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A series of 1,3,4-oxadiazole contained sesquiterpene derivatives were synthesized, and
the activity of the target compounds against Xanthomonas oryzae pv. oryzae (Xoo),
Xanthomonas axonopodis pv. citri (Xac), and tobacco mosaic virus (TMV) were
evaluated. The biological activity results showed that the EC50 values of compounds
H4, H8, H11, H12, H14, H16, and H19 for Xac inhibitory activity were 33.3, 42.7, 56.1,
74.5, 37.8, 43.8, and 38.4 μg/ml, respectively. Compounds H4, H8, H15, H19, H22, and
H23 had inhibitory effects on Xoo, with EC50 values of 51.0, 43.3, 43.4, 50.5, 74.6, and
51.4 μg/ml, respectively. In particular, the curative and protective activities of compound
H8 against Xoo in vivo were 51.9 and 49.3%, respectively. In addition, the EC50 values of
the inactivation activity of compounds H4, H5, H9, H10, and H16 against TMV were 69.6,
58.9, 69.4, 43.9, and 60.5 μg/ml, respectively. The results of molecular docking indicated
that compound H10 exhibited a strong affinity for TMV-coat protein, with a binding energy
of −8.88 kcal/mol. It may inhibit the self-assembly and replication of TMV particles and
have an anti-TMV effect, which supports its potential usefulness as an antiviral agent.
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INTRODUCTION

Most plant diseases are caused by biological agents such as bacteria, fungi, viruses, and nematodes, which
have adverse impact on the growth and development of plants (Das et al., 2016). Rice bacterial blight
caused by Xanthomonas oryzae pv. oryzae (Xoo) seriously threatens the growth and production of rice by
affecting the tillering stage of rice (Wang et al., 2021). Citrus bacterial canker caused by Xanthomonas
axonopodis pv. citri (Xac) reduces the quality and yield of fruits (Graham et al., 2004). Tobacco mosaic
virus (TMV) can survive in dry plant debris for up to 100 years, and the associated plant diseases cause
economic losses of more than USD 30 billion each year (Wang et al., 2018; Guo et al., 2021). At present,
pesticides are the main means of controlling crop diseases and insect pests (Kemmitt et al., 2018). For
plant disease, such as Xoo, Xac or TMV, although there are traditional medicines (such as Bismerthiazol,
Thiodiazole copper, Ningnanmycin and Ribavirin), their effectiveness is limited various forms of disease
and insect resistance (Buttimer et al., 2017; Liu et al., 2021). Natural products have special structural
characteristics and unique biological activity mechanisms, and they are an important source for discovery
of highly effective, safe, and environmentally compatible drugs (Zhang et al., 2018; Zheng and Hua, 2020;
Li and Wang, 2021).
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Sesquiterpenes are the most common type of terpenoids in
terms of the number of compounds and the type of structural
skeleton. They have thousands of representative structures and
more than 300 different skeletons (Sacchettini and Poulter, 1997;
Arroo, 2007). Sesquiterpenes are natural products of terpenoids
found in plants, fungi, marine organisms, insects, and
microorganisms. They are widely used in agriculture, medicine,
perfume, cosmetics, and biofuels (Liu C.-L. et al., 2021; Liu T. et al.,
2021; Mai et al., 2021). Sesquiterpenes have a variety of biological
activities due to their complex three-dimensional structure, such as
antiviral (Shang et al., 2016; Zhao et al., 2017), antibacterial (Duan
et al., 2020; Wang et al., 2020), antifungal (Aricu et al., 2016),
insecticidal and antifeedant activities (Inocente et al., 2019). In
addition, at least some have excellent pharmacological activity,
such as artemisinin for anti-malaria (Platon et al., 2021). There
may also have anti-inflammatory (Gao et al., 2015), anti-HIV (Liu Y.-
P. et al., 2021), and cytotoxic activity (Ryu et al., 2015). Collectively,
sesquiterpenes offer a wide potential for research and commercial
applications.

Heterocyclic compounds often combine good activity, high
selectivity, and low dosage, thus features attractive to new
pesticide research (Jin and Zhang_, 2010; Wu et al., 2011; Wu
et al., 2013). The presence of nitrogen in the molecule is usually
accompanied by the emergence of new compound activities or the
enhancement of the original activity characteristics of natural
terpenoids (Lungu., 2015). Among them, 1,3,4-oxadiazole is a
kind of heterocyclic compound with a variety of biological
activities, and its derivatives show antiviral (Gan et al., 2017;
He et al., 2021), antibacterial (Vasantha et al., 2019; Yu et al.,
2021; Wang S. et al., 2021), antifungal (Wen et al., 2019; Wang X.
et al., 2021) and insecticidal activity (Yang et al., 2020) in
agricultural applications. Some also proved to be attractive
anti-cancer (Kumar et al., 2009), anti-depressant (Ergun et al.,
2010), anti-HIV (Parizadeh et al., 2018), and anti-inflammatory
(Naseer et al., 2019) medicines. Additionally, the presence of alkyl
groups on the oxadiazole nucleus increases their ability to
penetrate active sites and enhance their biological activity
(Vasantha et al., 2019).

FIGURE 1 | Design strategy of the target compounds.
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In view of the above findings, as one of the most active research
fields in natural product chemistry, sesquiterpenes can be derived
from their skeletons to obtain active different compounds. In this
study, using the principle of active substructure splicing, sclareolide
was used as the lead compound and the active fragment of
oxadiazole was introduced (Figure 1). A series of 1,3,4-oxadiazole
contained sesquiterpene derivatives were synthesized and their
biological activities were evaluated.

RESULTS AND DISCUSSION

Antibacterial Activity in Vitro
The in vitro antibacterial activity of synthetic compounds
H1–H23 against Xoo and Xac was tested by the turbidity
method (Zhang et al., 2021). The preliminary biological
activity results are shown in Table 1. The inhibitory
activities of compounds H4, H8, H15, H19, and H22 on
Xoo were 64.5, 70.2, 69.5, 65.7, and 60.1% at 100 μg/ml,
respectively, which were higher than that of thiodiazole
copper (56.7%). The inhibitory effects of compounds H4,
H8, H14, and H19 on Xac at 100 μg/ml were 73.3, 65.1,
70.5, and 66.6%, respectively, which were better than that of
bismerthiazol (64.6%).

The concentration values for 50% of maximal effect (EC50) of
some compounds are shown in Table 2. The EC50 values of
compounds H8 and H15 against Xoo were 43.3 and 43.4 μg/ml,
respectively, which were close to bismerthiazol (41.8 μg/ml) and
superior to that of thiodiazole copper (61.4 μg/ml). Compounds
H4 and H14 had an inhibitory effect on Xac, with their EC50

values being 33.3 and 37.8 μg/ml, respectively, thus better than for
bismerthiazol (38.2 μg/ml).

Antibacterial Activity in Vivo
To further verify the control effect of the compound on rice
bacterial leaf blight, the in vivo antibacterial activity of compound
H8 was determined by the leaf-cutting method at 200 μg/ml
(Zhang et al., 2021). The results are shown in Table 3, Table 4;
Figure 2. The curative activity of compound H8 was 51.9%,
which was better than that of bismerthiazol (47.1%) and
thiodiazole copper (46.1%). Concomitantly, the compound H8
showed good protective activity of 49.3% compared to
bismerthiazol (45.8%) and thiodiazole copper (43.7%).

Anti-TMV Activity in Vivo
According to the classic literature method (Ren et al., 2020), the
activity of the target compound H1–H23 on TMV was tested.
Preliminary bioactivity showed that most of the compounds

TABLE 2 | Antibacterial activities of some target compounds against Xoo and Xac in Vitroa.

Compd Xoo Xac

Regression equation R2 EC50 (μg/ml) Regression equation R2 EC50 (μg/ml)

H4 y = 1.22x + 2.9 0.99 51.0 ± 3.3 y = 1.15x + 3.2 0.98 33.3 ± 1.0
H8 y = 1.20x + 3.0 0.97 43.3 ± 4.3 y = 0.74x + 3.7 0.96 42.7 ± 1.8
H11 y = 0.89x + 3.4 0.97 56.1 ± 3.5
H12 y = 0.78x + 3.5 0.94 74.5 ± 3.4
H14 y = 0.90x + 3.5 0.90 37.8 ± 3.1
H15 y = 1.54x + 2.4 0.92 43.4 ± 3.0
H16 y = 0.83x + 3.6 0.98 43.8 ± 3.3
H19 y = 1.12x + 3.0 0.98 50.5 ± 4.0 y = 0.90x + 3.5 0.97 38.4 ± 4.6
H22 y = 1.00x + 3.1 0.94 74.6 ± 2.2
H23 y = 1.41x + 2.5 0.99 51.4 ± 3.3
BTb y = 1.63x + 2.3 0.98 41.8 ± 4.1 y = 0.76x + 3.7 0.98 38.2 ± 3.1
TCb y = 1.04x + 3.1 0.99 61.4 ± 1.8 y = 1.07x + 3.4 0.97 25.1 ± 1.9

aAverage of three replicates.
bThe commercial agricultural antibacterial agents bismerthiazol (BT) and thiodiazole copper (TC) were used as positive control.

TABLE 1 | In vitro antibacterial activity of the target compounds against Xoo and
Xaca.

Compd Xoo Inhibition rate (%) Xac Inhibition rate (%)

100 μg/ml 50 μg/ml 100 μg/ml 50 μg/ml

H1 46.3 ± 4.6 23.8 ± 3.9 53.2 ± 3.4 45.3 ± 4.5
H2 20.9 ± 4.8 14.5 ± 3.4 49.6 ± 4.4 40.4 ± 2.9
H3 30.9 ± 3.2 22.7 ± 3.4 41.1 ± 2.7 39.1 ± 0.1
H4 64.5 ± 1.2 48.6 ± 2.3 73.3 ± 3.4 55.6 ± 3.1
H5 49.5 ± 3.0 22.9 ± 3.0 58.5 ± 1.8 36.1 ± 1.6
H6 21.1 ± 4.4 15.6 ± 1.6 46.7 ± 1.6 38.7 ± 4.0
H7 34.4 ± 3.2 33.7 ± 2.5 53.6 ± 1.9 34.5 ± 4.6
H8 70.2 ± 4.9 52.2 ± 1.1 65.1 ± 4.1 44.5 ± 3.1
H9 40.6 ± 3.4 25.5 ± 0.6 37.2 ± 4.3 24.1 ± 2.7
H10 16.6 ± 4.1 14.8 ± 0.6 47.7 ± 4.1 43.3 ± 3.9
H11 43.2 ± 3.2 19.0 ± 3.0 62.4 ± 3.2 45.9 ± 3.6
H12 24.6 ± 4.7 22.4 ± 3.4 58.7 ± 4.7 36.3 ± 1.5
H13 38.0 ± 1.1 22.5 ± 4.5 53.5 ± 3.4 35.4 ± 1.6
H14 38.0 ± 4.2 26.8 ± 3.2 70.5 ± 3.9 47.2 ± 0.5
H15 69.5 ± 4.5 42.3 ± 2.4 44.7 ± 1.1 40.6 ± 4.5
H16 28.6 ± 3.6 20.2 ± 1.1 62.8 ± 1.3 43.7 ± 4.9
H17 28.1 ± 1.1 25.4 ± 1.6 52.0 ± 1.2 46.5 ± 1.4
H18 50.2 ± 2.0 32.4 ± 3.3 50.5 ± 3.8 29.0 ± 2.8
H19 65.7 ± 4.7 47.1 ± 3.3 66.6 ± 1.5 48.4 ± 1.8
H20 53.1 ± 1.8 42.0 ± 3.9 42.5 ± 2.2 41.8 ± 2.3
H21 48.7 ± 4.6 47.8 ± 3.0 35.5 ± 2.8 34.1 ± 2.9
H22 60.1 ± 4.6 46.7 ± 2.2 48.4 ± 2.1 32.3 ± 4.4
H23 57.3 ± 2.2 38.7 ± 3.1 32.7 ± 3.4 30.9 ± 3.8
BTb 73.5 ± 0.7 56.6 ± 4.7 64.6 ± 1.9 51.2 ± 1.4
TCb 56.7 ± 3.8 48.5 ± 1.3 76.8 ± 0.7 65.2 ± 2.0

aAverage of three replicates.
bThe commercial agricultural antibacterial agents bismerthiazol. (BT) and thiodiazole
copper (TC) were used as positive control.
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exhibited a good inhibitory effect on TMV at 500 μg/ml. The
results are shown in Table 5. Compared with ribavirin, most
compounds had moderate to good activity. The curative activities
of compoundsH8,H12,H16, andH19 were 68.3, 63.5, 67.5, and
63.3%, respectively, which were significantly higher than ribavirin
(45.4%). Notably, the curative activity of compound H9 was
77.5%, which was better than ningnanmycin (70.0%). The
inactivation potency of compounds H3, H4, H5, H9, and H16
were 81.7, 82.0, 87.5, 82.0, and 87.3%, respectively, which were
higher than that of ribavirin (72.3%). It was worth noting that the
inactivation potency of compound H10 was 90.5%, which was
slightly better than that of ningnanmycin (90.0%)

The EC50 values of some compounds were further tested, as
shown in Table 6. The results indicated that the EC50 value of
compound H10 was 43.9 μg/ml, which was better than
ningnanmycin (44.8 μg/ml).

Molecular Docking and MD Simulation
TMV coat protein (TMV-CP) plays an important role in the
replication and assembly of plant viruses. Our goal was to
investigate the interaction between active target compounds
and TMV-CP. The binding method of ligand molecules
(compound H10 and ningnanmycin) and TMV-CP (PDB 97
code: 1EI7) was explored through molecular docking, and the

TABLE 3 | The curative activity of compound H8 against Xanthomonas oryzae pv.
oryzae in Vivo at 200 μg/ml.

Treatment 14 Days after spraying

Morbidity (%) Disease index (%) Control efficiency (%)a

H8 100 41.7C 51.9A
BTb 100 45.8B 47.1B
TCb 100 46.6B 46.1B
CKc 100 86.7A

aStatistical analysis was conducted by the analysis of variance method under the
conditions of equal variances assumed (p > 0.05) and equal variances not assumed (p <
0.05). Different uppercase letters indicate the values of curative activity with significant
difference among different treatment groups at p < 0.05.
bCommercial bactericides bismerthiazol (BT) and thiodiazole copper (TC) were used as
positive control agents.
cNegative control.

TABLE 4 | The Protective activity of compound H8 against Xanthomonas oryzae
pv. oryzae in Vivo at 200 μg/ml

Treatment 14 Days after spraying

Morbidity (%) Disease index (%) Control efficiency (%)a

H8 100 42.8D 49.3A
BTb 100 45.8C 45.8B
TCb 100 47.6B 43.7C
CKc 100 84.6A

aStatistical analysis was conducted by the analysis of variance method under the
conditions of equal variances assumed (p > 0.05) and equal variances not assumed (p <
0.05). Different uppercase letters indicate the values of protective activity with significant
difference among different treatment groups at p < 0.05.
bCommercial bactericides bismerthiazol (BT) and thiodiazole copper (TC) were used as
positive control agents.
cNegative control.

FIGURE 2 | Curative and protective activities of compound H8 against rice bacterial leaf blight under greenhouse conditions at 200 μg/ml, with BT and TC as the
positive control agents.
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results are shown in Figures 3A,B. Compound H10 had a strong
affinity for TMV-CP, with a binding energy of -8.88 kcal/mol,
while that of ningnanmycin was 6.35 kcal/mol. The hydroxyl
oxygen atom of compound H10 formed a strong hydrogen bond
with ASN73 and ELU131 (the bond length is 3.1Å and 2.8Å,
respectively), and the residue ELU131 can also be seen in
ningnanmycin. Compound H10 had two hydrophobic
interactions with amino acid residues TYR139 and THR136 in
addition to interacted with VAL260 via hydrophobic bonds like
ningnanmycin.

The stability and interaction mode of the ligand molecule and
TMV-CP under the simulated conditions were further studied
through molecular dynamics (MD) simulation, and the root-
mean-square deviation (RMSD) of the atom and its initial
position was measured (Figures 3C,D). Due to the significant
interaction between the ligand and the binding site, the difference
in energy characteristics results in a stable conformation and
strong binding. Therefore, the biological activity can be
influenced by optimizing the structure of the compound, and
the properties of inhibiting TMV can be explored.

Structure-Activity Relationship Analysis
The preliminary structure-activity relationship showed that the
different substituents R of sesquiterpene derivatives had a great
influence on Xoo, Xac, and TMV. According to Table 1, when
there are electron-withdrawing F, Cl or F, Br atoms on the
benzene ring at the same time, the activity of the compound
against Xoo is reduced: H4 (R = Ph) > H21 (R = 4-Br-2-F-Ph) >

H1 (R = 2-Cl-5-F-Ph) >H9 (R = 2-Br-5-F-Ph) >H16 (R = 2-Br-
4-F-Ph) > H17 (R = 3-Cl-2-F-Ph) > H6 (R = 2-Cl-4-F-Ph). The
position of difluoro substitution on the aromatic ring also had an
effect on the activity of Xac:H8 (R = 2,4-di-F-Ph) >H12 (R = 2,3-
di-F-Ph) > H5 (R = 2,6-di-F-Ph) > H13 (R = 3,5-di-F-Ph) > H2
(R = 2,5-di-F-Ph). As shown in Table 5, introduction of different
groups at the 4-position of the aromatic ring, altered the
compounds’ curative activities against TMV, with the electron-
donating group having improved activity over the electron-
withdrawing group: H19 (R = 4-OCH3-Ph) > H23 (R = 4-
NO2-Ph) > H3 (R = 4-CF3-Ph) > H22 (R = 4-OCF3-Ph) >
H14 (R = 4-Cl-Ph) > H18 (R = 4-Br-2-F-Ph). The type and
position of a single halogen atom on the benzene ring and
heterocyclic ring may affect the inactivation potency of the
compound: H10 (R = 3-Br-Ph) > H11 (R = 4-Cl-Py) > H14
(R = 4-Cl-Ph) > H15 (R = 2-Cl-Ph) > H18 (R = 4-Br-2-F-Ph) >
H20 (R = 5-Cl-thiazol).

MATERIALS AND METHODS

General Information
Melting points (uncorrected) of the synthetic compounds were
determined using the XT-4 micro melting point instrument
(Beijing Tech Instrument Co., China). All of the reactions were
performed using a magnetic stir bar, followed by thin-layer
chromatography (TLC) on silica gel GF254 and identified by UV.
The 1H, 13C, and 19F nuclear magnetic resonance (NMR) spectra
were obtained with AVANCE III HD 400MHz or 500MHz (Bruker
Corporation, Switzerland) system in CDCl3, and used TMS as an
internal standard at room temperature. High-resolution mass
spectrometer (HRMS) data was conducted using an Orbitrap LC-
MS instrument (Q-Exative, Thermo Scientific™, United States). All
reagents and solvents were purchased from commercial suppliers
and were not subjected to further purification and drying.

Chemistry
According to the synthetic route shown in Scheme 1, the target
compounds H1–H23 were obtained. The natural product
sclareolide was used as raw material to produce hydrazide
intermediate 1 by hydrazinolysis reaction with hydrazine
hydrate under weakly alkaline conditions. Intermediate 1
continues to form a closed loop with carbon disulfide under
reflux to obtain oxadiazole intermediate 2. Then, under the
alkaline condition in the presence of anhydrous potassium

TABLE 5 | Antiviral activities of target compounds against TMV in Vivo at
500 μg/mLa.

Compd Curative activityb (%) Inactivation activityb (%)

H1 59.1 ± 2.1 52.3 ± 3.8
H2 50.5 ± 4.5 63.2 ± 2.7
H3 58.7 ± 4.0 81.7 ± 2.3
H4 54.3 ± 2.8 82.0 ± 5.0
H5 53.2 ± 3.2 87.5 ± 0.5
H6 48.3 ± 5.0 71.0 ± 2.0
H7 55.5 ± 4.5 64.3 ± 5.0
H8 68.3 ± 4.1 45.7 ± 3.2
H9 77.5 ± 0.5 82.0 ± 3.7
H10 58.4 ± 1.8 90.5 ± 1.0
H11 55.4 ± 1.2 74.8 ± 1.5
H12 63.5 ± 2.5 36.3 ± 4.4
H13 51.3 ± 2.3 56.0 ± 4.0
H14 46.7 ± 1.6 72.5 ± 2.5
H15 49.9 ± 4.6 61.7 ± 2.6
H16 67.5 ± 4.5 87.3 ± 1.6
H17 46.9 ± 0.2 64.5 ± 0.5
H18 36.4 ± 0.7 61.5 ± 1.5
H19 63.3 ± 4.7 76.0 ± 2.0
H20 50.4 ± 1.2 54.5 ± 2.5
H21 57.8 ± 3.6 77.0 ± 2.0
H22 57.6 ± 0.7 75.0 ± 5.0
H23 59.6 ± 0.1 40.3 ± 1.8
Ribavirinc 45.4 ± 1.6 72.3 ± 0.5
Ningnanmycinc 70.0 ± 3.8 90.0 ± 1.5

aAverage of three replicates.
bConcentration of compounds is 500 μg/ml
cCommercial antiviral agent ribavirin and ningnanmycin.

TABLE 6 | EC50 of inactivation activity of some target compounds against TMV.

Compd Regression equation R2 EC50
a

H4 y = 1.01x + 3.1 0.99 69.6 ± 4.6
H5 y = 1.18x + 2.9 0.96 58.9 ± 3.5
H9 y = 1.02x + 3.1 0.99 69.4 ± 4.5
H10 y = 1.23x + 2.9 0.99 43.9 ± 4.2
H16 y = 1.15x + 2.9 0.97 60.5 ± 2.9
Ningnanmycinb y = 1.22x + 2.9 0.99 44.8 ± 2.8

aAverage of three replicates.
bNingnanmycin was used as the control.
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carbonate, intermediate 2 reacts with different substituted benzyl
halides to synthesize the target compounds H1–H23.

Synthesis
General Procedure for the Preparation of the
Intermediates 1 and 2
As shown in Scheme 1, the previously published methods were
used (Zhang et al., 2013; Mishra et al., 2017). The raw material
sclareolide (500 mg, 1 mol) was dissolved in a round bottom flask

with EtOH, and hydrazine hydrate (1 ml, 11 mol) was added and
stirred at room temperature for 2 h. After the reaction was
completed, an appropriate amount of water was added to the
system, and the precipitate was collected by filtration to obtain
Intermediate 1. Subsequently, Intermediate 1 (300 mg, 1 mol)
was dissolved in DMF and stirred for 30 min, carbon disulfide
(743 mg, 5 mol) was slowly added and refluxed for 6–8 h. The
reaction mixture was diluted with water and extracted with ethyl
acetate. The organic layer was dried over NaSO4 and

SCHEME 1 | The synthetic route of the target compounds H1-H23.

FIGURE 3 | Molecule docking and MD simulation studies: (A) molecule docking of ningnanmycin, (B) molecule docking of compound H10, (C) MD simulation of
ningnanmycin, (D) MD simulation of compound H10.
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concentrated under vacuum. The residue was purified by silica gel
chromatography with petroleum ether/ethyl acetate (8:1)
concentrated eluent to obtain Intermediate 2.

General Procedures for the Preparation of
Target Compounds H1-H23
According to the published method (Wang et al., 2019),
Intermediate 2 (200mg, 1 mol) and potassium carbonate
(107mg, 1.2 mol) were dissolved in a round bottom flask with
DMF and stirred for 30 min. Different substituted benzyl halides
were added and reacted at room temperature for 6–7 h. An
appropriate amount of water was added to the reaction
mixture to filter the residue. The crude product was subjected
to column chromatography with petroleum ether/ethyl acetate (5:
1) to extract target compounds H1-H23.

The structures of synthesized compounds H1-H23 were
confirmed by 1H NMR, 13C NMR, 19F NMR, and HRMS.

(1R,2R,8aS)-1-((5-((2-fluoro-5-(trifluoromethyl)benzyl)thio)-
1,3,4-oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H1). Yield 95%; White solid; m. p.75–76°C. 1H NMR
(400MHz, CDCl3) δ 7.81 (dd, J = 6.8, 2.1 Hz, 1H), 7.61–7.54 (m,
1H), 7.19 (t, J = 8.9 Hz, 1H), 4.47 (s, 2H), 2.90 (ddd, J = 76.1, 16.3, 5.7
Hz, 2H), 1.95–1.89 (m, 2H), 1.74–1.51 (m, 4H), 1.46 (d, J = 3.7 Hz,
1H), 1.40–1.30 (m, 4H), 1.21 (s, 3H), 1.00 (dd, J = 12.1, 2.2 Hz, 1H),
0.88 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H). 13C NMR (100MHz, CDCl3)
δ 170.5, 162.7 (d, J = 254.3 Hz), 162.3, 128.8 (d, J = 8.0 Hz), 127.4 (d,
J = 3.7 Hz), 127.3 (d, J = 3.7 Hz), 124.6 (d, J = 15.6 Hz), 123.5 (d, J =
272.0 Hz), 116.2 (d, J = 22.7 Hz), 73.2, 59.0, 55.7, 44.5, 41.5, 39.3,
38.8, 33.3, 33.2, 29.5, 23.3, 21.4, 21.1, 20.4, 18.3, 15.1.19F NMR
(376MHz, CDCl3) δ -61.91, -110.96. HRMS (ESI+) m/z Calcd for
C25H33F4SN2O2 [M + H]+ 501.21934; Found 501.21936.

(1R,2R,8aS)-1-((5-((2,5-difluorobenzyl)thio)-1,3,4-oxadiazol-
2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (H2).
Yield 63%;White solid;m. p.84–86°C. 1HNMR (400MHz, CDCl3) δ
7.26–7.22 (m, 1H), 7.04–7.00 (m, 1H), 6.98–6.95 (m, 1H), 4.40 (s,
2H), 2.91 (ddd, J = 76.7, 16.3, 5.6 Hz, 2H), 1.96–1.91 (m, 2H),
1.75–1.67 (m, 2H), 1.54–1.49 (m, 2H), 1.47–1.43 (m, 1H), 1.40–1.30
(m, 4H), 1.21 (s, 3H), 1.00 (dd, J = 12.1, 2.2Hz, 1H), 0.88 (s, 3H), 0.87
(s, 3H), 0.80 (s, 3H). 13C NMR (100MHz, CDCl3) δ 170.5, 162.6,
158.3 (d, J = 245.5 Hz), 156.8 (d, J = 246.6 Hz), 125.0 (dd, J = 17.1,
8.1 Hz), 117.7 (dd, J = 24.7, 3.6 Hz), 116.6 (dd, J = 21.2, 5.5 Hz), 116.3
(dd, J = 20.9, 5.4 Hz), 73.2, 59.0, 55.7, 44.5, 41.5, 39.3, 38.8, 33.4, 33.2,
29.7, 23.3, 21.4, 21.1, 20.4, 18.3, 15.1.19F NMR (376MHz, CDCl3) δ
-118.08, -122.78. HRMS (ESI+) m/z Calcd for C24H33F2SN2O2 [M +
H]+ 451.22253; Found 451.22229.

(1R,2R,8aS)-2,5,5,8a-tetramethyl-1-((5-((4-(trifluoromethyl)
benzyl)thio)-1,3,4-oxadiazol-2-yl)methyl)decahydronaphthalen-
2-ol (H3). Yield 64%; White solid; m. p.81–83°C. 1H NMR
(400MHz, CDCl3) δ 7.58 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.4
Hz, 2H), 4.44 (s, 2H), 2.89 (ddd, J = 75.7, 16.2, 5.7 Hz, 2H),
1.93–1.87 (m, 1H), 1.73–1.58 (m, 4H), 1.44 (ddt, J = 10.0, 6.8, 5.2
Hz, 4H), 1.33 (ddd, J = 13.5, 6.2, 1.3 Hz, 2H), 1.21 (s, 3H), 0.99 (dd,
J = 12.1, 2.2 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). 13C
NMR (100MHz, CDCl3) δ 170.4, 162.5, 140.1 (d, J = 1.3 Hz), 130.1
(d, J = 32.6 Hz), 129.4, 129.2, 125.6 (d, J = 3.8 Hz), 125.6 (d, J =
11.2 Hz), 123.9 (d, J = 272.3 Hz), 73.2, 59.1, 55.8, 44.5, 41.5, 39.4,

38.8, 36.0, 33.3, 33.2, 23.3, 21.4, 21.1, 20.4, 18.3, 15.1. HRMS (ESI+)
m/z Calcd for C25H34F3SN2O2 [M + H]+ 483.22876; Found
483.22870.

(1R,2R,8aS)-1-((5-(benzylthio)-1,3,4-oxadiazol-2-yl)
methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (H4).
Yield 91%; Pink solid; m. p.78–80°C. 1H NMR (400 MHz,
CDCl3) δ 7.41 (dd, J = 8.0, 1.4 Hz, 2H), 7.35–7.30 (m, 3H),
4.42 (s, 2H), 2.90 (ddd, J = 77.6, 16.2, 5.6 Hz, 2H), 1.91 (ddd, J =
15.1, 9.0, 4.4 Hz, 2H), 1.73–1.64 (m, 1H), 1.59–1.47 (m, 2H),
1.43–1.34 (m, 4H), 1.32–1.23 (m, 2H), 1.20 (s, 3H), 0.99 (dd, J =
12.1, 2.2 Hz, 1H), 0.88 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ 170.1, 163.1, 135.7, 129.1, 128.7, 128.0, 73.2,
59.1, 55.7, 44.5, 41.5, 39.3, 38.8, 36.8, 33.3, 33.2, 23.3, 21.4, 21.1,
20.4, 18.3, 15.1. HRMS (ESI+) m/z Calcd for C24H35SN2O2 [M +
H]+ 415.24138; Found 415.24130.

(1R,2R,8aS)-1-((5-((2,6-difluorobenzyl)thio)-1,3,4-oxadiazol-2-
yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (H5).
Yield 84%; Pink solid; m. p.87–88°C. 1H NMR (400MHz, CDCl3)
δ 7.21–7.16 (m, 1H), 6.88–6.83 (m, 2H), 4.24 (s, 2H), 2.49–2.40 (m,
2H), 2.08–2.04 (m, 1H), 1.89–1.76 (m, 2H), 1.67–1.59 (m, 2H),
1.48–1.39 (m, 4H), 1.38–1.28 (m, 2H), 1.25 (s, 3H), 1.02 (d, J = 2.6
Hz, 1H), 0.88 (s, 3H), 0.87 (s, 3H), 0.82 (s, 3H). 13C NMR
(100MHz, CDCl3) δ 168.3, 161.5 (d, J = 250.1 Hz), 161.4 (d,
J = 250.1 Hz), 154.5, 128.9 (d, J = 10.5 Hz), 113.9 (d, J = 19.4 Hz),
111.2 (d, J = 25.1 Hz), 111.2 (d, J = 12.8 Hz), 73.2, 59.1, 56.6, 42.1,
39.4, 38.6, 36.2, 33.3, 33.1, 26.3, 21.9, 20.9, 20.7, 18.1, 15.1.19F NMR
(376MHz, CDCl3) δ -113.32, -113.49. HRMS (ESI+)m/z Calcd for
C24H33F2SN2O2 [M + H]+ 421.22253; Found 421.22253.

(1R,2R,8aS)-1-((5-((2-chloro-4-fluorobenzyl)thio)-1,3,4-
oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H6). Yield 84%; White solid; m. p.86–87°C. 1H
NMR (400 MHz, CDCl3) δ 7.51 (dd, J = 8.3, 6.3 Hz, 1H), 7.09
(dd, J = 8.5, 2.6 Hz, 1H), 6.90 (td, J = 8.4, 2.6 Hz, 1H), 4.21 (s,
2H), 2.45 (t, J = 9.3 Hz, 2H), 2.08–2.04 (m, 1H), 1.83 (ddd, J =
30.2, 10.4, 5.2 Hz, 2H), 1.67–1.58 (m, 2H), 1.47–1.39 (m, 4H),
1.32 (m, 2H), 1.24 (s, 3H), 1.01 (d, J = 2.3 Hz, 2H), 0.88 (s, 3H),
0.87 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 170.4, 162.9, 162.2
(d, J = 250.8 Hz), 135.0 (d, J = 10.4 Hz), 132.6 (d, J = 8.9 Hz),
129.9 (d, J = 3.7 Hz), 117.1 (d, J = 24.9 Hz), 114.3 (d,
J = 21.1 Hz), 73.2, 59.0, 55.7, 44.4, 41.5, 39.3, 38.8, 33.8,
33.3, 33.2, 23.3, 21.4, 21.1, 20.4, 18.3, 15.1.19F NMR
(376 MHz, CDCl3) δ -111.21. HRMS (ESI+) m/z Calcd for
C24H33FClSN2O2 [M + H]+ 467.19298; Found 467.19293.

(1R,2R,8aS)-2,5,5,8a-tetramethyl-1-((5-((2-(trifluoromethyl)
benzyl)thio)-1,3,4-oxadiazol-2-yl)methyl)decahydronaphthalen-
2-ol (H7). Yield 98%; Pink solid; m. p.115–117°C. 1H NMR
(400MHz, CDCl3) δ 7.67 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 7.7
Hz, 1H), 7.45 (dd, J = 14.3, 6.6 Hz, 1H), 7.37–7.29 (m, 1H), 4.35 (s,
2H), 2.49–2.40 (m, 2H), 2.08–2.03 (m, 1H), 1.95–1.84 (m, 2H),
1.67–1.61 (m, 2H), 1.47–1.39 (m, 4H), 1.37–1.29 (m, 2H), 1.25 (s,
3H), 1.00 (dd, J = 12.5, 2.7 Hz, 1H), 0.88 (s, 3H), 0.87 (s, 3H), 0.82 (s,
3H). 13C NMR (100MHz, CDCl3) δ 168.6, 154.6, 137.4, 132.2 (d,
J = 24.9 Hz), 131.9 (d, J = 5.0 Hz), 128.2, 127.1, 125.7 (d, J = 5.8 Hz),
124.3 (d, J = 274.0 Hz), 73.2, 59.1, 56.6, 44.5, 42.1, 39.4, 38.6, 36.2,
33.3, 33.1, 26.3, 21.9, 20.9, 20.7, 18.1, 15.1.19F NMR (376MHz,
CDCl3) δ -59.24. HRMS (ESI+) m/z Calcd for C25H34F3SN2O2 [M
+ H]+ 483.22876; Found 483.22855.
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(1R,2R,8aS)-1-((5-((2,4-difluorobenzyl)thio)-1,3,4-oxadiazol-2-
yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (H8).
Yield 72%; White solid; m. p.93–95°C. 1H NMR (400MHz,
CDCl3) δ 7.44 (dd, J = 15.4, 8.5 Hz, 1H), 6.83–6.78 (m, 1H),
6.77–6.72 (m, 1H), 4.12 (s, 2H), 2.50–2.40 (m, 4H), 2.10–1.73 (m,
1H), 1.49–1.40 (m, 4H), 1.38–1.28 (m, 2H), 1.25 (s, 3H), 1.02 (d, J =
2.4 Hz, 1H), 0.88 (s, 3H), 0.87 (s, 3H), 0.83 (s, 3H). 13C NMR
(126MHz, CDCl3) δ 170.5, 162.8 (d, J= 249.6 Hz), 162.8, 161.1 (d, J=
250.7 Hz), 132.3 (dd, J = 9.6, 4.8 Hz), 119.4 (dd, J = 14.5, 3.5 Hz),
111.5 (dd, J = 21.0, 3.5 Hz), 104.2 (d, J = 25.4 Hz), 73.3, 59.1, 55.8,
44.6, 41.6, 39.4, 38.8, 33.4, 33.3, 29.5, 23.3, 21.5, 21.2, 20.4, 18.4,
15.2.19F NMR (376MHz, CDCl3) δ -109.30, -112.11. HRMS (ESI+)
m/z Calcd for C24H32F2SN2O2Na [M + Na]+ 473.20448; Found
473.20499.

(1R,2R,8aS)-1-((5-((2-bromo-5-fluorobenzyl)thio)-1,3,4-
oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H9). Yield 84%; White solid; m. p.120–122°C. 1H
NMR (400 MHz, CDCl3) δ 7.47 (dd, J = 8.8, 5.3 Hz, 1H), 7.30
(dd, J = 9.3, 3.0 Hz, 1H), 6.82 (td, J = 8.4, 3.1 Hz, 1H), 4.22 (s,
2H), 2.56–2.39 (m, 2H), 2.10–1.74 (m, 4H), 1.61 (dd, J = 11.6,
4.2 Hz, 1H), 1.44 (ddd, J = 20.8, 12.2, 5.6 Hz, 4H), 1.32 (ddd, J =
16.5, 10.4, 3.4 Hz, 2H), 1.25 (s, 3H), 1.02 (d, J = 2.5 Hz, 1H),
0.88 (s, 3H), 0.87 (s, 3H), 0.83 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ 168.3, 161.8 (d, J = 246.9 Hz), 154.7, 140.3 (d, J =
8.0 Hz), 133.6 (d, J = 8.1 Hz), 118.6 (d, J = 3.6 Hz), 118.2 (d, J =
23.4 Hz), 115.8 (d, J = 23.9 Hz), 74.1, 59.1, 56.6, 42.1, 39.4,
38.6, 36.2, 33.3, 33.1, 26.3, 21.9, 20.9, 20.7, 18.1, 15.1.19F NMR
(376 MHz, CDCl3) δ -114.65. HRMS (ESI+) m/z Calcd for
C24H32FBrSN2O2Na [M + Na]+ 533.12441; Found 533.12457.

(1R,2R,8aS)-1-((5-((3-bromobenzyl)thio)-1,3,4-oxadiazol-2-yl)
methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (H10).
Yield 83%; White solid; m. p.68–70°C.

1H NMR (400MHz, CDCl3) δ 7.57 (t, J = 1.7 Hz, 1H), 7.44–7.40
(m, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 4.37 (s, 2H),
3.05–2.72 (m, 2H), 1.96–1.79 (m, 4H), 1.73–1.66 (m, 1H), 1.56–1.42
(m, 4H), 1.28 (ddd, J = 13.4, 6.6, 3.5 Hz, 2H), 1.20 (s, 3H), 1.01 (d, J =
2.2 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). 13C NMR
(100MHz, CDCl3) δ 170.3, 162.6, 138.1, 132.0, 131.1, 130.3, 127.8,
122.6, 73.2, 59.0, 55.7, 44.5, 41.5, 39.3, 38.8, 36.0, 33.4, 33.2, 23.3, 21.4,
21.1, 20.4, 18.3, 15.1. HRMS (ESI+) m/z Calcd for C24H34BrSN2O2

[M + H]+ 493.15189; Found 493.15204.
(1R,2R,8aS)-1-((5-(((6-chloropyridin-3-yl)methyl)thio)-1,3,4-

oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H11). Yield 72%; White solid; m. p.102–104°C.
1H NMR (400 MHz, CDCl3) δ 8.44–8.36 (m, 2H), 7.69 (dd, J =
8.2, 2.3 Hz, 1H), 4.07 (s, 2H), 2.55–2.39 (m, 2H), 2.06 (dt, J =
11.6, 3.1 Hz, 1H), 1.88–1.74 (m, 2H), 1.68–1.60 (m, 2H), 1.44
(dt, J = 20.2, 5.8 Hz, 4H), 1.32 (ddd, J = 16.5, 11.1, 3.4 Hz, 2H),
1.26 (s, 3H), 1.02 (d, J = 2.7 Hz, 1H), 0.88 (s, 6H), 0.83 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 168.0, 154.9, 149.9, 139.5,
133.8, 123.9, 89.0, 59.1, 56.6, 42.1, 39.4, 38.6, 36.2, 33.3,
33.0, 29.4, 26.4, 21.9, 20.9, 20.7, 18.1, 15.1. HRMS (ESI+)
m/z Calcd for C23H31ClSN3O2 [M-H]- 448.18200; Found
448.18344.

(1R,2R,8aS)-1-((5-((2,3-difluorobenzyl)thio)-1,3,4-oxadiazol-2-
yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-olH-12
(H12). Yield 67%;White solid; m. p.99–100°C. 1H NMR (400MHz,

CDCl3) δ 7.19 (ddd, J = 8.8, 5.8, 3.1 Hz, 1H), 6.95 (td, J = 9.0, 4.5 Hz,
1H), 6.92–6.84 (m, 1H), 4.12 (s, 2H), 2.53–2.40 (m, 2H), 2.06 (dt, J =
11.6, 3.2 Hz, 1H), 1.87 (ddd, J = 14.0, 6.8, 3.2 Hz, 2H), 1.78 (dd, J =
13.5, 7.2 Hz, 2H), 1.69–1.59 (m, 2H), 1.49–1.32 (m, 4H), 1.25 (s,
3H), 1.02 (d, J = 2.5 Hz, 1H), 0.88 (s, 3H), 0.88 (s, 3H), 0.83 (s, 3H).
13C NMR (100MHz, CDCl3) δ 168.3, 159.6, 156.8 (d, J = 243.0 Hz),
155.9 (d, J = 255.4 Hz), δ 127.6 (dd, J = 17.6, 8.1 Hz), 117.5 (dd, J =
24.4, 3.4 Hz), 116.0 (dd, J = 24.6, 8.7 Hz), 115.0 (dd, J = 23.9, 8.5 Hz),
88.8, 59.1, 56.6, 42.1, 39.4, 38.6, 36.2, 33.3, 33.1, 26.3, 21.9, 20.9, 20.7,
18.1, 15.1.19F NMR (376MHz, CDCl3) δ -119.09, -123.36. HRMS
(ESI+) m/z Calcd for C24H33F2SN2O2 [M + H]+ 451.22253; Found
451.22275.

(1R,2R,8aS)-1-((5-((3,5-difluorobenzyl)thio)-1,3,4-oxadiazol-
2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol(H13).
Yield 60%;White solid; m. p.86–88°C. 1HNMR (400MHz, CDCl3) δ
6.90 (dd, J = 8.2, 2.2 Hz, 2H), 6.65 (tt, J = 9.0, 2.3 Hz, 1H), 4.08 (s, 2H),
2.54–2.41 (m, 2H), 2.07 (dt, J = 11.8, 3.2 Hz, 1H), 1.91–1.79 (m, 2H),
1.65–1.58 (m, 2H), 1.49–1.38 (m, 4H), 1.39–1.27 (m, 2H), 1.26 (s,
3H), 1.02 (d, J = 2.7 Hz, 1H), 0.88 (s, 6H), 0.83 (s, 3H). 13C NMR
(100MHz, CDCl3) δ 168.1, 162.9 (d, J = 248.2 Hz), 162.7 (d, J =
248.1 Hz), 154.8, 142.6 (d, J = 9.0 Hz), 111.8 (d, J = 11.7 Hz), 111.8 (d,
J = 25.4 Hz), 102.3 (d, J = 25.3 Hz), 88.9, 59.1, 56.6, 42.1, 39.4, 38.6,
36.2, 33.3, 33.1, 26.4, 21.9, 20.9, 20.7, 18.1, 15.1.19F NMR (376MHz,
CDCl3) δ -110.18, -110.18. HRMS (ESI+) m/z Calcd for
C24H33F2SN2O2 [M + H]+ 451.22253; Found 451.22287.

(1R,2R,8aS)-1-((5-((4-chlorobenzyl)thio)-1,3,4-oxadiazol-
2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol
(H14). Yield 65%; White solid; m. p.95–96°C.

1H NMR (500 MHz, CDCl3) δ 7.38–7.34 (m, 2H), 7.32–7.28
(m, 2H), 4.37 (s, 2H), 2.89 (ddd, J = 21.7, 16.3, 5.7 Hz, 2H),
1.99–1.84 (m, 2H), 1.74–1.66 (m, 2H), 1.56–1.48 (m, 2H),
1.46–1.34 (m, 4H), 1.26 (dd, J = 13.3, 3.2 Hz, 1H), 1.20 (s,
3H), 0.99 (dd, J = 12.2, 2.1 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80
(s, 3H). 13C NMR (126 MHz, CDCl3) δ 170.4, 162.8, 134.5, 133.9,
130.5, 128.9, 73.3, 59.1, 55.8, 44.6, 41.6, 39.4, 38.8, 36.1, 33.4, 33.3,
23.4, 21.5, 21.2, 20.4, 18.4, 15.2. HRMS (ESI+) m/z Calcd for
C24H34ClSN2O2 [M + H]+ 449.20240; Found 449.20154.

(1R,2R,8aS)-1-((5-((2-chlorobenzyl)thio)-1,3,4-oxadiazol-
2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol
(H15). Yield 74%; White solid; m. p.87–89°C.

1H NMR (500 MHz, CDCl3) δ 7.56 (dd, J = 7.3, 1.9 Hz, 1H),
7.39 (dd, J = 7.7, 1.3 Hz, 1H), 7.26–7.18 (m, 2H), 4.53 (s, 2H), 2.89
(ddd, J = 96.9, 16.3, 5.5 Hz, 2H), 1.92 (ddd, J = 14.8, 8.8, 4.3 Hz,
2H), 1.75–1.67 (m, 2H), 1.55–1.47 (m, 2H), 1.44–1.33 (m, 4H),
1.26 (dd, J = 13.5, 3.5 Hz, 1H), 1.20 (s, 3H), 0.99 (dd, J = 12.1, 2.0
Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). 13C NMR
(126 MHz, CDCl3) δ 170.4, 163.1, 134.3, 133.9, 131.5, 129.8,
129.6, 127.1, 73.3, 59.1, 55.8, 44.6, 41.6, 39.4, 38.9, 34.61, 33.4,
33.3, 23.3, 21.5, 21.2, 20.4, 18.4, 15.2. HRMS (ESI+) m/z Calcd for
C24H34ClSN2O2 [M + H]+ 449.20240; Found 449.20117.

(1R,2R,8aS)-1-((5-((2-bromo-4-fluorobenzyl)thio)-1,3,4-
oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H16). Yield 70%; White solid; m. p.92–94°C. 1H
NMR (500 MHz, CDCl3) δ 7.60 (dd, J = 8.6, 5.9 Hz, 1H), 7.32
(dd, J = 8.1, 2.6 Hz, 1H), 6.97 (td, J = 8.3, 2.7 Hz, 1H), 4.50 (s,
2H), 2.89 (ddd, J = 95.7, 16.2, 5.6 Hz, 2H), 1.95–1.87 (m, 2H),
1.68 (dd, J = 9.9, 6.5 Hz, 2H), 1.58–1.48 (m, 2H), 1.46–1.34 (m,
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4H), 1.30–1.25 (m, 1H), 1.20 (s, 3H), 0.99 (dd, J = 12.2, 2.1 Hz,
1H), 0.87 (s, 3H), 0.86 (s, 3H), 0.79 (s, 3H). 13C NMR
(126 MHz, CDCl3) δ 170.4, 162.9, 162.0 (d, J = 251.6 Hz),
132.6 (d, J = 8.5 Hz), 131.7 (d, J = 3.5 Hz), 124.8 (d, J = 9.7 Hz),
120.3 (d, J = 24.8 Hz), 114.9 (d, J = 21.1 Hz), 73.3, 59.1, 55.8,
44.6, 41.6, 39.4, 38.9, 36.4, 33.4, 33.3, 23.3, 21.5, 21.2, 20.4, 18.4,
15.2.19F NMR (376 MHz, CDCl3) δ -111.25. HRMS (ESI+) m/z
Calcd for C24H33FBrSN2O2 [M + H]+ 511.14247; Found
511.14197.

(1R,2R,8aS)-1-((5-((3-chloro-2-fluorobenzyl)thio)-1,3,4-
oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H17). Yield 61%; White solid; m. p.79–81°C. 1H
NMR (500 MHz, CDCl3) δ 7.44–7.39 (m, 1H), 7.36–7.32 (m,
1H), 7.03 (dt, J = 8.2, 4.2 Hz, 1H), 4.44 (s, 2H), 2.90 (ddd, J =
96.4, 16.3, 5.7 Hz, 2H), 1.92 (ddd, J = 14.8, 8.9, 4.4 Hz, 2H),
1.76–1.66 (m, 2H), 1.56–1.47 (m, 2H), 1.45–1.32 (m, 4H),
1.31–1.26 (m, 1H), 1.20 (s, 3H), 1.00 (dd, J = 12.2, 2.1 Hz,
1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). 13C NMR
(126 MHz, CDCl3) δ 170.5, 162.6, 156.4 (d, J = 250.3 Hz),
130.5, 129.7, 125.3 (d, J = 14.4 Hz), 124.7 (d, J = 4.7 Hz), 121.3
(d, J = 17.8 Hz), 73.3, 59.1, 55.8, 44.6, 41.6, 39.4, 38.8, 33.4,
33.3, 30.0, 23.3, 21.5, 21.2, 20.4, 18.4, 15.2.19F NMR (376 MHz,
CDCl3) δ -118.45. HRMS (ESI+) m/z Calcd for
C24H33FClSN2O2 [M + H]+ 467.19298; Found 467.19138.

(1R,2R,8aS)-1-((5-((4-bromobenzyl)thio)-1,3,4-oxadiazol-
2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol
(H18). Yield 62%; White solid; m. p.99–101°C. 1H NMR
(400 MHz, CDCl3) δ 7.46 (s, 1H), 7.44 (s, 1H), 7.31 (s, 1H),
7.29 (s, 1H), 4.36 (s, 2H), 2.89 (ddd, J = 77.1, 16.3, 5.7 Hz, 2H),
1.96–1.85 (m, 2H), 1.63–1.42 (m, 4H), 1.41–1.29 (m, 4H),
1.28–1.24 (m, 1H), 1.20 (s, 3H), 0.99 (dd, J = 12.1, 2.2 Hz,
1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ 170.3, 162.7, 135.0, 131.8, 131.8, 130.8, 122.0, 122.0,
73.2, 59.0, 55.8, 44.5, 41.5, 39.4, 38.8, 36.1, 33.4, 33.2, 23.3, 21.4,
21.1, 20.4, 18.3, 15.1. HRMS (ESI+) m/z Calcd for
C24H34BrSN2O2 [M + H]+ 493.15189; Found 493.15070.

(1R,2R,8aS)-1-((5-((4-methoxybenzyl)thio)-1,3,4-oxadiazol-
2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol
(H19). Yield 70%;White solid; m. p.86–88°C. 1H NMR (400MHz,
CDCl3) δ 7.34 (s, 1H), 7.32 (s, 1H), 6.86 (s, 1H), 6.84 (s, 1H), 4.39 (s,
2H), 3.79 (s, 3H), 2.90 (ddd, J = 78.2, 16.3, 5.6 Hz, 2H), 1.92 (ddd,
J = 16.1, 8.8, 4.4 Hz, 2H), 1.77–1.65 (m, 2H), 1.60–1.49 (m, 2H),
1.46–1.33 (m, 4H), 1.29–1.23 (m, 1H), 1.20 (s, 3H), 1.00 (dd, J =
12.1, 2.2 Hz, 1H), 0.88 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H). 13C NMR
(100MHz, CDCl3) δ 170.1, 163.2, 159.3, 130.3, 127.5, 114.1, 73.2,
59.0, 55.7, 55.2, 44.4, 41.5, 39.3, 38.8, 36.4, 33.3, 33.2, 23.2, 21.4,
21.1, 20.3, 18.3, 15.1. HRMS (ESI+) m/z Calcd for C25H37SN2O3

[M + H]+ 445.25194; Found (H20). Yield 75%; White solid; m.
p.98–100°C. 1H NMR (400MHz, CDCl3) δ 7.52 (s, 1H), 4.55 (s,
2H), 2.92 (ddd, J = 75.5, 16.2, 5.7 Hz, 2H), 1.96–1.89 (m, 2H),
1.75–1.69 (m, 2H), 1.55–1.50 (m, 2H), 1.45–1.34 (m, 4H),
1.28–1.25 (m, 1H), 1.22 (s, 3H), 1.01 (dd, J = 12.2, 2.2 Hz, 1H),
0.88 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H). 13CNMR (100MHz, CDCl3)
δ 170.8, 161.9, 152.3, 140.9, 135.9, 73.2, 59.0, 55.7, 44.5, 41.5, 39.4,
38.7, 33.3, 33.2, 28.5, 23.3, 21.4, 21.1, 20.3, 18.3, 15.1. HRMS (ESI+)
m/z Calcd for C21H30ClS2N3O2Na [M + Na]+ 478.13602; Found
478.13550.

(1R,2R,8aS)-1-((5-((4-bromo-2-fluorobenzyl)thio)-1,3,4-
oxadiazol-2-yl)methyl)-2,5,5,8a-tetramethyldecahydronaph
thalen-2-ol (H21). Yield 68%; White solid; m. p.120–122°C.
1H NMR (400 MHz, CDCl3) δ 7.40 (t, J = 8.3 Hz, 1H), 7.23 (dd,
J = 7.1, 2.0 Hz, 2H), 4.38 (s, 2H), 2.89 (ddd, J = 77.6, 16.3, 5.6
Hz, 2H), 1.92 (ddd, J = 13.8, 8.7, 4.4 Hz, 2H), 1.63–1.42 (m,
4H), 1.41–1.30 (m, 4H), 1.28–1.24 (m, 1H), 1.20 (s, 3H), 1.00
(dd, J = 12.1, 2.2 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s,
3H). 13C NMR (100 MHz, CDCl3) δ 170.4, 162.6, 160.6 (d, J =
253.0 Hz), 132.4 (d, J = 4.0 Hz), 127.6 (d, J = 3.8 Hz), 122.7 (d,
J = 14.6 Hz), 122.3 (d, J = 9.5 Hz), 119.2 (d, J = 24.4 Hz), 73.2,
59.0, 55.7, 44.5, 41.5, 39.3, 38.7, 33.3, 33.2, 29.5, 23.3, 21.4,
21.1, 20.3, 18.3, 15.1.19F NMR (376 MHz, CDCl3) δ -113.84.
HRMS (ESI+) m/z Calcd for C24H33BrFSN2O2 [M + H]+

511.14247; Found 511.14252.
(1R,2R,8aS)-2,5,5,8a-tetramethyl-1-((5-((4-(trifluoromethoxy)

benzyl)thio)-1,3,4-oxadiazol-2-yl)methyl)decahydronaphthalen-2-
ol (H22).Yield 70%;White solid; m. p.83–85°C. 1HNMR (500MHz,
CDCl3) δ 7.45 (s, 1H), 7.43 (s, 1H), 7.16 (s, 1H), 7.14 (s, 1H), 4.39 (s,
2H), 2.88 (ddd, J = 21.7, 16.4, 5.8 Hz, 2H), 1.90 (ddd, J = 15.5, 7.8, 4.4
Hz, 2H), 1.60–1.39 (m, 4H), 1.38–1.22 (m, 4H), 1.19 (s, 3H),
1.14–1.07 (m, 1H), 0.98 (dd, J = 12.1, 2.2 Hz, 1H), 0.86 (s, 3H),
0.85 (s, 3H), 0.78 (s, 3H). 13CNMR (126MHz, CDCl3) δ 170.4, 162.8,
148.9, 134.7, 130.7, 121.2, 120.4 (d, J= 257.8 Hz), 73.3, 59.1, 55.8, 44.6,
41.6, 39.4, 38.8, 35.9, 33.4, 33.3, 23.4, 21.5, 21.2, 20.4, 18.4, 15.2.19F
NMR (376MHz, CDCl3) δ -57.72. HRMS (ESI+) m/z Calcd for
C25H33F3SN2O3 [M + H]+ 521.20562; Found 521.20575.

(1R,2R,8aS)-2,5,5,8a-tetramethyl-1-((5-((4-nitrobenzyl)thio)-
1,3,4-oxadiazol-2-yl)methyl)decahydronaphthalen-2-ol (H23).
Yield 53%; White solid; m. p.105–107°C. 1H NMR (500 MHz,
CDCl3) δ 8.17 (s, 1H), 8.15 (s, 1H), 7.61 (s, 1H), 7.59 (s, 1H), 4.45
(s, 2H), 2.87 (ddd, J = 21.6, 16.3, 5.7 Hz, 2H), 1.94–1.83 (m, 2H),
1.60–1.39 (m, 4H), 1.38–1.29 (m, 4H), 1.18 (s, 3H), 1.13–1.06
(m, 1H), 0.96 (dd, J = 12.2, 2.1 Hz, 1H), 0.86 (s, 3H), 0.84 (s, 3H),
0.78 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 170.7, 162.2, 147.5,
143.7, 130.1, 124.0, 73.3, 59.1, 55.8, 44.6, 41.6, 39.4, 38.8,
35.7, 33.4, 33.3, 23.4, 21.5, 21.2, 20.4, 18.4, 15.2. HRMS
(ESI+) m/z Calcd for C24H34SN3O4 [M + H]+ 460.22645;
Found 460.22681.

Biological Activity Test Method
The in vitro antibacterial activities of target compounds H1-H23
against Xoo and Xac was evaluated by the turbidity method (Zhang
et al., 2021). According to Schaad’s method (Zhang et al., 2021), the
curative and protective activities of compound H8 against rice
bacterial blight were determined in vivo. Based on the previous
work (Wang et al., 2019; Luo et al., 2020), TMV was extracted
and purified, and the interactionmode of activemolecules withTMV-
CPwas explored bymolecular docking.Detailedmethods for bacterial
bioactivity testing, as well as specific steps for TMV extraction and
purification can be found in the Supplementary Datasheet S1.

CONCLUSION

In conclusion, a series of 1,3,4-oxadiazole contained sesquiterpene
derivatives were synthesized, and the biological activity of title

Frontiers in Chemistry | www.frontiersin.org February 2022 | Volume 10 | Article 8542749

Dai et al. Synthesis of Sesquiterpene 1,3,4-Oxadiazoles as Microbiocide

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


compounds was evaluated. The results exhibited that the synthetic
compounds had good antibacterial activity against Xoo and Xac. The
EC50 values of compoundsH4, H8, H11, H12, H14, H16, andH19
for Xac inhibitory activity were 33.3, 42.7, 56.1, 74.5, 37.8, 43.8, and
38.4 μg/ml, respectively. Compounds H4, H8, H15, H19, H22, and
H23 had inhibitory effects on Xoo, with EC50 values of 51.0, 43.3,
43.4, 50.5, 74.6, and 51.4 μg/ml, respectively. In particular, the curative
and protective activities of compound H8 were 51.9 and 49.3%,
respectively, showing good antibacterial activity against Xoo in vitro.
In addition, the EC50 values of the inactivation activities of the
compounds H4, H5, H9, H10, and H16 against TMV were 69.6,
58.9, 69.4, 43.9, and 60.5 μg/ml, respectively. It is worth noting that
the molecular docking results indicated that compoundH10 binds to
the active site of TMV-CP through amino acid residues ASN73,
VAL260, TYR139, ELU131, and THR136. And it existed a strong
affinity for TMV-CP, with a binding energy of -8.88 kcal/mol. Thus,
the process of self-assembly and replication of TMV particles is
inhibited and the anti-TMV effect is played.
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