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An acid-catalyzed 2-alkylation of indole molecules is developed. Only catalytic amount of
the commercially available, inexpensive and traceless HI is used as the sole reaction
promoter. 2,3-Disubstituted indole molecules bearing congested tertiary carbon centers
are afforded as the final products in moderate to excellent yields.
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INTRODUCTION

Indole and its derivatives are versatile molecules and have found significant applications in biological
and medicinal research (Ma et al., 2016) (Figure 1A). For example, the indole derivative
neoechinulin A has been isolated from P. griseofulvum and Aspergillus sp. and shown significant
cytotoxic activity against P388 cells (Ma et al., 2016). Typrostatin A and B can be obtained from A.
fumigatus, which is present in the sea sediment and the Ficus carica in both Japan and China. They
have exhibited excellent antiphytopathogenic activity and have been used in the investigation of
novel anti-tumor reagents (Ma et al., 2016). Therefore, the development of simple and efficient
methods for functionalization of indole molecules is attractive and important to both scientific
research and drug manufacturing.

Indole can be functionalized at each position around its aromatic structure through various
transformations. Traditionally, the C3-positions of indole molecules have been widely used as
nucleophiles to react with a variety of electrophiles in both enantioselective (Austin and
MacMillan et al., 2002; Zhou and Tang et al., 2002; Evans et al., 2005; Wang et al., 2006;
Terada et al., 2007; Bandini et al., 2009; Joucla and Djakovitch et al., 2009; Bartoli et al., 2010)
and non-chiral fashion (Bartoli et al., 2005; Kimura et al., 2005; Moran et al., 2006; Kusurkar
et al., 2008; Lerch et al., 2014). Transition metals, amines and Lewis acids are frequently used as
effective catalysts for these reactions. The C2-positions of the N-protected indoles can undergo
transition metal-catalyzed alkylations (Doyle et al., 2010; Johansen and Kerr et al., 2010; Jiao and
Bach et al., 2011; Pan et al., 2012; Lin et al., 2013; Yoshino et al., 2013; Su et al., 2014; Soni et al.,
2018; Wang andWang, 2021), arylations (Lane and Sames, 2004; Wang et al., 2005; Deprez et al.,
2006; Lebrasseur and Larrosa et al., 2008; Phipps et al., 2008; Yang et al., 2008; Ackermann and
Lygin, 2011; Sauermann et al., 2011; Li et al., 2016; Yang and Shi, 2018), alkenylations (Nakao
et al., 2006; Maehara et al., 2008; Ding and Yoshikai, 2012; Li et al., 2013a; Li et al., 2013b; Liang
et al., 2014; Schramm et al., 2015; Wong et al., 2015; Zhang W et al., 2015; Zhou et al., 2016),
alkynylations (Yang et al., 2010; Tolnai et al., 2013; Sauermann et al., 2015; Zhang Z Z et al.,
2015; Kong et al., 2016), aminations (Sun et al., 2014; Sun et al., 2015) and thiolation reactions
(Gensch et al., 2016). A directing group is generally required to be installed on the N atom of the
indole molecule for the C2-functional group introductions in these transformations. In contrast,
intermolecular reactions for direct functionalization of the C2-positions of the unprotected
indoles have been relatively less developed (Figure 1B). Success within this direction includes
the transition metal-catalyzed indole C2-alkylations with alkyl halides (Straathof et al., 2014;
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Shao et al., 2015; Yang et al., 2015) and alkenes (Weng et al.,
2016; Zhou et al., 2017; Bai et al., 2020) (Figure 1B, eq. 1 and
eq. 2). Melchiorre (Kandukuri et al., 2015) and co-workers

have disclosed the formation of the electron donor-acceptor
(EDA) complex between indoles and electron-deficient
benzylbromides and reported a metal-free photo-catalyzed

FIGURE 1 | Bioactive Indole Derivatives bearing C2-Substituents and C2-Functionalizations of Unprotected Indoles.
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TABLE 1 | Optimization of reaction conditions.a

Entry Acid Solvent Equiv Yield (%)b

1 HCl CH2Cl2 0.3 21
2 HBr CH2Cl2 0.3 87
3 HI CH2Cl2 0.3 92
4 H2SO4 CH2Cl2 0.3 30
5 TsOH CH2Cl2 0.3 74
6 TFA CH2Cl2 0.3 27
7 CH3CO2H CH2Cl2 0.3 0
8 HI EtOAc 0.3 80
9 HI hexane 0.3 73
10 HI toluene 0.3 88
11 HI H2O/DMF/THF/CH3OH/MTBE 0.3 0
12 HI CH2Cl2 0.2 94
13 HI CH2Cl2 0.1 93
14 HI CH2Cl2 0.05 67
15c HI CH2Cl2 0.1 94

aReaction conditions: unless otherwise stated, the reaction of 3-methylindole 1a (0.11 mmol), 1,1-diphenylethene 2a (0.10 mmol) and HI (0.01 mmol) was carried out at 30°C in CH2Cl2
(1.0 ml) for 12 h.
bIsolated yield of 3a.
cat 25°C.

SCHEME 1 | Scope of Indoles 1.a. a Reaction conditions as stated in Table 1, entry 15. Yields are isolated yields after purification by column chromatography.
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direct indole C2-alkylation via formation of this EDA complex
(eq. 3). Zhang (Wang et al., 2016) and co-workers reported in
2016 the organic semiconductor-catalyzed, visible light-
promoted indole C2-alkylation with 2-bromomalanates (eq.
4). Recently, Glorius (James et al., 2019) and co-workers used
the pyridinium salt as the EDA complex acceptor and realized
the indole C2-alkylation reaction under basic conditions with
white light irradiation (eq. 5). To the best of our knowledge,
the direct and metal-free C2-alkylation of indoles with
unactivated alkenes has not been disclosed.

Herein, we report an acid-promoted regioselective C2-
alkylation reaction of unprotected indoles 1 (Figure 1C).
Unactivated alkenes 2 are used as the alkylation reagent, with
no sacrificing atoms or functional groups lost during this
transformation. The use of EDA acceptors can be avoided in
this protocol. A traceless and inexpensive HI is used in a catalytic
amount as the sole reaction catalyst. The C2-branched alkylation
products 3 or 4 bearing a tertiary carbon center are afforded in
excellent regioselective fashion with good to excellent isolated
yields. The reaction features excellent atom-economy and C2-
regioselectivity.

The reaction was initially carried out by using 3-
methylindole 1a and 1,1-diphenylethene 2a as the
substrates in dichloromethane under the catalysis of
different organic and inorganic acids (Table 1, entries 1–7).
To our delight, the indole C2-branched alkylation product 3a
can be obtained in promising yields with a variety of strong
acids after stirring at 30°C for 12 h (entries 1–6). The target
product of 3a could be afforded in 21% yield in the presence of
30 mol% of HCl acid (entry 1). The yield of 3a could be
dramatically improved to 87% when switching the HCl into
HBr (entry 2). Gratifyingly, the product 3a was obtained in
92% yield when using HI as the acid catalyst (entry 3). Other
organic or inorganic acids gave the desired product 3a in
lower yields (entries 4–6). Notably, the reaction could not
happen when using acetic acid as the reaction catalyst, which
is probably due to its weak acidity (entry 7). A diversity of
organic solvents could be used as the reaction mediate (entries
8–11). For example, the reaction went on smoothly in the
solvents of EtOAc, hexane and toluene, with the desired
product 3a afforded in good yields (entries 8–10).
However, solvents with high polarities such as H2O, DMF,

SCHEME 2 | Scope of Alkenes 2.a. a Reaction conditions as stated in Table 1, entry 15. Yields are isolated yields after purification by column chromatography.
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THF, CH3OH and MTBE could not be used for this
transformation (entry 11). The amount of the HI catalyst
could be decreased to 0.1 mol% without obvious erosion of the
product yield (entries 12–13). Further decreasing the amount
of the HI to 0.05 mol% resulted in significant loss of the yield
(entry 14). The reaction temperature could also be decreased
to 25°C with the desired product of 3a afforded in an even
higher yield (entry 15).

Having identified the optimal reaction condition for the HI-
induced indole C2-alkylation, we next evaluated the scope of this
transformation using indole substrates 1 bearing different
substituents (Scheme 1). Both electron-donating and electron-
withdrawing substituents are well tolerated on the benzene rings
of the indole structure, with the target C2-alkylated indole products
afforded in moderate to excellent yields (Scheme 1, 3a to 3m). We
also examined the effect of the substitution position of the C5 with
NO2 group, but gave no desired product. The C3-methyl group on
the indole molecule can be changed into other alkyl groups, with
the desired C2-alkylated indole products afforded in a bit lower
yields (e.g., 3n to 3o). However, switching the C3-methyl group on
the reaction substrates into a C3-phenyl group resulted in no
formation of the target product.

The alkene substrates 2 can also tolerate diverse substituents
and substitution patterns (Scheme 2). Various substituents can be
introduced to the para-andmeta-positions of the phenyl rings on
2a, with the corresponding products afforded in good to excellent
yields (Scheme 2, 4a to 4f). However, installing substituents on
the ortho-position of the phenyl rings on 2a leads to no formation
of the desired products, which is probably due to the substantially
increased steric hindrance during the C2-branched product
formation process. One of the phenyl rings on 2a can be
switched into a naphthyl or a thiophenyl group with retention
of the good to excellent product yields (4g to 4h). To our delight,
one of the two aryl groups on the alkene substrates can be
replaced by a methyl group without much erosion on the
product yield (4i to 4j). It is worth noting that the internal
alkene of 1,1-diphenylpropene also works well in this photo-
induced indole C2-alkylation process, with the target product 4k
afforded in 55% yield. It is not surprising that the 1,1-
diarylethenes bearing two substituted phenyl groups generally
give the desired indole C2-branched alkylation products in
excellent yields (4l to 4m).

The HI-induced C2-alkylation reaction of the 3-methylindole
1a with 2a can be carried out at Gram scales to give the
functionalized indole product 3a in an excellent yield (Scheme
3). The indole NH group on 3a can be efficiently protected by

CH3I and the N-methylindole product 5 can be afforded in
almost quantitative yield.

CONCLUSION

In summary, we have disclosed a metal-free reaction for the
synthesis of 2-alkylation of 3-alkylindole derivatives. 1,1-
Disubstituted alkenes are used as the alkylation reagent with the
C2-branched alkylated indole products afforded in generally good
to excellent yields with excellent Markovnikov regioselectivity. A
catalytic amount of the commercially available and inexpensive HI
is used as the sole reaction catalyst. Further investigations towards
the applications of the C2-functionalized indole molecules are in
progress in our laboratory.
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