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Tribochemical wear of contact materials is an important issue in science and engineering.
Understanding the mechanisms of tribochemical wear at an atomic scale is favorable to
avoid device failure, improve the durability of materials, and even achieve ultra-precision
manufacturing. Hence, this article reviews some of the latest developments of
tribochemical wear of typical materials at micro/nano-scale that are commonly used as
solid lubricants, tribo-elements, or structural materials of the micro-electromechanical
devices, focusing on their universal mechanisms based on the studies from experiments
and numerical simulations. Particular focus is given to the fact that the friction-induced
formation of interfacial bonding plays a critical role in the wear of frictional systems at the
atomic scale.
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INTRODUCTION

Wear of the moving systems often results in material loss, device failure, and excessive consumption
of lubricants, which will, thus, result in energy waste and environmental pollution. It has been
reported that 5%-7% of the gross domestic product (GDP) is resulted from the wear and relative
negative impacts of the moving parts. Hence, it is urgent to understand the possible general
mechanism of wear processes and control it for economic benefits and technological advancements.
In recent years, high-density memory, advanced cutting tool, precision bearing, micro-
electromechanical system (MEMS), optical lens, and integrated circuit (IC) are rapidly developed
to stimulate the progress of modern science and technology (Kobatake et al., 2005; Fonseca and
Sequera, 2011; Kim et al., 2016; Lincong Liu et al., 2019; Seo, 2021). The micro-/nano-scale wear of
materials such as two-dimensional (2D) materials, diamond and DLC films, silicon and silicon
oxides, and metals has thus attracted more and more attention, especially the wear processes between
the contact surfaces that are usually sensitive to the work environment of the devices, for example,
humidity, atmosphere, liquid, and lubricant (Kato and Adachi, 2002; Wang et al., 2009; Kim et al.,
2012; Kumar et al., 2018; Zhe Chen et al., 2018).

Despite the typical two-dimensional (2D) materials, graphene and hexagonal boron nitride
(h-BN) significantly enhance the wear-resistance of the contact surfaces in humidity (Lee et al., 2010;
Cao et al,, 2014; Wang and Duan, 2018), while molybdenum disulfide (MoS,) materials are often
aggravated (Picas et al., 2006; Li et al., 2019). As the hardest coating materials, the diamond and
diamond-like carbon (DLC) films suffer from remarkable wear due to the tribochemical reactions
under high temperature and in vacuum but wear-free in inert gas environment (Erdemir and Martin,
2018; Rajak et al., 2021). The wear behaviors of silicon, silicon oxide, and silicate surfaces also depend
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on tribochemical reactions, which largely dominate the failure
of MEMS and the manufacturing precision of IC (Katsuki,
2009; Bingjun Yu et al., 2012; Wang et al., 2013; Lei Chen et al,,
2017a) and the dimensional accuracy of the optical lens (Lin
Wang et al., 2021). For ceramics (e.g., SiC and SizN,), the wear
is suppressed in humidity, water, and ionic liquid due to the
formation of tribo-layers induced by the tribochemical
reactions between the sliding interfaces (Khanna et al,
2017; Qin et al., 2018; Chen et al,, 2019; Ge et al., 2019; De
Fine et al., 2021). Moreover, the wear behaviors between the
contact surfaces of the metals or alloys in humidity or with
lubricants are suppressed when the oxide layers are arisen by
the tribochemical reactions (Cai et al., 2009; Barthel et al.,
2012; Fukuda et al., 2019; He et al., 2021). Accordingly, the
previous experiments have evidenced that tribochemical
reactions should play critical roles in the micro-/nano-scale
wear (or material removal) of friction systems. However, little
attention is paid to the detailed processes and mechanisms of
tribochemical wear at an atomic scale.

Fortunately, many methods of theoretical simulations have
been developed to understand the vivid wear processes in the
friction systems at the macro/nano scale (Zhang and
Mylvaganam, 2006; Popov and Psakhie, 2007; Cui and Zhang,
2017; Martini et al., 2020). One method of movable cellular
automata (MCA), due to the material model incorporating
more details of material behavior, is usually used to study the
wear and fracture behaviors by the Psakhie group (Psakhie et al.,
2013; Dimaki et al., 2020), but MCA is inadequate to study the
tribochemical wear behaviors of the interfacial bonding at an
atomic scale. Molecular dynamics (MD) simulation as a
theoretical investigation method has the advantage of
providing the interfacial bonding behaviors while resolving all
the positions, velocities, forces, and bonding states of the atoms
(Zhang et al, 2006). Wang et al. (2017a) revealed that this
interfacial C-C bond may induce the dissociation of C-C
bonds in DLC films during friction as an initial step of
structure failure. Lei Chen et al. (2018) demonstrated the
detailed interfacial bonding for the tribochemical wear of
monocrystalline silicon at the atomic scale. Hence, based on
the experiments and MD simulations, a clear grasp of the
wear mechanism would be desired to predict and control the
wear behaviors of the friction systems at all length scales from
nanoscale to macroscale.

The present article provides a brief review of the micro-/nano-
scale wear behaviors of typical materials, focusing on their
underlying wear mechanisms and processes based on the
results of the experiments and numerical simulations. The
materials concerned here include 2D materials (graphene,
h-BN, and MoS,), carbon bulk materials (diamond and DLC
films), silicon-based materials (silicon and silicon oxide, silicon-
based ceramics, and silicate glasses), and metals (Al and Cu). It
should be noted that the tribochemical wear closely depends on
ambient medium and chemical properties of the substrate surface
and counterface. However, here, we only focus on the recent
advancements of the micro-/nano-scale wear related to the
ambient medium.

Tribochemical Wear; Atomic-Scale; Interfacial Bonding

TWO-DIMENSIONAL MATERIALS

Due to their atomic thickness and ultralow shear strength, the
typical 2D materials such as graphene, h-BN, and MoS, are often
used as solid-lubricant coating for the nanoscale devices to
suppress the wear (Berman et al, 2014; Spear et al., 2015;
Berman et al,, 2018; Liu L. et al., 2019). However, 2D coatings
often fail to maintain its integrity when they are subjected to
macro-scale tribological tests, and the wear behaviors are
sensitive to the surrounding environment (Marchetto et al,
2012; Huang et al, 2017; Zheng-yang Li et al, 2017). To
better understand the wear behavior depending on the scale
and environment, Qi et al. (2017); Qi et al. (2018) performed
a series of atomic force microscope (AFM) scratch tests and
found a substantially lower wear resistance at the step edge of a
monolayer graphene sheet compared to that obtained within the
interior region (Figure 1A), but the wear resistance at the step
edge is enhanced in humidity (Figure 1B). Assisted with the MD
simulations, the authors further explained that the weaker
strength at the step edge is attributed to the formation of the
C-C covalent bonds between the tip atoms and the
nonterminated carbon atoms at the edge of graphene
(Figure 1C), while the involving humidity passivates the
dangling bonds at the edges or defects to improve the wear
resistance of graphene (Figure 1D). Based on the friction tests
using the isotopically labeled water, Rietsch et al. (2013) had also
found that the sensitive wear behavior in humidity is attributed to
the passivation of the dangling bonds by the adsorption of water
molecules. Furthermore, the wear due to the synergetic actions of
interlocking and pushing between the tip and graphene also
occurs at the grain boundaries (GBs) (Zhang et al., 2019) and
point defects (Zheng and Duan, 2019). The wear resistance
enhancement with the increase of RH was also observed for
the h-BN materials, and this phenomenon was mainly attributed
to the passivation of the dangling bonds at the edges or defects,
which is similar to the tribological mechanism of graphene (Cao
et al,, 2011; Li and Zeng, 2012).

Unlike graphene and h-BN, MoS, favors the lubrications in
water-/oxygen-deficient environments. For instance, Li et al
(2017) found that the wear resistance decreasing at higher RH
conditions was found for the MoS, and MoS,/Ti composite
coatings (Figure 1E). It has been widely accepted that the
lubricity loss of MoS, in humid environments is mainly
attributed to the chemical oxidation of MoS, layers activated
by water vapor, which results in the formation of MoO; with
worse frictional profiles (Windom et al., 2011; Curry et al,, 2017;
Uzoma et al, 2020). Other studies focus on the enhanced
molecular interactions of water with the layers as the
fundamental mechanism behind the observed loss of MoS,
lubricant properties (Levita et al, 2016; Levita and Righi,
2017). Recently, Wei et al. (2021) investigated the effect of GB
defects on the tribological properties of MoS, using the MD
simulations. They demonstrated that the wear resistance of MoS,
with GB defects degenerates owing to the combined effects of
shearing and interfacial bonding between the tip and MoS,
atoms, as shown in Figure 1F.
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FIGURE 1 | (A) Comparative scratch tests of graphite in the interior region and at the step edge of the graphene monolayer. No remarkable changes in the
topographies before (a4) and after (ap) scratching at 15.207 uN indicates no wear occurring in the interior region. Differently, the wear of the step edge initiates at a normal
load of 24 nN (a3). Adapted from Qi et al. (2017) (B) Scratch tests at the step edges of the monoatomic graphene layer on a graphite surface in dry (b1) and humid (b)
conditions. Adapted from (Qi et al., 2018) (C) MD simulations of the scratching tests showing the wear of in-plane graphene with tension damage (c4) or with
abrasive wear (cy) initiation at much larger critical loads (c4) compared to the fracture of the step edge (cs). Adapted from Qi et al. (2017) (D) MD simulations of scratching a
diamond tip across the step edge of the monoatomic graphene layer on a graphite substrate. Adapted from Qi et al. (2018) (E) Friction coefficient and wear rate of MoS,
and MoS./Ti composite coatings in different humidity. Adapted from (Li H. et al., 2017) (F) MD simulations about the change of friction force and the average number of
broken Mo-S bonds during the scratching process of the MoS, without (f;) and with (f,) defects. Adapted from Wei et al. (2021).
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FIGURE 2 | (A) Friction behaviors of the UNCD NW film under different experimental conditions (a4) and the profiles of the wear track formed in the conditions of AA-

RT (ap), HV-RT (as), and HV-HT (a4). Adapted from Rani et al., 2018b (B) Raman spectra measured in the ball scars formed in the different conditions and the calculated
ratios of sp®/sp® and C/O. Adapted from Rani et al., 2018a (C) Steady-state friction coefficients and wear rates of the DLC-H and DLC films depending on the RH.
Adapted from Shi et al., 2017a (D) Average friction coefficients and wear rates of the DLC-H/Al,O5 counterparts in Ny, Ar, O, and humid air (RH ~ 37%). Adapted

from Shi et al., 2017b (E) Interfacial bonds forming between the carbon atoms at the DLC-H coating probe surfaces and the carbon atoms in a diamond grain (e4) or
within the grain boundary (e») at the UNCN surface. Adapted from Vahdat et al., 2014 (F) Snapshots of the sliding behaviors of hydrogen-free DLC asperities in the (f;)
hydrogen gas environment and (f,) vacuum. Adapted from Wang et al., 2020.
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DIAMOND AND DLC FILMS

As one of the hardest solid-lubricant materials, diamond or DLC
films has been attracting enormous attention in the field of anti-
wear design (Kumar et al., 2011; Kumar et al., 2013; Erdemir and
Martin, 2018; Tyagi et al., 2019). However, the wear resistance of
diamond and DLC films is dependent on humidity and gaseous
environment (Manimunda et al., 2017; Huo et al., 2018; Wu et al.,
2018; Yunhai Liu et al., 2019; Jingjing Wang et al., 2019; Yu et al,,
2020; Latorre et al., 2021; Wang and Komvopoulos, 2021).
Notably, the improved wear properties of diamond and DLC
films are closely related to the surface passivation or shear-
induced graphitization (Bouchet et al., 2015; Rani et al., 2018a;
Rani et al, 2018b). As shown in Figure 2A, the tribological
behaviors of the ultra-nanocrystalline diamond nano-wall
(UNCD NW) films are different in the atmosphere under
room temperature (AA-RT), high vacuum under room
temperature (HV-RT), and high-temperature (HV-HT). For
the conditions of AA-RT and HV-HT, the friction keeps
constant and relatively low after the initial running-in
processes (a;), and the surface wear of the UNCD NW film is
extremely weak (a,-a,). The results of Raman spectra indicate that
the slight wear of films is due to passivation of the dangling bonds
through the atmospheric water vapor and graphitization of the
contact interfaces in AA-RT, and graphitization is the
dominating mechanism for the ultrahigh wear resistance of
films in HV-HT (Figure 2B) (Rani et al., 2018a). The effect of
atmosphere on the wear of DLC films strongly depends on the
hydrogen content. Generally, the surface damage of the DLC film
without hydrogen is suppressed at high RH due to water
lubrication, whereas the wear of the hydrogenated DLC (DLC-
H) film is facilitated with an increase of RH (Figure 2C) (Shi et al.,
2017a). Similarly, Figure 2D shows that the tribological
properties of the DLC-H film become serious by involving
active species (oxygen or H,O) (Shi et al,, 2017b). In those
processes, a nano-scale carbonaceous tribo-layer was induced
by various tribochemical reactions (such as bond cleavage,
migration, and rearrangement of interfacial atoms and bond-
formation) in the contact area (Xinchun Chen et al., 2017). We
observed the friction-induced nano-crystallites of graphene for
the tribo-layer between the DLC-H and steel sliding pairs based
on the TEM characterizations (Liu et al., 2021a; Liu et al., 2021b).
To better understand the processes of the tribochemical wear at
the atomic scale, Vahdat et al. (2014) explored the wear
mechanism of DLC-H films based on the MD simulations.
They observed the formation of interfacial bonds at under-
coordinated atomic sites between the DLC-H coating probes
and UNCN samples. Both the cases of the carbon atoms on
the surface of a diamond grain (e;) and within a grain boundary
(ey) are consistent with the atom-by-atom removal under the
association of interfacial bonding (Figure 2E). We further
revealed that this interfacial C-C bond may induce the
dissociation of C-C bonds in the DLC films during friction as
an initial step of structure failure (Wang et al, 2017a).
Furthermore, we demonstrated that the adhesive wear induced
by the interfacial C-C bonds was suppressed in the hydrogen gas
environment (f;) compared to that in vacuum (f), as shown in

Tribochemical Wear; Atomic-Scale; Interfacial Bonding

Figure 2F (Wang et al., 2020). In addition, two different types of
tribochemical reactions were revealed at the DLC or DLC-H
friction interface: one is the triboemission reaction of
hydrocarbon molecules which causes the depletion of surface
hydrogen terminations and hence accelerates the interfacial bond
formation and resulted in atomic-level adhesive wear, while
another one is the dissociative desorption of the
environmental gases (i.e., H, molecule) which replenish the
depleted hydrogen terminations so that the interfacial bond
formation and the interfacial bonding-induced atomic-level
wear are suppressed.

SILICON AND SILICON OXIDE

Because of their excellent mechanical and electronical properties,
silicon and silicon oxide are widely used as structural and
functional materials in the IC and MEMS after
premanufacturing or processing (Achanta and Celis, 2007;
Bhushan, 2007; Kim et al., 2007; Dong et al., 2014). Qian et al.
have performed considerable studies and proved that the
tribochemical reaction plays a dominant role in the nanowear
of these materials especially when the tribological tests are
operated in the conditions with water molecules (Jiaxin Yu
et al,, 2012; Cheng Chen et al., 2017). By taking the single
crystalline silicon sliding silica microspheres as an example, we
found that the surface wear behaviors in humid air instead of
hillock form under dry (vacuum, pure nitrogen and oxygen, and
dry air) conditions as the contact stress is below 2 GPa
(Figure 3A) (Bingjun Yu et al, 2012). The contact stress is
too low to induce silicon yield, so the material removal in
humid is mainly due to the tribochemical reaction. The
transmission electron microscopy (TEM) characterizations
observed a perfect crystalline lattice even close to the worn
surface, also supporting the occurrence of the tribochemical
wear, rather than the mechanical wear (bottom images in
Figure 3B). Wang et al. (2015) found that the tribochemical
wear of silicon increases at first and then decreases as the RH
ranges from 0% to 90% (upper images in Figure 3B). They
proposed that the adsorption of solid-like water in low humid air
(RH < 50%) is capable of facilitating the formation of interfacial
Si-O-Si bonds, whereas the liquid-like water layer adsorbed
under the high RH condition lubricates the sliding interface.
These images have been proved by the MD simulations given by
the Kubo group (Ootani et al., 2018), and the mechanism of
interfacial bonding associated with the tribochemical removal has
been widely applied in many of our experimental studies (Chen
et al., 2015a; Chen et al., 2015b; Yan et al., 2019). In comparison,
the tribochemical wear of the crystalline silicon occurs much
more readily than that of silicon oxide due to the higher effective
activation energy for the dissociation of Si-O bonds than Si-Si
bonds (Lei Chen et al., 2017b). Zhaohui Liu et al. (2019) reported
that the tribochemical wear of the silicon oxide surface increases
but that of the crystalline silicon decreases with the increase in
surrounding water temperature since the wettability of these two
surfaces evolving at high temperature water alters the interfacial
bonds forming.
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Recently, we have achieved a region-specific removal of atomic
layers on a single crystalline silicon surface via the tribochemical
reactions (Figure 3C). The ReaxFF-MD simulations in Figure 3D
demonstrate the silicon atom removal process. The silane groups

at the two contact surfaces (d,) carry out the dehydration reaction
following the formation of Si-O-Si bond across the sliding
interface (d;), and then the Si-Si bond of the substrate is
stretched and dissociated by the mechanical shear action (d,),
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finally leading to the removal of the Si atom from the substrate
(ds) (Lei Chen et al, 2018). In addition, the ReaxFF-MD
simulations, conducted by Ming Wang et al. (2019), Wang
and Duan (2021), show that the formation of the interfacial
Si-O-Si bonds at two amorphous silica surfaces may originate
from the two different tribochemical reactions, one occurring
between a silanol group and a surface Si-O-Si bond and the other
occurring between the two silanol groups.

SILICON-BASED CERAMICS AND
GLASSES

Silicon-based ceramics (such as SisN, and SiC) have been
extensively used in the antiwear and lubrication systems due
to the high hardness, potentially low friction, and excellent
corrosion resistance (Dante and Kajdas, 2012; Sharma et al,
2016). However, the wear resistance of the silicon-based
ceramics is challenged by the occurrence of the tribochemical
reactions under complex operating environments in the real
engineering applications (Renz et al, 2016; Das et al, 2018;
Schmidt et al, 2019; Yue et al, 2019). It has been reported

that the wear of Si;N, and SiC ceramics against B,C balls can
be suppressed in high RH conditions (Figure 4A) (Cao et al.,
2020) due to the formation of a tribo-film in the tribochemical
reactions occurring especially during the running-in period (Zum
Gabhr etal.,, 2001; Koval¢ikovd et al., 2014; Zhang et al., 2017). This
mechanism that has been accepted broadly though the detailed
structures of the tribo-film on the atomic scale is still unclear.
Recently, Ootani et al, (2020a); Ootani et al., (2020b) have
detected the tribochemical reaction process of self-mated
sliding of SiC in water environment using the MD
simulations. They clarified that Si—-O-Si bonds were formed at
the two contact surfaces; meanwhile, a double tribo-layer
consisting of colloidal silica and hydrophilic hydrate particles
was thus self-formed at the sliding interface (Figure 4B). Yang
Wang et al. (2021) simulated the atomic-scale wear process of SiC
against a SiO, nano-sphere in a rolling contact state. They found
that the wear of SiC is dominated by the interfacial
adhesion-induced atom transfer from the original surface to
the counterface in vacuum, whereas the adhesive wear of SiC
was greatly reduced as the water molecules were added into the
contact interface to form a third-body water layer which
prevented the formation of interfacial bonds. In addition, the
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researchers have found that the self-mated SiC and Si;N4 show
different tribological properties, which has a shorter running-in
period for Si3N, than that for SiC to enter the low-friction regime
(Chen et al., 2001). Ootani et al. (2020a) further simulated the
self-mated sliding of Si;N, and SiC by using the first principles of
MD. They revealed that similar formation of bridge Si-O-Si
bonds was induced at the self-mated sliding interface of Si;N, and
SiC, but the tribochemical reaction is easily induced at the sliding
interface of SizN, due to the easier dissociation for the Si-N bond
than for the Si-C bond.

Apart from that, silicate glass is also one of the important
silicon-based materials. An excellent surface quality of the optical
components is a critical requirement, and the ultra-precision
surface manufacturing is closely related to the tribochemical
removal at the atomic level (Zhou et al.,, 2009; He et al., 2014;
Yuetal, 2015; Jiang et al., 2017). Previous studies have found that
the wear behavior of glass follows a stress corrosion theory. This
model depicts that the molecules with proton donor sites and
lone-pair orbitals (e.g., H,O) can enhance the dissociation of
Si-O-Si network (crack growth) under tensile stress (Ciccotti,
2009; Bradley et al., 2013; Surdyka et al., 2014). Under a relatively
low normal load, the tribochemical reaction dominated that
material removal may occur on a glass surface. With the
crystalline silicon, the tribochemical wear of the fused quartz
glass against silica ball increases gradually as the RH increases
(Bradley et al., 2013). Guo et al. (2020), Guo et al. (2021) further
studied the wear process of the quartz glass at the atomic scale by
MD simulations. They demonstrated that the surface atoms of the
quartz glass are removed because of the synergistic action of the
interfacial Si-O-Si bonding and mechanical shear action.
Unexpectedly, we found that the wear depth of the soda-lime-
silica (SLS) glass after sliding against the harder balls (SizNy,
Al, O3, and stainless steel) decreases with the increase of RH
(Figure 4C) (He et al., 2015). Furthermore, we also found that the
critical contact pressure for the wear process of the SLS glass is
reduced because of the involving humidity (He et al., 2016a). He
et al. (2016b) indicated that more water adsorption at higher RH
can facilitate the formation of hydronium ion in the sodium-
leached sites, which induced a local compressive stress and then
enhanced the wear resistance of the SLS. Recently, Hahn et al.
(2020) studied the role of H,O in the tribochemical reaction
between the SiO, sphere and SLS glass sliding interface using the
ReaxFF-MD simulation. The results show that the primary role of
H,O is to hydroxylate the silica and sodium silicate surface and
suppress the formation of direct Sigjica-O-Sigjicate interfacial
bonds (Figure 4D). The formation of enormous hydroxyl
groups in the interfacial region due to the dissociation of
water molecules activated by sodium ions finally lead to an
extremely weak wear.

METALS

The material removal of metals or alloys at the micro/nanoscale has
always been attracting considerable attention in ultra-precision
manufacturing, such as chemical and mechanical polishing
(CMP) (Chiu et al, 2003; Ahn et al, 2004; Zhang et al,, 2016;
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Wang et al,, 2017b; Guoging Wang et al, 2021).Currently, the
experimental studies using AFM (or nano-scratch tester) and
MD simulations are normally carried out to detect the removal
mechanism of metals against the single abrasive particle in the CMP
process. For instance, Yongguang Wang et al. (2019) compared the
nano-scratch wear of aluminum in dry, water, and H,0O, conditions
and found that the surface wear of aluminum became more severe as
the water or H,O, molecules participated (Figure 5A). Similarly,
Sharma et al. (2021) found that H,O, in the CMP slurry can facilitate
the nano-scratch wear of Cu compared to the conditions of humid
air and deionized (DI) water. Kawaguchi et al. (2016) performed a
tight-binding quantum chemical molecular dynamics (TBQC-MD)
simulation to detect the atomic material removal process of Cu (111)
surface sliding against a SiO, abrasive grain in aqueous H,0,. As
shown in Figure 5B, they demonstrated that H,O, molecules react
with Cu following the generation of hydroxide termination groups at
the outermost surface (b;); then, O atoms intrude into the copper
crystal cell internal to release Cu atoms by dissociating the Cu-Cu
bonds (b,); and the interfacial bonds form between the released Cu
atoms and the Si-OH surface terminations at SiO, abrasive grain
surface (bs); finally, the bonded Cu atoms are removed under the
shear action following the formation of Cu(OH), products with
further reaction with H,O, (b,). Furthermore, the ReaxFF-MD
simulations conducted by Guo et al. (2018)and Wen et al. (2019)
showed that the Cu atoms are mainly removed in the form of
clusters by the fracturing of Cu-Cu bonds and Cu-O bonds on the
Cu substrate in the approximate CMP environments.

CONCLUSION AND OUTLOOK

This article reviewed the recent advancements of the tribochemical
wear mechanisms of typical materials in an ambient medium (such
as gas, humidity, and water etc.) where the roles of the interfacial
bonding are mainly considered in the material damage or removal.
For the carbon materials (i.e., graphite and graphene, diamond, and
DLC films), the interfacial C-C bonds is inhibited for achieving
lower wear due to the passivation of the contact in gas or humidity.
For the silicon-based materials (i.e., crystalline or amorphous silicon,
silicon oxides, silicon-based ceramics, and glass), the wear behaviors
are mainly determined by the capability of the interfacial bond
bridges formed between the two solid contact surfaces, which are
dependent on the surface chemistry of the counterface and
surrounding atmosphere (such as humidity or water where water
molecules must exist). The tribochemical wear of the silicon-based
materials can be completely suppressed as the counterface is
chemically inert or no water molecules participate. For some
metals, such as Al and Cu, the atoms are more likely to be
removed in the form of clusters by forming of interfacial bonds
following the fracture of substrate bonds when the tribochemical
reaction plays a dominant role. The involving medium could
promote or inhibit the formation of the interfacial bonding and
further change the micro-/nano-scale wear behaviors of these metals.
Here, the abovementioned tribological issues indicate that the
formation or fracture of the interfacial bonding bridges should
play a critical role in the tribochemical wear behaviors of many
frictional systems. Based on this, the atomic-scale wear (or materials
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removal) of the contact materials can be controlled by operating in
an appropriate environmental or selecting proper medium, which is
meaningful to avoid device failure, improve durability, and even
develop the ultra-precision manufacture.

At present, the wear mechanism related to the interfacial bond
forming is normally inferred based on the limited research
studies. In recent years, an in situ transmission electron
microscope (TEM) has been developed and applied to study
the nanoscale and even the atomic wear through the direct
analysis of the chemistry and bonding at the contacted
interface. Nevertheless, the visual formation processes of the
interfacial bonding is still impossible to verdict due to the
technology restriction (Liao and Marks, 2017; Bernal and
Carpick, 2019; Jacobs et al, 2019).In addition, most in situ
TEM experiments, to date, have been performed in high
vacuum so that the corresponding tests may not fully
represent what takes place in an ambient medium. At the
same time, more computation simulations for many
engineering materials (such as MoS,, oxide ceramics, alloys,
and so on) are needed to detect the wear mechanisms of these
materials at the atomic scale. Moreover, the tribochemical wear
depends not only on an ambient medium (humidity, water, and
other liquid) but also on the surface chemical properties
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