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In this study, to examine the possibility of using cage-like complexants to design
nonmetallic superalkalis, a series of X@36adz (X = H, B, C, N, O, F, and Si) complexes
have been constructed and investigated by embedding nonmetallic atoms into the
36adamanzane (36adz) complexant. Although X atoms possess very high ionization
energies, these resulting X@36adz complexes possess low adiabatic ionization
energies (AIEs) of 0.78–5.28 eV. In particular, the adiabatic ionization energies (AIEs) of
X@36adz (X = H, B, C, N, and Si) are even lower than the ionization energy (3.89 eV) of Cs
atoms, and thus, can be classified as novel nonmetallic superalkalis. Moreover, due to the
existence of diffuse excess electrons in B@36adz, this complex not only possesses pretty
low AIE of 2.16 eV but also exhibits a remarkably large first hyperpolarizability (β0) of 1.35 ×
106 au, indicating that it can also be considered as a new kind of nonlinear optical
molecule. As a result, this study provides an effective approach to achieve new metal-free
species with an excellent reducing capability by utilizing the cage-like organic complexants
as building blocks.
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INTRODUCTION

Reducing agents with low ionization energies (IEs) play a crucial role in chemical synthesis. As is
well-known, alkali metal atoms possess the lowest ionization energies (5.39–3.89 eV) (Lide, 2003)
among all the elements in the periodic table. However, it is reported that a class of extraordinary
compounds possesses even lower IEs than those of alkali metal atoms. Such species were termed
“superalkalis” by Gutsev and Boldyrev (1982). Initially, superalkalis were designed by decorating
an electronegative central atom with alkali-metal ligands, such as FLi2, OLi3, and NLi4 following
the formula MLk+1 (L is an alkali-metal atom and M is an electronegative atom of valency k). In
MLk+1, one more alkali metal atom will bring an extra valence electron for the electronic shell of M
according to the octet rule. Consequently, such an MLk+1 complex has a great tendency to lose the
extra valence electron and thus possess strong reducibility (Sun and Wu, 2019).

Owing to their excellent reducing ability, superalkalis can be used to synthesize unusual charge-
transfer salts (Zintl and Morawietz, 1938; Jansen, 1976) with the counterpart possessing relatively
low electron affinity and activate stable CO2 and N2 molecules (Park and Meloni, 2017; Zhao et al.,
2017; Park and Meloni, 2018; Sun et al., 2019; Sikorska and Gaston, 2020) to produce high-value
products (Zhang et al., 2021a; Zhang et al., 2021b). In particular, as a special subset of superatom
(Reveles et al., 2009; Luo and Castleman, 2014), superalkalis can behave as alkali metal atoms and

Edited by:
Sugata Chowdhury,

National Institute of Standards and
Technology (NIST), United States

Reviewed by:
Gourhari Jana,

University of California, Irvine,
United States
Santanab Giri,

Haldia Institute of Technology, India

*Correspondence:
Wei-Ming Sun

sunwm@fjmu.edu.cn

Specialty section:
This article was submitted to

Physical Chemistry and Chemical
Physics,

a section of the journal
Frontiers in Chemistry

Received: 12 January 2022
Accepted: 25 February 2022
Published: 14 March 2022

Citation:
Ye Y-L, Pan K-Y, Ni B-L and Sun W-M
(2022) Designing Special Nonmetallic

Superalkalis Based on a Cage-like
Adamanzane Complexant.
Front. Chem. 10:853160.

doi: 10.3389/fchem.2022.853160

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8531601

ORIGINAL RESEARCH
published: 14 March 2022

doi: 10.3389/fchem.2022.853160

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.853160&domain=pdf&date_stamp=2022-03-14
https://www.frontiersin.org/articles/10.3389/fchem.2022.853160/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.853160/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.853160/full
http://creativecommons.org/licenses/by/4.0/
mailto:sunwm@fjmu.edu.cn
https://doi.org/10.3389/fchem.2022.853160
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.853160


maintain their structural and electronic integrities when
assembled into extended nanostructures (Reber et al., 2007).
Hence, they offer an exciting prospect of serving as building
blocks for nanomaterials with highly tunable properties (Jena
and Sun 2018), such as supersalts (Giri et al., 2014), hydrogen
storage materials (Merino et al., 2012), noble-gas-trapping
agents (Pan et al., 2013), superbases (Srivastava and Misra,
2015), and nonlinear optical materials (Sun et al., 2014a; Sun
et al., 2014b; Sun et al., 2016b; Sun et al., 2016c; Sun et al.,
2018a).

In view of the great importance of superalkalis in chemistry,
various superalkalis have been theoretically (Tong et al., 2009;
Tong et al., 2011, Tong et al., 2012a,Tong et al., 2012b; Hou
et al., 2013; Liu et al., 2014; Sun et al., 2013; Sun et al., 2016a; Giri
et al., 2016; Zhao et al., 2017; Sun et al., 2018b; Sun et al., 2019;
Park and Meloni, 2018; Sun and Wu, 2019; Tkachenko et al.,
2019; Sikorska and Gaston, 2020) and experimentally (Lievens
et al., 1999; Yokoyama et al., 2000, 2001; Hou and Wang, 2020)
characterized in the past decades. To date, conventional
mononuclear MLk+1 superalkalis have been expanded to
dinuclear (Tong et al., 2009; Tong et al., 2011) and
polynuclear (Tong et al., 2012a; Tong et al., 2012b; Liu et al.,
2014) superalkalis, aromatic superalkalis (Sun et al., 2013),
Zintl-ion-based superalkalis (Giri et al., 2016; Sun et al.,
2018b), hyperalkalis (Sun et al., 2016a), alkali-metal
complexes (Tkachenko et al., 2019), and so on. More
importantly, some alkali-metal-free superalkalis (Hou et al.,
2014; Liu et al., 2016), particularly nonmetallic superalkalis
(Hou et al., 2013; Srivastava, 2019a; Srivastava, 2019b), have
been proposed in recent years. For example, Hou et al. (2013)
designed a class of M2H2n+1

+ (M = F, O, N, C for n = 1, 2, 3, 4,
respectively) superalkali cations by using hydrogen atoms as
ligands. Following a similar rule, the other two series of
nonmetallic superalkali cations, namely, FnHn+1

+ (n = 1–10)
and CxH4x+1

+ (x = 1–5), have been proposed by Srivastava
(2019a, 2019b). These achievements demonstrate that the
potential of designing superalkalis of new type is limitless
and thereby motivate us to create more diverse superalkali
species by using different rules and ligands to further enrich
the superalkali family.

More recently, Tkachenko et al. (2019) reported the record low
ionization potentials (1.70–1.52 eV) of alkali metal complexes
with crown ethers and cryptands and defined them as superalkali
species. In fact, such alkali metal complexes were previously
named as electrides, a special kind of ionic solids with trapped
electrons serving as anions (Dye, 2009). Hence, this work first
built a bridge between superalkalis and electrides. However, it is
known that crown ethers and cryptands are prone to be cleaved at
the C-O bonds (Redko et al., 2002). Fortunately, analogous
complexants, such as adamanzane (adz) (Redko et al., 2002)
and aza-cage (aza222) (Kim et al., 1999) with only C-N linkages
and no amine hydrogens are considerably stable to synthesize the
crystalline salts, including alkalides (Kim et al., 1999; Redko et al.,
2002) and electrides (Redko et al., 2005) at room temperature.
Hence, it is highly expected that such complexants could also be
used as excellent building blocks to design and synthesize new
superalkalis.

To verify this hypothesis, the 36adamanzane (36adz) has
been chosen as a representative to design a series of X@36adz
(X = H, B, C, N, O, F, and Si) by encapsulating nonmetallic
atoms into the cavity of this cage-like complexant in this work
(see Figure 1). The 36adz complexant is composed of tricyclic
tetra-amines with aliphatic chains (Springborg, 2003), which
has been used to synthesize a stable alkalide [H@36adz]+Na−

(Redko et al., 2002). In this complexant, all the lone pairs of 4 N
atoms direct toward the center of the cage (see Supplementary
Figure S1). Under the repulsion of the lone pairs of N atoms,
the outmost valence electrons of X are destabilized to different
degrees, leading to the obvious rise of HOMO level of X@36adz
as compared with the isolated 36adz complexant. As a result,
these proposed complexes exhibit extraordinarily low AIE
values of 0.78–5.28 eV although X atoms possess very high
ionization energies (IEs) of 8.15–17.42 eV (Lide, 2003). In
particular, the B@36adz complex also has the potential to
serve as new nonlinear optical (NLO) molecule with a
remarkably large first hyperppolarizability of 1.35 × 106 au
because the valence electron of boron atom is pushed out of
cage to form diffuse excess electrons. We hope that this work
will not only provide new nonmetallic members for the
superatom family, but will also open the door to design
strong reducing matters by embedding nonmetallic atoms
into the various cage-like complexants.

COMPUTATIONAL DETAILS

In this work, all the calculations were carried out by using the
coulomb-attenuated hybrid exchange-correlation functional
(CAM-B3LYP) (Tawada et al., 2004; Yanai et al., 2004),
which has been reported to be capable of providing not
only the molecular geometries close to the experimentally
observed structures but also the (hyper)polarizabilities close
to those of the coupled cluster calculations (Limacher et al.,
2009). Hence, this method has been widely used to calculate
the (hyper)polarizabilities of NLO molecules in the previous
works (Sun et al., 2014a; Sun et al., 2014b, Sun et al., 2016c).
Also, a method test has also been carried out by sampling
B@36adz (see Supplementary Table S1) to verify the reliability
of this method in calculating the properties of such systems.

FIGURE 1 | The schematic design strategy of X@36adz (X = H, B, C, N,
O, F, and Si) based on the cage-like 36adz complexant.
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From Supplementary Table S1, it is found that CAM-B3LYP
gives approximately equal VIE and β0 to those obtained by
several other functionals, which indicates that this method is
reliable for these studied systems. Hence, all the optimized
geometric structures of the studied species with real
frequencies were obtained under the CAM-B3LYP/6-
31+G(d) level. Based on the optimized structures, the
single-point energies, nature population analysis (NPA)
charges, and static electric properties were calculated at the
CAM-B3LYP/6-311++G (d, p) level.

In this work, the vertical ionization energies (VIEs) of X@
36adz (X = H, B, C, N, O, F, and Si) were calculated as the
energy difference between the optimized neutral complex and
the cation in the geometry of the neutral complex, while their
adiabatic ionization energies (AIEs) are defined as the energy
difference between the neutral and cationic complex at their
respective optimized structures. In addition, the TD-M06-2X
calculations were performed to obtain the transition energies
and oscillator strengths of the crucial excited states as well as
the difference of the dipole moments between the ground state
and crucial excited state of X@36adz by using the 6-311++G (d,
p) basis set. Herein, the dipole moments (µ0), polarizabilities
(α0), and first hyperpolarizabilities (β0) are defined as follows,

μ0 � (μ2x + μ2y + μ2z)
1/2

(1)
α0 � 1

3
(αxx + αyy + αzz) (2)

β0 � (β2x + β2y + β2z)
1/2

(3)
where βi � 1

3 ∑
j
(βijj + βjji + βjij), i, j = {x, y, z}.

All the above calculations were performed by using the
GAUSSIAN 16 program package (Frisch et al., 2016). The
dimensional plots of the molecular structures were generated
with the GaussView program (Dennington et al., 2016).

RESULTS AND DISCUSSION

Initially, seven X@36adz (X = H, B, C, N, O, F, and Si)
compounds have been constructed by encapsulating one X
atom into a 36adz cage. After optimization, the geometric
structures of X@36adz are illustrated in Figure 2, while the
corresponding cations are plotted in Supplementary Figure S2.
Moreover, selected structural parameters of these resulting X@
36adz compounds are summarized in Table 1.

As shown in Figure 1, 36adz is a cage-like complexant with S4
symmetry. From Figure 2, it is observed that the geometric
integrity of 36adz cage is well-preserved in these X@36adz
compounds. However, the geometric symmetries of these
compounds are lowered to C1 and C2, except for H@36adz,
which maintains the S4 symmetry of 36adz. To be specific, the
encapsulated hydrogen atom located at the central position of
36adz in H@36adz, yields the newly formed N-H bonds of 2.11 Å
and ∠N1-H-N2 of 113.5°. As for B@36adz, the boron atom tends
to bind with 3 N atoms of the complexant, forming 3 N-B bonds
of 1.63 Å ~ 1.66 Å, while the distance between the uncombined
N and B atoms is as long as 3.02 Å. The C@36adz complex
possesses a C2-symmetric structure, where the introduced

FIGURE 2 | Optimized geometric structures of X@36adz (X = H, B, C, N, O, F, and Si) compounds.

TABLE 1 | Symmetry point group, the lowest vibrational frequencies v1 (in cm−1),
the bond lengths of X-N1 and X-N2 bonds (dX-N1 and dX-N2, in Å), ∠N1-X-N2
angle (in deg) of X@36adz (X = H, B, C, N, O, F, and Si) compounds.

Species Symmetry v1 dX-N1 dX-N2 ∠N1-X-N2

H@36adz S4 69 2.11 2.11 113.5
B@36adz C1 91 1.66 3.02 105.9
C@36adz C2 102 1.52 2.97 108.4
N@36adz C1 48 1.41 2.58 120.3
O@36adz C1 72 1.34 2.59 125.1
F@36adz C1 61 1.87 2.41 123.7
Si@36adz C1 76 2.06 3.22 102.0
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carbon atom prefers to bind with 2 N atoms of 36adz by forming
two N-C bonds of 1.52 Å. Differently, the more electronegative
N, O, and F atoms are linked to only 1 N atom of the cage
complexant via N-N, N-O, and N-F bonds of 1.41, 1.34, and
1.87 Å, respectively, generating the very similar structures of X@
36adz (X = N, O, and F). Similar to B@36adz, the introduced
silicon atom tends to bind with 3 N atoms of complexant via
3 N-Si bonds of 2.06–2.35 Å in Si@36adz.

By turning to the cations of X@36adz, it is found that only the
optimized structure of [B@36adz]+ cation almost coincides with
the geometry of the corresponding neutral one (see
Supplementary Figure S2). For instance, the critical
geometric parameters of dB-N1, dB-N2, and ∠N1-B-N2 are
hardly changed after one electron is lost from B@36adz.
However, for the rest of X@36adz (X = H, C, N, O, F, and
Si), quite different geometries of cationic and neutral complexes
were found. For instance, the H+ is attached to 1 N atom of the
complexant in the resulting [H@36adz]+, while the doped N
atom turns to combine with 2 N atoms of 36adz in [N@36adz]+

and Si atom almost moves to the center of the cage in [Si@
36adz]+. The geometry of C@36adz is distorted from C2

symmetry to C1 with the changes of 0.29 Å for the C-N2
bond and 7.3° for ∠N1-C-N2. As for [F@36adz]+, the N-F
bond is shortened from 1.87 Å to 1.38 Å because the
introduced F atom further loses 0.333e (see Supplementary
Table S1) and thus tends to bind more tightly with the N atom
of the complexant. Also, as shown in Table 2, the difference in
the geometry can also be reflected by the difference of
0.29–3.06 eV between the vertical ionization energies (VIEs)
and adiabatic ionization energies (AIEs) of these X@36adz (X =
H, C, N, O, F, and Si) species.

More interestingly, as shown in Table 2, extraordinarily low
AIE values of 0.78–5.28 eV were found for all the studied X@
36adz (X = H, B, C, N, O, F, and Si) complexes, although X atoms
possess very high ionization energies (IEs) of 8.15–17.42 eV
(Lide, 2003). Such low AIE values of X@36adz are not only lower
than that of 6.56 eV for the 36adz complexant but also
significantly lower than that of 5.39 eV (Lide, 2003) for
lithium atom. In particular, the AIE values of H@36adz
(0.78 eV), B@36adz (2.16 eV), C@36adz (2.72 eV), N@36adz
(3.15 eV), and Si@36adz (1.79 eV) are even lower than the IE
of 3.89 eV (Lide, 2003) for Cs atoms. Hence, these compounds
should be classified as novel nonmetallic superalkalis.

How to understand the low IE values of such X@36adz
complexes? We can find some clues from the frontier
molecular orbital analysis. From Figure 3, a clear inverse
correlation between the VIE values and HOMO levels of
these studied compounds can be observed, that is, the higher
the HOMO level is, the lower the VIE is. This is reasonable
considering the fact that the valence electrons on the higher
HOMOs are easier to be ionized. To be specific, all the HOMO
energies (−1.81 ~ −5.87 eV) of X@36adz are much higher than
that of −6.49 eV for 36adz, because of the repulsion between the
lone pairs of N atoms and the outmost valence electrons of X,
resulting in the lower VIEs (2.18–6.38 eV) than that (6.80 eV) of
36adz. In particular, B@36adz exhibits the highest HOMO level
of −1.81 eV, and thus possesses the lowest VIE of 2.18 eV among
these X@36adz complexes. This is because that the valence
electron of embedded boron atom is pushed out of the cage
by the lone pairs of N atoms of the complexant, forming a
electride-like molecule [B+@36adz](e‒) with obvious diffuse
electrons in the HOMO of B@36adz (see Supplementary
Figure S3). Thus, the existence of diffuse excess electrons in
its high-lying HOMO level results in the high reducibility of this
B@36adz complex.

Differently, as shown in Supplementary Figure S3, the
valence electrons are accommodated into the HOMOs mainly
composed of the 1s atomic orbital of embedded hydrogen atom
in H@36adz, and the np orbitals of C and Si atoms in X@36adz
(X = C and Si), which show obvious antibonding character with
respect to the central atom-complexant interaction. Such
antibonding HOMOs destabilize the neutral structures of X@
36adz (X = H, C, and Si) and result in their low VIE values
(Gutsev and Boldyrev, 1987; Tkachenko et al., 2019). Hence,
these 3 species also have quite low VIE values of 2.73–3.83 eV.
However, it should be mentioned that the VIEs of 5.72–6.38 eV
for X@36adz (X = N, O, and F) are larger than that of 5.39 eV for
Li atom, although their HOMOs also possess obvious

TABLE 2 | Adiabatic ionization energies (AIEs, in eV), vertical ionization energies
(VIEs, in eV), HOMO and LUMO energy levels (in eV), and the HOMO–LUMO
gaps of 36adz and X@36adz (X = H, B, C, N, O, F, and Si) compounds.

Species AIE VIE HOMO LUMO Gap(eV)

36adz 6.56 6.80 −6.49 −0.38 6.12
H@36adz 0.78 3.83 −3.49 0.36 3.86
B@36adz 2.16 2.18 −1.81 −0.01 1.80
C@36adz 2.72 3.01 −3.08 0.10 3.18
N@36adz 3.15 5.72 −4.48 0.19 4.67
O@36adz 5.28 5.86 −5.65 0.18 5.83
F@36adz 4.92 6.38 −5.87 −0.13 5.73
Si@36adz 1.79 2.73 −2.61 0.26 2.87

FIGURE 3 | The relationship between the VIE values and HOMO levels of
X@36adz (X = H, B, C, N, O, F, and Si) compounds.
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antibonding character. This is attributed to the larger
elertonegativities of N, O, and F atoms than H, C, and Si
atoms, which hinders the ionization of the valence electrons
on their np orbitals in the HOMOs of X@36adz (X = N, O,
and F).

On the other hand, the difference between the VIE and AIE
values are also related to the different electron distribution in the
HOMOs of X@36adz. To be specific, the geometric structure of
B@36adz is hardly changed after its diffuse excess electron of
HOMO is lost, resulting in its nearly equal VIE (2.18 eV) and
AIE (2.16 eV) values. However, the destabilization of
antibonding HOMOs for the neutral X@36adz (X = H, C,
and Si) complexes drives the embedded X atom to lose
nearly one valence electron (0.667 e ~ 0.867 e, as shown in
Supplementary Table S1), forming relatively stable [X@
36adz]+ cations. After losing one electron, the formed X+ ion
changes its interaction mode with the cage complexant, which
leads to the large structural distortion and considerable
difference between the VIE and AIE values of X@36adz (X =
H, C, and Si). Note that the AIE of H@36adz is as low as 0.78 eV
because the formed [H@36adz]+ is very stable and has been
identified in various synthesized ionic compounds, such as [H@
36adz]+X‒ (X = Cl, Br, I, and Na) (Kim et al., 1994; Springborg
et al., 1996; Redko et al., 2002).

Finally, considering the diffuse excess electron in the HOMO
of B@36adz, it is highly expected that this superalkali also
exhibits considerable nonlinear optical (NLO) response.
Thus, the static electric properties of these studied X@36adz
compounds and 36adz complexant were calculated and listed in
Table 3. It is observed that B@36adz has the largest dipole
moment (3.326 au) and polarizability (1,599 au) among these
X@36adz complexes because of the existence of diffuse electrons
in the HOMO of this superalkali. In particular, the first
hyperpolarizability (β0) of B@36adz is as large as 1.35 × 106

au, which is significantly larger than those of the reported
superalkalis and superalkali-based NLO materials, such as the
aromatic organometallic superalkali Au3(Py)3 (3.74 × 104 au)
(Parida et al., 2018), superalkali-based alkalide Li3O

+(calix [4]
pyrrole)M‒ (M = Li, Na, and K) (1.18 × 104–3.33 × 104 au) (Sun
et al., 2014a), and superalkali-based electride Li3O@Al12N12

(8.73 × 105 au) (Sun et al., 2016b), indicating that this

proposed superalkali species can indeed be considered as a
new kind of NLO molecule of high performance.

To understand the eminently large β0 value of B@36adz, we
focus our attention on the simple two-level model (Oudar, 1977;
Oudar and Chemla, 1977),

β0 ∝
Δμ · f0

ΔE3
(4)

where ΔE, f0, and Δµ are the transition energy, oscillator
strength, and the difference in the dipole moment between
the ground state and crucial excited state, respectively.
According to this two-level expression, β0 is proportional to
f0 and Δµ, while is inversely proportional to the cube of ΔE, and
therefore, the transition energy is considered to be the decisive
factor in the first hyperpolarizability (Sun et al., 2014a,b,
2016b,c). Hence, the ΔE, f0, and Δµ values of the crucial
excited states with the largest oscillator strength of 36adz and
X@36adz are summarized in Table 3. It is noted that B@36adz
possesses extremely smaller ΔE and much larger f0 and Δµ
values than those of other X@36adz (X = H, C, N, O, F, and Si)
compounds, which rationalizes its largest β0 value among these
studied X@36adz species. In addition, the proposed C@36adz
and Si@36adz superalkalis also show considerable β0 values of
4.05 × 103 au and 1.95 × 104 au, respectively, because of their
relatively smaller ΔE values and larger Δµ values.

CONCLUSION

By using 36adamanzane (36adz) as a complexant, a series of X@
36adz (X = H, B, C, N, O, F, and Si) compounds were
constructed and studied based on the density functional
theory. It is interesting to find that the X@36adz (X = H, B,
C, N, and Si) complexes possess lower AIE values than the IE of
Cs atoms though the X atoms and 36adz possess very high IE
values. Thereby, they can be regarded as a new kind of
nonmetallic superalkalis. In particular, different from other
complexes, the low IE of B@36adz is derived from the diffuse
excess electron formed by the repulsion between the valence
electron of the embedded boron atom and lone pairs of N
atoms of the complexant. Due to the existence of diffuse
electrons, this superalkali also possesses a remarkably large
β0 of 1.35 × 106 au, which can serve as a new kind of NLO
molecule. Hence, it is highly hoped that the theoretical design
and characterization of these nonmetallic superalkali species
could provide meaningful references to further design novel
reducing matters or NLO materials by using such cage-like
molecules as complexants.
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