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Comparison of Descriptor- and
Fingerprint Sets in Machine Learning
Models for ADME-Tox Targets

Almos Orosz, Karoly Héberger* and Anita Racz'

Plasma Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary

The screening of compounds for ADME-Tox targets plays an important role in drug design.
QSPR models can increase the speed of these specific tasks, although the performance of
the models highly depends on several factors, such as the applied molecular descriptors.
In this study, a detailed comparison of the most popular descriptor groups has been
carried out for six main ADME-Tox classification targets: Ames mutagenicity,
P-glycoprotein  inhibition, hERG inhibition, hepatotoxicity, blood—brain-barrier
permeability, and cytochrome P450 2C9 inhibition. The literature-based, medium-sized
binary classification datasets (all above 1,000 molecules) were used for the model building
by two common algorithms, XGBoost and the RPropMLP neural network. Five molecular
representation sets were compared along with their joint applications: Morgan, Atompairs,
and MACCS fingerprints, and the traditional 1D and 2D molecular descriptors, as well as
3D molecular descriptors, separately. The statistical evaluation of the model performances
was based on 18 different performance parameters. Although all the developed models
were close to the usual performance of QSPR models for each specific ADME-Tox target,
the results clearly showed the superiority of the traditional 1D, 2D, and 3D descriptors in
the case of the XGBoost algorithm. It is worth trying the classical tools in single model
building because the use of 2D descriptors can produce even better models for almost
every dataset than the combination of all the examined descriptor sets.

Keywords: QSPR, XGBoost, neural network, molecular descriptor, fingerprint

INTRODUCTION

The optimization of the ADME-Tox (adsorption, distribution, metabolism, excretion, and toxicity)
properties of potential drug candidates plays a major role in any drug design project. Drug candidates
often fail due to their suboptimal drug safety properties (Ferreira and Andricopulo, 2019; Racz et al.,
2021; Danishuddin et al., 2022). As the in vivo ADME-Tox experiments are expensive and time-
consuming, in silico QSPR models are frequently used for the prediction of ADME-Tox properties
with the great advantage as they can be used before the synthesis of the compounds (Yang et al.,
2018).

ADME-Tox classification models with the use of medium-sized databases (more than 1,000
compounds) can help in the early phase of the drug design process, when a simple prefiltering is
sufficient based on the ADME features. Machine learning algorithms are nowadays routinely applied
for activity prediction (QSAR models) (Lima et al., 2016), like in other fields of science, as they can
greatly increase the performance of ADME-related QSPR models, as illustrated by the relevant
literature of the last decade. In our recent review, a detailed comparison of machine learning-driven
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ADME-Tox classification models was presented concentrated on
the last 5 years. Our analysis showed that tree-based methods are
the most popular choices amongst the machine learning
algorithms for ADME-Tox model development (Ricz et al,
2021). The superiority of the machine learning algorithms
over the traditional classification methods was also mentioned
in the work of Tsou et al. (2020).

The categorization of descriptors is generally performed by
dimensions (how many dimensions are used for calculations); so,
one can distinguish 0-, 1-, 2-, and 3-dimensional descriptors and
their combinations. Several molecular representations are used in
the QSPR model building processes. Different molecular
fingerprints and thousands of 1D, 2D, and 3D molecular
descriptors can be generated with dedicated software and
online tools (Todeschini and Consonni, 2000; Bajusz et al,
2017). Although sometimes it looks like a neglected part in
the publications, which should not be optimized, it has a great
importance (not just) in the ADME-Tox model building: the
performance of models can highly depend on the applied input
variables (Nembri et al., 2016; Racz and Keser(i, 2020).

The selection of proper descriptors is not a trivial task:
consensus modeling (Abdelaziz et al., 2016; Lei et al., 2016) and
even 4D QSAR models have already been developed by Ravi et al
(2001) as early as in 2001. On the other hand, Doweyko (2004)
emphasized the illusions of using 3D QSAR models. Also, different
types of descriptors can be applied together in a hierarchical
manner (Basak et al., 1997) to achieve better performance.

The descriptors are not to be used with their raw calculated (or
measured) values; descriptor reduction should be carried out first,
namely, constant and highly correlated descriptors are to be
eliminated (Todeschini and Consonni, 2000; Racz et al., 2019a).
It is worth to mention again that the optimization, selection, or
combination of different descriptor types is highly recommended
for the sake of better performances. On the other hand, we have to
note that there are other non-negligible aspects of the model
building process to improve and develop robust QSPR models,
such as the use of different validation sets (Gramatica, 2007), the
use of more than one performance parameter for the models (Ricz
et al., 2015; Gramatica and Sangion, 2016), or the balancing of the
binary classification set (Rdcz et al., 2019b).

In this study, our aim was to provide a detailed comparison of
the most well-known descriptor sets for ADME-Tox model
buildings on six different binary classification targets (with more
than 1,000 molecules in each). Naturally, we aimed to find the
optimal combinations and significant differences between their
performances, too. Two well-known algorithms with superior
performances, the tree-based XGBoost and the neural network-
based RPropMLP, were applied for modeling, to show whether the
differences (or similarities) of the five fingerprint and descriptor sets
are general or carry the specificities of peculiar datasets.

MATERIALS AND METHODS

Datasets and Their Curation
In this study, we have examined six different datasets that
were previously applied for building QSAR models. The

Descriptor Sets in Machine Learning ADME-Tox

targets were the following: Ames mutagenicity (Hansen
et al., 2009), P-glycoprotein inhibition (Broccatelli et al,
2011), hERG inhibition (Alves et al., 2018), hepatotoxicity
(Wu et al,, 2019), blood-brain-barrier permeability (Roy
et al, 2019), and CYP 2C9 inhibitory activity (PubChem,
2021). The Ames mutagenicity dataset was collected by
Hansen et al. (2009) and consists of 6,512 molecules from
six different sources. The classification of active and inactive
molecules was carried out according to the Ames test. The
P-glycoprotein (P-gp or ABCBI1) inhibition data comprise
1,275 molecules with IC5, values, collected by Broccatelli et al.
(2011), based on 61 references. The hERG dataset comprises
4,787 molecules, acquired from the work of Alves et al. (2018)
which was part of a comparison study between QSAR and
MuDRA modeling. The hepatotoxicity dataset was gathered
by Wu et al. from three public databases [SIDER (Kuhn et al,
2010), OFFSIDES (Tatonetti et al., 2012), and CTD (Davis et al.,
2019)], followed by the generation of triple corresponding
decoys using RApid DEcoy Retriever (RADER) (Wang et al,
2016). The resulting set contained 2,476 active and inactive
molecules. The BBB permeability database of Roy et al. (2019)
was obtained from four different publications, forming a set of
1,864 molecules. They distinguished between activity and
inactivity according to the given logBB values. Last, for
examining the cytochrome P450 2C9 isoform inhibitory
activity of molecules, we used a public database from
PubChem (AID = 1851). In the database, the inhibitory
activity/inactivity was determined according to the NCGC
Assay Protocol. The details of the datasets are shown in
Table 1. The downloaded datasets were prefiltered by the
authors; in the case of the AID 1851 CYP 2C9 dataset, the
duplicates and molecules with inconclusive activity classes
were excluded.

We have applied an additional filtering protocol for all the
datasets: removing salts, filtering with the criteria of the
number of heavy atoms >5, and element filter (C, H, N, O,
S, P, F, Cl, Br, and I) with the open-source RDKit (www.rdKkit.
org) and CDK (Steinbeck et al., 2003) packages. The
geometry optimization of the 3D structures for the further
descriptor generation was performed with the Macromodel
in the Schrodinger (Schrodinger Release 2021-3, 2021)
software suite.

Molecular Representations

Molecular descriptors can be defined simply as measured or
computationally calculated values associated with a certain
molecule (Bajusz et al., 2017), or according to the formulation
of Todeschini and Consonni (2000): a molecular descriptor is a
result of a logical and mathematical transformation, in which
the chemical information is put into a number or a result of a
standardized experiment. This way the chemical data can be
used in a qualitative or quantitative analysis. In this study,
regarding the applied methods for the representation of the
investigated chemical information, five different types of
molecular descriptors were employed: three different
molecular fingerprints (MACCS, Atompairs, and Morgan)
as well as two-dimensional (2D) and three-dimensional
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TABLE 1 | Summary of the applied datasets.

Descriptor Sets in Machine Learning ADME-Tox

Dataset Original dataset Final dataset Reference

Dataset size Active molecule % of Dataset size Internal set External set

actives

Mutagenicity 6,512 3,503 54 6,190 4,952 1,238 Hansen et al (2009)
P-glycoprotein 1,275 666 52 1,180 944 236 Broccatelli et al (2011)
hERG 4,787 2,749 57 4,612 3,690 922 Alves et al (2018)
Hepatotoxicity 2,476 619 25 2,414 1932 482 Wu et al (2019)
BBB 1864 1,438 77 1750 1,400 350 Roy et al (2019)
CYP 2C9 12,776 5,800 45 12,379 9,904 2,475 PubChem (2021)

(3D) descriptors. The two-dimensional descriptor set
contained all the one- and zero-dimensional descriptors
as well.

The molecular fingerprints are projected as bit strings in
most cases, although any vector of numerical values can be
applied as a fingerprint in cheminformatics. MACCS
(Molecular Access System by Molecular Design Limited),
often referred to as the prototype of substructure key-based
fingerprints, has two major types: the 166-key version and the
960-key version. The key-based fingerprints contain a group of
molecular characteristics (e.g., atom environments) suitable for
encoding the molecules.

Atompairs were first published for their application of
structure-activity studies (Carhart et al., 1985). The method
introduced the algorithm of atom typing, that is, computing
certain values for each atom of the molecule. Using these
values, each atom pair is computed: for n atoms, there are
n*(n-1)/2 number of pairs.

The Morgan fingerprints (or the modified versions:
extended connectivity fingerprints, ECFP) were initially
established for solving problems linked to isomorphism
(Morgan, 1965). This descriptor, also called a circular
fingerprint, is similar to the atom pairs: it relies on the
fragmentation of molecules into circular fragments, with
each atom encoded as atom types. ECFP fingerprints can be
considered the most well-known standard of molecular
fingerprints.

The term “2D” in 2D descriptors stands for the generation
method of the descriptor: it is derived from the 2D
representation of the molecule. The values of the 2D
descriptors are independent from the numbering of the
atoms that is why they are often referred to as graph
invariants (Todeschini and Consonni, 2000). Typical 2D
descriptors include: 1) the different physicochemical
parameters such as logP or pK, values 2) or the topological
descriptors, such as the Wiener or Randi¢ branching index.
(Bajusz et al., 2017). The derivation of the 3D descriptors is
parallel to the 2D case, only their input is the 3D
representation. It is also a big family of descriptors: it
includes 1) electronic descriptors, 2) volume descriptors
(such as molecular volume index and geometric volume), 3)
shape descriptors, and 4) WHIM, GETAWAY, and EVA
families, just to name a few.

The 2D and 3D descriptors were calculated with Dragon 7
(Kode Cheminformatics), while the three different molecular
fingerprints were calculated with the open-source
cheminformatics package, RDKit (www.rdkit.org). However,
in the case of 2D descriptor calculations, the classical 1D and
0D descriptors were also generated (such as molecular weight
and number of heteroatoms), and altogether these will be
referred to as 2D descriptor sets for the sake of simplicity.
The 2D and 3D molecular descriptors were filtered based on
the intercorrelation limit of 0.997 (Racz et al., 2019a). Constant
descriptors were also excluded from the datasets. An
additional normalization step was carried out on the
molecular descriptors before the model building. The
number of variables is shown for each descriptor set and
for each ADME dataset in Supplementary Table S1.

Machine Learning Algorithms

The machine learning workflows were developed using the
KNIME analytics platform (4.4.0 version, KNIME GmbH,
Konstanz, Germany). For building the classification models
of ADME-Tox parameters, we applied two machine learning
algorithms: extreme gradient boosting (XGBoost) and resilient
backpropagation network (RPropMLP).

XGBoost is a scalable tree-boosting system presented by
Chen and Guestrin (2016). It is a popular and effectively
applied machine learning algorithm, and the roots of the
method were established by Friedman (2001). The idea
behind the technique is similar to the tree-based ensemble
methods; however, it is extended with a boosting step.
Boosting is basically a step-by-step improvement of the
trees with the minimization of the error. Some of the most
important factors of its success are the scalability of
parameters on many levels, and its faster computation
speed than other existing solutions (Sheridan et al., 2016;
Zhang and Gong, 2020). Nowadays, the algorithm produces
state-of-the-art solutions for a wide range of problems,
especially in larger datasets. Its advantages are clearly
emphasized by the fruitful applications of the method in
machine learning and data mining challenges such as
Kaggle competitions, for instance.

RPropMLP applies an algorithm of backpropagation learning,
which is a frequently used method for supervised learning with
multi-layered feed-forward networks, and means a repeated
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employment of a particular chain rule to compute the effect of
each weight in the network. The step sizes, set individually for
each weight, are independent of the value of the partial derivative,
which is a main advantage of this method next to its speed and
robustness (Riedmiller and Braun, 1993).

The developed KNIME workflow for the classification
modeling is shown in the Supplementary Material.

Applied Statistical Analysis and

Performance Evaluation

The iterative process of the classification modeling with
different input variables and algorithms has been evaluated
based on 18 different performance parameters for each case
study. The abbreviations for performance parameters are as
follows: AUAC, AUC, AP, TPR, TNR, PPV, NPV, BM, MK,
LRp, LRn, DOR, MCC, Cohen x, ACC, BACC, Jaccard, and F1.
The detailed description and equations of the parameters can
be found in our previous work (Racz et al., 2019b), and the
expansions of the abbreviations are provided in the
Supplementary Table S2. The performance metrics were
used for the evaluation of the models with factorial
ANOVA (variance analysis) for each case study separately
and together as well. ANOVA can help us to detect the
significant effects of the applied factor wvariables (the
differences between the means of the factor classes). The
applied factors were: 1) the descriptor sets, six levels (5 +
Total), 2) the algorithms, two levels, and 3) the validation sets,
three levels in the separate case study evaluation part. The list
of the calculated performance parameters is provided in the
Supplementary Material. The performance parameters were
range-scaled (between 0 and 1) before the analysis of variance.
ANOVA was carried out in STATISTICA 13 software (Tibco
Software Inc., Palo Alto, United States).

RESULTS AND DISCUSSION
Modeling Workflow

All six datasets with the different X input variables were
handled with the same modeling workflow in KNIME. After
importing and normalizing the variables, the datasets were
split into internal and external sets. The external sets were
selected with stratified sampling based on the classes and
contained 20% of the whole dataset in each case. In the
following parts, only the remaining 80% was used, and the
external sets were applied only for the external validation of the
final models. The covered space of the datasets is illustrated in
the MW-logP space in Figure 1. We can conclude that the
distribution between the external and internal sets is
appropriate (can be considered the same). The internal and
external sets are plotted separately. Moreover, t-distributed
stochastic embedding (#-SNE) plots of the datasets are also
presented in Supplementary Figure S1.

We have carried out the workflow with and without the
application of a genetic algorithm as well. XGBoost and
RPropMLP methods were used on the selected X variables and

Descriptor Sets in Machine Learning ADME-Tox

the whole datasets as well. The number of selected variables was
always below 500.

An iterative process was included for the balancing of the
datasets: it was necessary, especially in those cases, in which the
number of actives was not around 50% in the dataset. It meant
that the number of actives was fixed, and we selected the same
amount of inactives from the database. The selection process was
repeated ten times; thus, the inactive molecules always changed.
The use of balanced datasets in binary classification can greatly
affect the final outcome based on our previous study (Récz et al.,
2019b).

Another iteration step was to split the internal dataset into
training/cross-validation and internal validation parts. Since
the machine learning models wusually provide perfect
accuracies (1.0) on the training set, we omitted the
collection of these data in the output files. Stratified
sampling based on the classes was used with a 80:20 ratio
for splitting the cross-validation (CV) and internal validation
sets. The split process was repeated five times. It is important
to note that there was no overlap in one iteration circle
between the cross-validation and internal validation set. The
complete process can be followed in detail in our KNIME
workflow in the Supplementary material.

The predicted class probabilities with each algorithm were
grouped by the validation sets (cross-validation, internal, and
external). Mean class probabilities were calculated for each
molecule. The whole process was carried out for the five
different molecular descriptor sets and their merged versions.
It should be noted that the genetic algorithm was not used in the
case of the merged dataset because we originally wanted to see the
benefit of the combined descriptors simply, as it is a very popular
choice in the literature. Moreover, the number of descriptors was
above 5,000, which would have really increased the calculation
time in the case of the genetic algorithm.

The class probability values were used for the calculation of the
18 performance parameters (as aforesaid). The performance
parameters were range-scaled before ANOVA and LRn were
reversed due to their opposite direction compared to other
metrics. ANOVA was carried out for the six datasets
separately and in a merged version too with the use of the 18
performance parameter values. The following results are
presented in a way that the target-specific results can be also
concluded.

Results of the BBB Dataset

He have worked with 1,750 different molecules, which were
split into 1,400 internal and 350 external ones. It was a mid-
sized dataset, almost the smallest one out of the six. The
models with and without variable selection were evaluated
together in ANOVA for each descriptor set. Although, we
have checked the results and the pattern was the same in all
cases, the performances were slightly worse when the genetic
algorithm was used. The input data for ANOVA were the
range-scaled performance parameters and the three factors,
namely, the descriptor types (six levels, i.e., six groups), the
validation sets (three levels: CV, internal, and external), and
the machine learning algorithms (two levels). We have to
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FIGURE 1 | LogP values are plotted against the MW of the molecules for each dataset, internal and external sets separately. (A) BBB, (B) CYP 2C9, (C)
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emphasize that we also analyzed the merged descriptor sets,
which we will call total. The 2D descriptor set contains the 0-
and 1-dimensional descriptors as well. The result is presented
in Figure 2, in which the three factors are used together.
ANOVA showed that the effect of the molecular descriptor

sets and the machine learning algorithms are statistically
significant (a = 0.05).

Generally, the application of 2D descriptors resulted in the
best classification performances for both the RPropMLP and
XGBoost algorithms in the case of the BBB dataset. The only
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2D Atompair Morgan
3D MACCS

XGBoost

TOTAL

exception is the external validation, in which the application
of all descriptors (Total) resulted in better performance.
When comparing the three fingerprints, we acquired the
best scaled performance using the MACCS fingerprint in
the case of RPropMLP, and the Atompairs performed the
best when paired with the XGBoost. The Morgan fingerprint
appeared to be the least effective descriptor in the case of
RPropMLP, but it behaved equally well as the MACCS, when
applied with the XGBoost. If we compare the performance of
the two algorithms, we can see that the XGBoost algorithm
produces a robust and precise outcome, since the range of the
scaled performances is narrower (~[0.60; 0.95]) and the
values are generally higher than those for the RPropMLP
(~[0.23; 0.92]). Using RPropMLP, the external test set
resulted in the best scaled performances for every
descriptor set, except for 3D and Morgan. However, for
XGBoost, the CV resulted in a better scaled performance
than the external test set in case of the 2D, 3D, and MACCS
descriptors. The slightly better performance of the external
(or internal) test set than CV is very common in the machine
learning modeling practice, and it is not connected to the
overfitting of the models. The range of the scaled performance
values of the three validation sets was the narrowest with the

application of the 3D and Morgan descriptors. Moreover, in
the case of RPropMLP, the validation sets were further away
from each other compared to the XGBoost algorithm. After
all, the optimal result is to be obtained using the 2D
descriptors for the BBB dataset.

Results of the CYP 2C9 Dataset

The cytochrome P450 2C9 dataset was the largest one out of the
six case studies, with more than 12,000 different molecules. As it
was collected from the PubChem database, this case study is a
frequently used one in the literature. ANOVA was performed in
the same way as in the case of BBB, and the result is illustrated in
Figure 3. ANOV A showed statistically significant differences (a =
0.05) between the six molecular descriptor sets and the two
machine learning algorithms too.

In case of the CYP 2C9 dataset, the 2D descriptors also
resulted in a superior scaled performance value for both
algorithms, and wultimately it also brings the best
classification performance similar to the BBB dataset.
Comparing the fingerprint descriptors, the MACCS showed
the best scaled performances combined with both algorithms,
and the other two (Morgan and Atompair) presented almost
identical results. When we analyze the two algorithms, the

Frontiers in Chemistry | www.frontiersin.org

June 2022 | Volume 10 | Article 852893


https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Orosz et al.

Descriptor Sets in Machine Learning ADME-Tox

11
1.0
09
0.8
3 0.7
o '
=]
]
E o6}
(o]
h =
[7]
Q 05}
T
K
1]
O 04}
(]
4
03 |
0.2
+ov
o L E Internal test
E External test
0.0 1 1 1 I 1 1 I 1 1 1
2D Atompair Morgan 2D Atompair Morgan
3D MACCS TOTAL 3D MACCS TOTAL
RPropMLP XGBoost
FIGURE 3| Scaled performances of the models in case of the CYP 2C9 dataset based on the molecular descriptor types and machine learning algorithms. The 18
performance parameters were range-scaled between 0 and 1 and averaged across all models with the given descriptor types/ML algorithms. The result of CV is marked
with blue, the internal test result is marked with red, and the external test is marked with green. The mean is plotted in each case with the 95% confidence intervals.

better scaled performance values are again noticeable in the
XGBoost graph, although the results of XGBoost are in a
lower range (~[0.40;0.80]) in this situation than it was in the
BBB dataset. If we study the validation sets, the internal test
set presented the lowest scaled performances in all cases,
similar to the BBB dataset (indirectly, this observation
suggests that the external test set contains molecules
within the applicability domain of the model, as the
external validation performance was not worse than the
internal). The CV and the external validation sets share
the top scaled performance results, and they are
overlapping in each case. The three validation sets fall in a
narrower range when the 2D descriptors, the 3D descriptors,
and the combined total version are applied, and it widens,
when the three fingerprint descriptor sets are employed. It
means that the use of classical descriptors can provide more
robust models. Generally, the optimal result for the scaled
performance can be obtained, when the 2D descriptor set is
used for this dataset.

Results of the Hepatotoxicity Dataset
The hepatotoxicity case study contained more than 2,400
unique molecules. In this case, the ratio of the actives was

25% in the original set before the data curation, which meant
that the balancing of the dataset was really important here.
ANOVA was carried out with the same protocol as in the
previous cases. The most important assumptions are shown in
Figure 4. ANOVA showed that the effects of the molecular
descriptors and machine learning algorithms are statistically
significant (a = 0.05).

The descriptor pool that resulted in the highest scaled
performance values is the 2D descriptor set for both
algorithms in case of the hepatotoxicity dataset. Among
the fingerprint-type descriptors, the best performance
parameter was resulted by the MACCS, while the other
two fingerprints presented very low performance
parameters compared to the latter fingerprint descriptors.
The XGBoost performs better: the scaled performance values
are significantly higher than the ones obtained with the
RPropMLP. The range of the validation sets is narrow,
when 2D, Atompair, and Morgan are used, and gets wider
when 3D and MACCS are employed. The three validation sets
are closer to each in the case of XGBoost models: these
models can be considered the more robust ones.
Ultimately, the optimal result is to be obtained, if the 2D
descriptors are used.
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Results of the hERG Dataset
The hERG inhibition dataset contained more than 4,000 diverse

molecules. As the inhibition of the hERG K+ channel can lead to
lethal cardiac arrhythmia, this is an important ADME-Tox
antitarget. The used dataset can be considered a medium-
sized one, as only a few can be found with more than 10,000
molecules in the literature. The evaluation of models for this
case study was carried out with the previously determined
ANOVA workflow. Figure 5 shows the comparison of the
molecular descriptors and machine learning algorithms for
the scaled performances. ANOVA showed that statistically
significant differences (¢ = 0.05) can be detected between the
six different molecular descriptor sets and the two machine
learning algorithms.

The modeling of the hERG dataset resulted in the best
scaled performance parameters for the 2D descriptor pool: the
highest values and narrowest range of the validation sets can
be found at this descriptor for both algorithms. Of the
fingerprint descriptors, the MACCS presented the best
results (in the case of the internal set and CV) for the
RPropMLP and the Atompair for the XGBoost. The
XGBoost outperforms the RPropMLP in the scaled

performance values likewise in all previous cases. The
differences are smaller in the case of hERG models between
the three validation sets, especially in the case of XGBoost
models. The range of the values of the validation sets is
particularly narrow, when the 2D, 3D, and Morgan
descriptors are applied, and are slightly wider, when the
Atompair and MACCS were combined with the RPropMLP
method. Consequently, we can conclude that the 2D
descriptors present the most likely optimally scaled
performance values for this hERG dataset.

Results of the Mutagenicity Dataset
The Ames mutagenicity dataset (based on the work of Hansen
et al (2009)) was used as a common case study in this section. It
contained more than 6,000 molecules with 54% of actives. The
same workflow was applied for the evaluation of the models as
previously mentioned, and the most illustrative result is shown in
Figure 6. ANOVA showed a statistically significant effect (« =
0.05) of the important factors: the six molecular descriptor sets
and the two machine learning algorithms.

For the mutagenicity dataset, the 2D descriptors delivered the
best results: the scaled performance parameters are high, and
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those of the validation sets are in a narrow range. When
examining the fingerprints, the best of them is the Atompair,
which has high performance values for both algorithms.
MACCS presents low classification values and a wide range
of the validation sets. The two applied algorithms behave
simultaneously, and only the XGBoost has somewhat higher
scaled performance values, again. The range of the validation
sets’ values remained in a narrow range for all descriptors and
algorithms, and they overlapped almost in every case, except
for the aforementioned MACCS, in which the range becomes
relatively wide. We can state that the best and optimal
classification results are to be acquired using the 2D
descriptors.

Results of the P-Glycoprotein Dataset

The P-glycoprotein inhibition dataset was the smallest one
amongst the six case studies, but it helped to see whether the
examined patterns change with the use of smaller or larger
datasets. It contained slightly more than 1,000 diverse
molecules. ANOVA showed that still the effect of the
molecular descriptor sets and the machine learning algorithms
is significant. Figure 7 presents the illustrative result of the
ANOVA.

The application of the 2D descriptors resulted in the best
scaled performance parameters for both algorithms in the case of
the P-gp dataset. As for the fingerprint descriptors, the best
results were given by the Atompair for both algorithms. The
two algorithms produced similar results for the 2D descriptors;
however, for the rest of the descriptors, the XGBoost
outperformed the RPropMLP. The external validation set
resulted in the highest scaled performance values in case of
the 2D and 3D descriptors combined with the RPropMLP and
of the 2D, 3D, and Atompair for the XGBoost. The performance
of the three validation sets fell in a somewhat narrow range except
with the 3D descriptor for the RPropMLP. All in all, the three
validation sets overlapped almost in every case. Finally, we can
conclude that the best scaled performance values can be obtained
employing the 2D descriptor set in combination with the
XGBoost algorithm.

Evaluation of the Datasets Together

We have examined the six case studies together to obtain
general conclusions about the molecular descriptor sets and
machine learning algorithms. For this purpose, we have range-
scaled the performance parameters of the different models for
all the six datasets together; thus, we could see the differences

Frontiers in Chemistry | www.frontiersin.org

June 2022 | Volume 10 | Article 852893


https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Orosz et al.

Descriptor Sets in Machine Learning ADME-Tox

1.1
1.0 3
0.9
0.8 3
3 0.7
o ' I
c
©
E o6} i
O
<
[
S 05
T
K}
[}
O 04
(7]
03 | 3
0.2
=+ ov
Internal test
a4 | _ 4
—$— External test
0.0 ' A 4 l
2D Atompair Morgan 2D Atompair Morgan
3D MACCS TOTAL 3D MACCS TOTAL
RPropMLP XGBoost
FIGURE 6 | Scaled performances of the models in the case of the Ames mutagenicity dataset based on the molecular descriptor types and machine learning
algorithms. The 18 performance parameters were range-scaled between 0 and 1 and averaged across all models with the given descriptor types/ML algorithms. The
result of CV is marked with blue, the internal test result is marked with red, and the external test is marked with green. The mean of the scaled performance parameters is
plotted in each case with the 95% confidence intervals.

between the performance of the case studies, and it was
necessary to eliminate the confusion of the scaled
performance parameters, namely, the same scaled value
could correspond to different original performance values in
two datasets. At first, the molecular descriptor sets, the
machine learning algorithms, and the different case studies
were used as factors in ANOVA. The effect of these factors was
statistically significant (&« = 0.05), which means that significant
differences can be detected between the groups in each factor.
Figure 8 shows the plot of the three factors together for the
united datasets.

The 18 performance parameters were range-scaled
between 0 and 1. This means that the differences between
the performances of the datasets are valid, but the actual
performance such as accuracy will be discussed later. The
figure shows obvious differences between the neural network-
based RPropMLP and the XGBoost algorithms: XGBoost
worked better in all of the six case studies. The
hepatotoxicity dataset had the most diverse results with
the different molecular descriptor sets, while the hERG
case study showed the least differences between the
applied molecular descriptor sets. Still, it can be concluded
that the use of 0-, 1-, and 2D descriptors (2D in the plot) can

give the best models in all six case studies, which is closely
followed using 3D descriptors alone and the use of all the
descriptor sets together (total). The only exception was the
hepatotoxicity dataset, in which the use of MACCS
fingerprint was an equally good choice as the 3D or the
total version. Out of the three fingerprint types, MACCS
usually worked better than the Morgan and the Atompair
fingerprints. This is clearly shown in Figure 9, which
summarizes the findings based on ANOVA focusing only
on the machine learning algorithms and the molecular
descriptors as factors.

If we merge all the models together for the six case studies, we
can conclude that the XGBoost algorithm can clearly outperform
the RPropMLP method in the examined case studies. Although
the differences are smaller in the case of the XGBoost method, still
significant differences can be detected between the molecular
descriptor sets. In the case of the XGBoost algorithm, 2D (0D, 1D,
and 2D together) descriptors can be recommended instead of 3D
descriptors, and it is worth checking it before we use combined
descriptors. The same conclusion can be true for the neural
network-based RPropMLP algorithm, but here even the
application of the 3D descriptors is solely more effective than
the use of the combined descriptors (total).
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DISCUSSION

Based on the six case studies, we can support our previous analysis of
the ADME-Tox-related classification models (Racz et al., 2021).
Here, we have found that the XGBoost algorithm could outperform
the neural network-based models, which is consistent with the
findings in the mentioned publication: the tree-based algorithms
have high priority over the others in the ADME-Tox-related models
from the literature of the last 5 years. However, the RPropMLP
algorithm may provide better accuracies, if we optimized the model-
building phase, but the tendencies between the applied descriptors
are expected to remain the same. Also, while in the last few years, the
combined descriptors (fingerprints with 2D or 3D descriptors) can
be considered the most popular choice, based on our findings, it
could be beneficial to use them separately and select the optimal ones
before combining them. It is a general belief that the increase of the
dimension of descriptors gives models with better predictive
performances; however, it is not generally true (Doweyko, 2004).
The average accuracies and AUC values of the models are
shown in Figure 10 for each case study, with the min-max values.
This way we could compare the models with the literature ones
fairly because a complete validation of the benchmark models is
usually missing. The best benchmark models cannot be determined

based on solely one criterion. According to the literature data in
our review (Récz et al., 2021), the present models fit into the
average performance in each case study. Moreover, Figure 10C
shows that the best of the developed models sometimes can be
even better. It means that our models were appropriate for
further evaluations and to make our conclusions about the
descriptor sets.

Our models were properly validated with cross-validation,
internal validation, and external validation steps as well, which
is highly recommended (even by the OECD guidelines), but still, it
is not as popular in the literature as it should be. In this study, our
primary intention was not to outperform the models in the
literature for the selected case studies but to show the
importance of the molecular descriptor set selection and its
impact on the final models. Our findings give an indication
about how to start making a good model, not how to improve
it in a later phase. The result shows that the combination of the five
kinds of descriptors does not improve the models sufficiently. It
can increase the noise unless it is performed after a specific analysis
of the data. As nowadays, computational capacities are capable of
calculating hundreds and thousands of models, we tend to use as
many input data as possible, but it is worth keeping in mind that
sometimes less can be more.
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