown in Figure 2C. After introducing EDTA-2Na, the strong
interaction between EDTA anions and Zn2+ promotes the
dissolution of Zn4(OH)6SO4.5H2O. As evidenced in
Figure 2D, stubborn Zn4(OH)6SO4.5H2O can be dissolved in
EDTA-2Na-containing electrolyte. As shown in Figure 2E, the
EDTA-2Na solution shows relatively gentle Raman bands in the
300–600 cm−1 region, while after introducing
Zn4(OH)6SO4.5H2O, the mixed solution has fairly obvious
peaks in this region (Wu et al., 2015; Liu et al., 2020). The
newly appeared Zn–N and Zn–O bonds stretching and bending
and other framework vibrations, which is due to the chelation
coordination, can well explain the reason for most of the new
peaks in the 300–600 cm−1. In the presence of Zn2+, the typical
UV-Vis spectrum of EDTA-Zn has changed markedly, as
depicted in Supplementary Figure S1.

The extremely uncontrollable insulating layer of water-based
batteries seriously affects the Coulombic efficiency of the battery.
In order to verify that suppressing the passivation layer can
effectively improve the battery efficiency, we first performed

Zn plating/stripping Coulomb efficiency tests in different
electrolytes at different current densities of Zn||Cu batteries.
The effect of electrolyte with different additives has been
tested (Supplementary Figure S2). The result shows that 5%
cation additive has the best effect. As shown in Figure 3A, the
Zn||Cu battery using EDTA-2Na-containing electrolyte is cycled
for 360 cycles at 2 mA cm−2 and 1 mA h cm−2 and shows high
reversibility and stability, while the Zn||Cubattery in control
electrolyte fails quickly after only 60 cycles. Furthermore,
under higher current density of 5 mA cm−2, the control battery
is damaged after 30 cycles, while the CE of the battery cycled in
EDTA-2Na-containing electrolyte is still as high as 99% after 110
cycles (Figure 3B), which indicates the excellent ability of EDTA
anions to suppress by-products. The similar conclusion can be
obtained when the current density is increased to 10 mA cm−2,
where high CE can still be maintained over 150 cycles for the Zn||
Cu battery in EDTA-2Na-containing electrolyte (Figure 3C). The
addition of EDTA-2Na excellently alleviates the problem of low
cycle efficiency limited by the by-product passivation layer.
Moreover, the Zn||Cu cell using EDTA-2Na-containing
electrolyte also has a much lower resistance than that in
control electrolyte (Supplementary Figure S3). According to
the Electrochemical impedance spectrum (EIS), the Zn||Cu
battery cycled in EDTA-2Na-containing electrolyte exhibits
gradually decreased impedance and stabilizes after 80

FIGURE 2 | (A) Image of Zn foil in control electrolyte and in EDTA-2Na-containing electrolyte. (B) XRD of Zn foil in control electrolyte and in EDTA-2Na-containing
electrolyte. (C) Image of the Zn4(OH)6SO4.5H2O suspended in aqueous solution and (D) insoluble matter dissolution after adding EDTA-2Na. (E) Raman of solution
before and after dissolving insoluble Zn4(OH)6SO4.5H2O with EDTA-2Na.
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FIGURE 3 | Scheme caption CE of Zn||Cu cells with and without additives of the EDTA-2Na in the control electrolyte cycled under (A) 2 mA cm−2 and 1 mA h cm−2,
(B) 5 mA cm−2 and 2.5 mA h cm−2, and (C) 10 mA cm−2 and 5 mA h cm−2 conditions. (D,E) EIS plots of Zn||Cu cells with and without EDTA-2Na electrolyte additive
after various numbers of cycles.

FIGURE 4 |Galvanostatic Zn plating/stripping in Zn||Zn symmetrical cells at 1 mA cm−2 and 1 mA h cm−2. SEM images of Zn electrodes in Zn||Zn symmetrical cells
after 20 plating/striping cycles at 1 mA cm−2 and 0.5 mA h cm−2 in (A–D) control electrolyte and (E–H) EDTA-2Na-containing electrolyte. In situ optical microscope
photos of (I,J) control electrolyte and (K,L) EDTA-2Na-containing electrolyte.
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cycles,which is much smaller than the relative impedance of that
in control electrolyte, indicating that the growth of the
Zn4(OH)6SO4.5H2O insulating layer is effectively
controlled(Figures 3D,E) (Cang et al., 2019; Zhang et al.,
2019). As the stubborn insulated deposition is continuously
generated, the resistance will increase sharply. Stable
semicircles mean that the resistance tends to be stable, which
also proves that the additive has an efficient effect on inhibiting
the formation of insulated deposition (Li et al., 2021; Wang et al.,
2021).

Zn||Zn symmetric battery was assembled to evaluate the
electroplating/stripping stability of Zn under different
electrolyte environments. The zinc symmetric battery with
EDTA-2Na-containing electrolyte has shown higher
reversibility and smaller overpotential (~30 mV) after 150 h at
1 mA cm−2 and 1 mA h cm−2 (Supplementary Figure S4). What
is more, the depth of discharge (DOD) has been studied by testing
Zn||Zn symmetric batteries at 2 mA cm−2 for 0.25, 0.5, and 1 h,
showing the performance of different DODs. The result has
indicated that Zn can stably deposit/strip at 1 mA h cm−2, but
at higher DODs (2 mA h cm−2), voltage fluctuation happens. As a
contrast in EDTA-2Na-containing electrolyte, Zn||Zn symmetric
battery always exhibits stable Zn deposition/stripping behavior at
higher DODs (Hao et al., 2020; Leng et al., 2020; Ma et al., 2020;
Hu et al., 2020). The Zn electrode surface morphologies after 20
plating/stripping cycles are characterized using scanning electron
microscopy (SEM) (Figure 4). Due to the continuous reaction of

Zn with the electrolyte, large-area layered deposits and a large
number of flaky dendrites were formed on the Zn surface
(Figures 4A–D) in the control electrolyte (Quan et al., 2020;
Wu Y et al., 2021). In contrast, the Zn surface in EDTA-2Na-
containing electrolyte shows a dense and smooth morphology
(Figures 4E–H), confirmed by in situ optical microscope test
results (Figures 4I–L). Under the in situ optical microscope
observation, the microscopic phenomenon of zinc surface
deposition circulating in the control electrolyte showed
uneven, thick and disordered dendrites after about 30 min. On
the contrary, the zinc surface observed in the EDTA-2Na-
containing electrolyte is smooth and flat without dendrites.
The self-healing electrostatic shield effect explains the observed
uniform Zn deposition and dendrite suppression (Cao L et al.,
2020). It can be obtained from the above content that the
introduction of EDTA-2Na significantly improves the Zn
plating/stripping capacity and the cycle stability of the zinc anode.

The EDTA-2Na-containing electrolyte was evaluated in Zn||
LiMnO4 cell using LiMnO4 (LMO) cathodes. Cyclic voltammetry
(CV) of Zn||LiMnO4 cells in two electrolytes at 0.5 mV s−1 is
shown in Figure 5A. It was clear that the redox peak gap of the
batteries in EDTA-2Na-containing electrolyte was much smaller,
indicating that it has a lower overpotential and easier Zn-ion
diffusion ability. Compared with the control electrolyte, the CV
curves in the EDTA-2Na-containing electrolyte environment
have a higher degree of overlap and better stability (Figure 5B
and Supplementary Figure S6) The rate performance of LMO

FIGURE 5 | Electrochemical performance of Zn||LiMnO4 cells. (A) CV of Zn‖LiMnO4 full cells with different electrolytes at a scan rate of 0.5 mV s−1. (B) CV of Zn||
LiMnO4 full cells with EDTA-2Na-containing electrolyte for five cycles. (C) Rate capability for Zn‖LiMnO4 full cells. (D) Rate performance in EDTA-2Na-containing
electrolyte. (E) Cyclic stability and efficiency of Zn||LiMnO4 cells in two electrolytes at 4 C.
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cells in EDTA-2Na-containing electrolyte was also evaluated. As
in Figures 5C, D and Supplementary Figure S6, the LMO
cathodes provided a high capacity of 120 mA h g−1 at the rate
of 0.5 C, and still maintain 30 mA h g−1 even at a high rate of 10 C.
The long-term cycling stability of the Zn||LiMnO4 cells was
evaluated at 4 C in both electrolytes (Figure 5E). The Zn||
LiMnO4 cells after 150 cycles in EDTA-2Na-containing
electrolyte still maintain about 102 mA h g−1, which is 90.3%
of initial capacity, while the capacity of Zn||LiMnO4 cells in
control electrolyte rapidly drop to 34.1% of the initial capacity
due to the serious by-product passivation layer and zinc
dendrites. Meanwhile, some recent relevant and interesting
work has been compared, and Supplementary Table S1 has
shown specific electrochemical performances. Our work can
maintain high capacity retention even at 4 C.

CONCLUSION

The stubborn by-product passivation layer and severe zinc dendrite
growth are serious challenges for water-based ZIBs. In this work, we
use simple addition of EDTA-2Na chelate to control zinc ions in the
electrolyte to effectively prevent the formation of the insulating
passivation layer and inhibit the growth of zinc dendrites. As a result,
this chelate compound dissolves the insoluble matter
[Zn4(OH)6SO4.5H2O] through strong chelation and complexes
with the metal ions in the electrolyte, providing a more orderly
and stable plating/stripping environment for Zn2+. What is more,
the metal cations carried by the chelate salt can effectively inhibit
the growth of zinc dendrites, which is attributed to the self-healing
electrostatic shield effect exhibited by the carried cations. This
subject proves that it is an effective strategy to add chelate salt to
aqueous electrolyte, and provides a new idea to eliminate by-
products and dendrites to realize industrialized aqueous
electrochemical storage equipment.

MATERIALS AND METHODS

Materials
ZnSO4.7H2O (>99.0%), Li2SO4·H2O (>99.0%), and ethylene
diamine tetraacetic acid disodium salt (EDTA-2Na, A.R.>
99.0%) were prepared from Sigma-Aldrich Chemical Co. All
reagents were used directly without further purification. All
aqueous electrolytes used deionized water as the solvent.

Characterizations
XRD was carried out on Rigaku Ultima IV. The radiation source
was Cu Kα. Samples were scanned at a range of 5°–90° with scan
speed 5°min−1. SEM images were collected on the GeminiSEM
300 with an accelerating voltage of 5 kV, and it was employed to
observe the morphology of anode surface in Zn||Cu batteries after
20 cycles. The Raman spectra were employed by an HR Evolution
(HORIBA) confocal Raman spectrometer to obtain the Raman
signal of the electrolytes. The in situ optical microscope (Caikon
DMM-330C) was employed to observe the growth of zinc
dendrites in symmetric Zn||Zn batteries.

Electrochemical Tests
For measurement of Zn CE, a Zn||Cu half-cell was applied.
During testing, a given current density and deposition time
were used for Zn plating, while a fixed voltage was used to
strip the Zn from Cu-foil on the Neware BTS4000 battery test
instrument. The Zn||Zn symmetrical battery consists of two zinc
sheets and a glass fiber separator with 100 μl of electrolyte that
were sandwiched together in a CR2032 coin cell and crimped in
the air and were performed in this battery test instrument under
different conditions. For the Zn||LiMnO4 full cells, LMO electrode
and Zn-foil were matched, and glass fiber was used as a separator to
assemble the Zn||LMO cells, which were performed on the Neware
BTS4000 battery test instrument. CV profiles were performed on an
electrochemical station (CHI660E, China) at different scan rates with
a voltage range of 1.0–2.2 V, in which EIS was also tested at the
voltage of open circuit potential within the frequency range
from 10–2 to 105 Hz. Proin nec augue. The electrolytes used in all
types of cell tests are the mixture of 1 M ZnSO4.7H2O and 3 M
Li2SO4·H2O without/with 5% cation additives added. The
thickness of Zn anode was ~0.15 mm. The average mass
loading of LMO cathode was ~2 mg.
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