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The ATP binding cassette transporter ABCG2 is a physiologically important drug
transporter that has a central role in determining the ADMET (absorption, distribution,
metabolism, elimination, and toxicity) profile of therapeutics, and contributes to multidrug
resistance. Thus, development of predictive in silico models for the identification of ABCG2
inhibitors is of great interest in the early stage of drug discovery. In this work, by exploiting a
large public dataset, a number of ligand-based classificationmodels were developed using
partial least squares-discriminant analysis (PLS-DA) with molecular interaction field- and
fingerprint-based structural description methods, regarding physicochemical and
fragmental properties related to ABCG2 inhibition. An in-house dataset compiled from
recently experimental studies was used to rigorously validated the model performance.
The key molecular properties and fragments favored to inhibitor binding were discussed in
detail, which was further explored by docking simulations. A highly informative chemical
property was identified as the principal determinant of ABCG2 inhibition, which was utilized
to derive a simple rule that had a strong capability for differentiating inhibitors from non-
inhibitors. Furthermore, the incorporation of the rule into the best PLS-DA model
significantly improved the classification performance, particularly achieving a high
prediction accuracy on the independent in-house set. The integrative model is simple
and accurate, which could be applied to the evaluation of drug-transporter interactions in
drug development. Also, the dominant molecular features derived from the models may
help medicinal chemists in the molecular design of novel inhibitors to circumvent ABCG2-
mediated drug resistance.
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1 INTRODUCTION

ABCG2, also known as breast cancer resistance protein (BCRP), is a physiologically important
transporter of ATP-binding-cassette (ABC) superfamily. It is constitutively expressed and
distributed on the cell surfaces of various tissues and barriers, including the mammary glands,
liver, kidney, the blood-brain, blood-testis and maternal-fetal barriers, where it plays a secretory role
or a major protective role against xenobiotics (Fetsch et al., 2006; Robey et al., 2009).

At structural level, ABCG2 is comprised of two conserved nucleotide binding domains (NBDs)
responsible for ATP binding and hydrolysis, and two transmembrane domains (TMDs) that can
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form the drug-binding pocket and transport pathway (Taylor
et al., 2017). Similar to its functional homologs ABCB1
(P-glycoprotein) and ABCC1 (MRP1), ABCG2 acts as a
promiscuous drug efflux pump with broad substrate
specificity. Powered by ATP hydrolysis, the pump can
transport a wide range of commonly used drugs out of the
cell, thus greatly affecting their pharmacokinetic parameters
and clinical dispositions (Mao and Unadkat, 2015; Iorio et al.,
2016). As a result, this transporter is on the US Food and Drug
Administration and the European Medicines Agency lists of
transporters to be checked for clinically relevant drug-drug
interactions.

Most importantly, many chemotherapeutic agents with
diverse structures and chemical properties such as
mitoxantrone, camptothecin analogues, epipodophyllotoxin
analogues, methotrexate, and tyrosine kinase inhibitors, are
known to be ABCG2 substrates (Eckford and Sharom, 2009).
Consequently, the overexpression of ABCG2 found in many
human cancers is thought to be a major contributor to the
development of multidrug resistance (MDR), which is a
serious obstacle in cancer treatment (Fletcher et al., 2016;
Robey et al., 2018). As an attractive molecular target to
overcome MDR, efforts were directed at developing ABCG2
inhibitors that have been rationalized as adjuvant therapy
when coadministered with anticancer drugs (Li W. et al.,
2016). Despite showing promise in cell models, most of the
candidates failed in clinical trials due to poor selectivity,
unsatisfactory efficacy, or excessive toxicity (Kathawala et al.,
2015). For these reasons, it is of particular importance to predict
and evaluate ABCG2 inhibition early in the drug discovery
pipeline.

Reliable in vitro assays to evaluate ABCG2 inhibition are very
costly and time-consuming. By contrast, computational
quantitative structure-activity relationship (QSAR) models
provide a fast and cost-efficient approach to achieve this goal.
The large, featureless, and highly lipophilic binding sites, together
with the high flexibility of the structure, justify the prevalence of
ligand-based computational models. Recently, many research
efforts have been directed to the development of in silico
models for the prediction of ABCG2 inhibition. For instance,
Pan et al. created Bayesian classification models based on a
training set of 124 ABCG2 inhibitors and non-inhibitors and
pharmacophore models based on 30 potent ABCG2 inhibitors,
with the best models achieving overall prediction accuracies of
90% and 66%, respectively, for a same test set including 79
samples (Pan et al., 2013). In a later study, Montanari and
Ecker collected a data set of 978 ABCG2 inhibitors and non-
inhibitors from 47 sources, and reported a Bayesian classification
model with an accuracy of 91.9% under 10-fold for the 780
training samples (Montanari and Ecker, 2014). Recently, Belekar
et al. developed various classification models based on 197
training samples by using machine learning (ML) methods
including support vector machine (SVM), k-nearest neighbor
(k-NN), and artificial neural networks (ANN), yielding global
accuracies in the 82.8–87.8% range for the 99 test samples and
74.5–77.5% for the 99 validation samples (Belekar et al., 2015).
More recently, by reusing the dataset of 978 compounds,

Montanari et al. built a logistic regression model with a MCC
(Matthews correlation coefficient) of 0.65 and an AUC (the area
under the receiver operating characteristic curve) of 0.90 on the
training set (Montanari et al., 2017). Despite being very valuable
for researches, the generalization and application of these models
are somewhat limited by the size of the dataset (often less than
1,000 compounds in total) with confined chemical space coverage
and complicated modeling procedures. Furthermore, the
effectiveness of these models for unknown data remains little
known due to the lack of an external validation. Therefore,
development of simple, interpretable, and accurate models has
always been pursued, aiming to generate easily understandable
guidelines that allow to evaluate drug-transporter interactions
and design lead inhibitors for clinical trials.

In this work, based on a publicly available dataset of 1,104
compounds, an integrative model was proposed to predict
ABCG2 inhibition by using molecular hologram based partial
least-squares discriminant analysis (PLS-DA) combined with a
simple rule derived from an informative VolSurf descriptor. In
particular, an in-house dataset curated from 35 experimental
studies was used to further validate the model performance
against unknown data. Furthermore, important chemical and
structural properties beneficial to ABCG2 inhibition were
discussed in detail, which were verified by structure-based
molecular docking studies. The information derived from the
predictive in silico models could be used to guide the molecular
design of ABCG2 inhibitors.

2 MATERIALS AND METHODS

2.1 Dataset
A public dataset of 1,104 compounds (533 inhibitors and 571
non-inhibitors) compiled by Montanari et al. was used to develop
the classification models for predicting ABCG2 inhibition
(Montanari et al., 2016). Briefly, they integrated the previously
published dataset (433 inhibitors and 545 non-inhibitors) into the
data retrieved from the Open PHACTS Discovery Platform (473
inhibitors and 144 non-inhibitors) by a semi-automatic, fully
flexible KNIME workflow. In this work, the dataset was divided
into a training set (355 inhibitors and 381 non-inhibitors) and an
internal validation set (178 inhibitors and 190 non-inhibitors). To
maximize structural diversity and chemical coverage, the 736
training compounds for model establishment were singled out
from a small molecule library analysis using the Find Diverse
Molecules protocol in Discovery Studio (version 2.5) software.
The Tanimoto distances between the iteratively selected samples
were evaluated based on ECFP_6 fingerprints for subset selection.
The remaining 368 compounds severed as an internal validation
set was employed to evaluate the predictive power of the obtained
classification models.

Specially, an external validation set was manually curated from
35 recent publications (Gallus et al., 2014; Gu et al., 2014; Shukla
et al., 2014; Tan et al., 2014; Winter et al., 2014; Yang et al., 2014;
Gozzi et al., 2015; Koehler and Wiese, 2015; Li et al., 2015;
Marighetti et al., 2015; Chen et al., 2016; Gupta et al., 2016; Kraege
et al., 2016a; Kraege et al., 2016b; Krapf and Wiese, 2016; Li et al.,

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 8631462

Huang et al. Prediction of ABCG2 Inhibition

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


2016b; Miyata et al., 2016; Pires et al., 2016; Reznicek et al., 2016;
Schmitt et al., 2016; Schwarz et al., 2016; Song et al., 2016;
Spindler et al., 2016; Gujarati et al., 2017; Krapf et al., 2017b;
Krapf et al., 2017a; Marchitti et al., 2017; Montanari et al., 2017;
Schaefer et al., 2017; Sjöstedt et al., 2017; Stefan et al., 2017; Zhang
et al., 2017; Koehler et al., 2018; Liao et al., 2018; Paterna et al.,
2018). Because experimental assays were performed under
different conditions (e.g., concentration of compound and cell
models), it was impossible to set up an inhibition threshold for
the definition of inhibitors or non-inhibitors. Thus, a compound
was identified as an inhibitor or a non-inhibitor according to the
criterion created by the authors in each original research. The
compounds with ambiguous activities or already present in the
public dataset were discarded, yielding an in-house dataset of 634
compounds (500 inhibitors and 134 non-inhibitors), which was
used to further evaluate the predictive power of the models
against unknown data. The activity of all compounds was
represented by a binary variable (1 for inhibitor, 0 for non-
inhibitor). The datasets of 1738 compounds are listed in
Supplementary Table S1.

After removing counterions and adding hydrogens, each
molecule was charged by MMFF94 method and then
optimized by Tripos force field with conjugate gradient
minimizer built-in Sybyl (version 8.1) package. The maximum
iteration steps and energy gradient were set to 5,000 times and
0.05 kcal·mol−1·Å−1, respectively.

2.2 Structural Description
2.2.1 VolSurf Description
VolSurf descriptors represent the physicochemical properties for
a given set of molecules by utilizing GRID molecular interaction
fields (Cruciani et al., 2000). In Volsurf calculation, each grid
vertex around a molecule is detected with chemical probes, and
then most of the relevant information present in the 3D
molecular fields map are compressed into a few 2D numerical
descriptors, which can quantitatively characterize the molecular
size and shape, the size and shape of both hydrophilic and
hydrophobic regions, and the balance between them. Because
of the nature of descriptors, VolSurf is primarily independent of
conformational alignment of molecules. Currently, a total of nine
probes can be used in VolSurf, including water (OH2), a
hydrophobic probe (DRY), an amphipathic probe (BOTH),
H-bonding carbonyl (O), sp2 carboxy oxygen atom (O:), sp2
phenolate oxygen (O−), neutral flat NH (N1), sp2 Nwith one lone
pair (N: = ), and sp3 amine NH3 cation (N3+). Among them, the
OH2 and DRY probes are generally used in most cases, which
define the hydrophilic and hydrophobic regions, respectively.
Other probes can be selectively used in certain cases.

In this work, a total of 118 VolSurf descriptors were generated
using five chemical probes (OH2, DRY, BOTH, O, and O:) based
on the 736 diverse training compounds. To elicit the most
discriminative molecular descriptors, feature selection was
performed using stepwise linear regression analysis, in which
the variables are introduced into the model one by one and
evaluated by F-test at each iteration. The initially introduced
variables may become no longer significant due to the
introduction of later variables, which will be removed to

ensure that only significant variables are included in the
regression equation. In this case, the entry and removal
probability of F value were set to 0.02 and 0.10, respectively.

2.2.2 Molecular Hologram
The molecular hologram is a fragment based molecular
description method in which the structural information of a
molecule can be transformed into a molecular fingerprint (Hurst
and Heritage, 1997). First, molecules are broken into predefined
structural fragments. Then, each unique fragment is assigned a
specific large integer by means of cyclic redundancy check (CRC)
algorithm. Each integer corresponds to a bin in an integer array of
fixed length L. Bin occupancies are incremented according to the
fragments generated. All generated fragments are hashed into
array bins in the range 1 to L. The array containing counts of
molecular fragments is molecular hologram, and bin occupancies
are the hologram descriptors. Compared to the traditional 2D
fingerprints, molecular hologram contains additional
information such as branched and cyclic fragments and
stereochemistry of the molecule. Molecular hologram
description was carried out by Hologram QSAR (HQSAR)
module of Sybyl (version 8.1) package.

2.3 PLS-DA Modeling and Performance
Evaluation
Partial least squares-discriminant analysis (PLS-DA) is a
supervised machine learning method with full awareness of
the class labels that has been widely used in the field of
cheminformatics. It can be used for dimensionality-reduction,
feature selection as well as classification task. Therefore, PLS-DA
is considered as a supervised version of traditional principal
component analysis (PCA). Particularly, PLS-DA is a proper
technique to explore pattern recognition or to develop
classification models, respectively, when the molecules are
described by Volsurf descriptors or molecular holograms. It
utilizes a projection space-based statistical method that
combines PCA and multiple linear regression, which aims to
find a separating hyperplane and divides the space into two
regions (Lee et al., 2018). It should be noted that since PLS-
DA and other machine learning methods such as support vector
machine (SVM) are prone to overfitting, cross-validation is an
indispensable step in the construction of a classifier.

In PLS-DA modeling, all variables were auto-scaled and the
number of principal components was determined by 10-fold
cross-validation. The performance of the established models
was evaluated based on the true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) by the
standard performance measures: accuracy (ACC), sensitivity
(SEN), specificity (SPE), and the Matthews correlation
coefficient (MCC). These measures are calculated according to
Eqs 1–4.

ACC � TP + TN
TP + FP + TN + FN

0≤ACC≤ 1 (1)

SEN � TP
TP + FN

0≤ SEN≤ 1 (2)
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SPE � TN
TN + FP

0≤ SPE≤ 1 (3)
MCC � TP × TN − FN × FP

�����������������������������������(TN + FN)(FN + TP)(TP + FP)(FP + TN)√ − 1≤MCC≤ 1 (4)

where ACC equals the overall accuracy for all compounds; SEN
and SPE indicate the model performance in correctly identifying
inhibitors and non-inhibitors, respectively; and MCC value
ranges from −1 and 1. A higher MCC value means a better
prediction for the true positives and negatives.

2.4 Molecular Docking
The fully automatic flexible Surflex-dock built-in Sybyl 8.1 was
employed for docking studies (Jain, 2003). The conformational
search in Surflex-Dock was guided by a ‘protomol’, an ensemble of
small probes (CH4, NH and CO) that make favorable interactions
with a predefined binding site. The crystal structure of ABCG2 in
inhibitor-bound state, with a resolution of 3.56 Å, was retrieved
from the Protein Data Bank (PDB ID: 6FFC). Prior to docking, the
protein and compounds were optimized by Amber and Tripos
force fields, respectively. The residues within the 4 Å distance from
the co-crystallized inhibitor MZ-29 were used to generate the
protomol by using a “thresh” of 0.5 and a “bloat” of 3. During
the docking process, the flexibility of side chains within 4 Å
distance from a ligand was allowed to adapt the conformation
of the docked ligand. In a post-processing step, the conformation of
each ligand was further optimized in the context of the receptor by
using a BFGS quasi-Newton method and an internal Dreiding
force field. The docking poses of each ligand were sorted by Total
Scores expressed in -log10 (Kd) unit, which consists of
hydrophobic, polar, electrostatic, repulsive, entropic, solvation
and crash terms. For each ligand, both the number of starting
conformations and retained docking poses were set to 20. Other
docking parameters were set by default.

3 RESULTS AND DISCUSSION

3.1 PLS-DA Modeling
3.1.1 Volsurf-Based Models
A schematic overview of our modeling workflow, including the
PLS-DA model and others, is given in Figure 1. Prior to training
volsurf-based models, stepwise linear regression was performed
on the 118 VolSurf descriptors for variable selection, yielding nine
variable subsets based on the 736 training compounds. Details of
variable selection and description is shown in Table 1. In this case,
no variable was excluded in each iteration. Then, 10 PLS-DA
models were constructed by using full descriptors and nine
variable subsets, and their performances are shown in Table 2.
All the volsurf-based PLS-DA models performed well in
predicting ABCG2 inhibition, with a predictive accuracy of
higher than 70% on the training and internal validation sets.
Significant changes in the performances were not observed along
with the decrease of descriptors. Additionally, balanced prediction
accuracies for the inhibitors and non-inhibitors were observed in
all models, with small differences between SPE and SEN. Given the
accuracy, complexity, and interpretability, the model using a
subset of only two descriptors was chosen as the best model
with an overall accuracy of 0.73 on the training set. A similar
performance on the internal validation set was achieved, indicative
of a good predictive ability of the selected best model. To validate
the robustness of the best PLS-DA model, 1000-times repeated
modeling with randomly divided training/validation sets were
performed. The means of accuracy were 0.75 ± 0.009 and 0.75 ±
0.019 for training and internal validation sets, respectively
(Supplementary Figure S1). These results suggest that the
volsurf-based PLS-DA model is robust and the selected
descriptors significantly contribute to the classification model
for the discrimination of inhibitors and non-inhibitors. Details
of the informative molecular properties were discussed in below.

FIGURE 1 | Schematic representation of the methods employed in our modeling.
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3.1.2 Hologram-Based Models
The generation of molecular holograms is mainly determined by
three parameters: fragment size, fragment distinction, and
hologram length. Herein, various combinations of the
fragment parameters and hologram length were used to train
the PLS-DAmodels. The optimal parameter combination and the
best model were determined in two steps. According to our

experience, fragment size of four to seven is optimal in most
cases, which covers the most important chemical groups but also
decreases the number of fragments. Thus, the fragment
distinction was first optimized with the fixed fragment size of
4–7. Table 3 shows the performance of 10 hologram-based PLS-
DA models (FD1-FD10) using different kinds of fragments.
Overall, the 10 models achieved satisfactory predictive

TABLE 1 | Details of feature selection by stepwise linear regression on Volsurf descriptors.

Iterations Entered in
Sequence

Removed R2 Adjusted
R2

Description

1 BV12-DRY — 0.217 0.216 The best hydrophobic volumes generated by the hydrophobic probe at the energy level of −1.0 kcal/mol
2 LogP no 0.254 0.252 Log of the octanol/water partition coefficient, which is computed by mean of a linear equation derived by

fitting VolSurf descriptor to experimental data on water/octanol partition coefficient
3 W3-O no 0.270 0.267 Hydrophilic regions generated by the carbonyl oxygen atom at energy level of −1.0 kcal/mol
4 D1-DRY no 0.280 0.276 Hydrophobic regions generated by the hydrophobic probe at energy level of −0.2 kcal/mol
5 R-OH2 no 0.293 0.289 Ratio Volume/Surface generated by the water probe
6 W4 no 0.300 0.294 The hydrophilic regions, represent the molecular envelope accessible generated by solvent water probe at

energy level of −2.0 kcal/mol
7 Emin1

-OH2
no 0.304 0.298 Local interaction energy minima between the H2O probe and the target molecule

8 D12-DRY no 0.309 0.301 Hydrophobic local interaction energy minima distances generated by the hydrophobic probe
9 W7-O no 0.287 0.282 Hydrophilic regions generated by the carbonyl oxygen atom at energy level of −5.0 kcal/mol

TABLE 2 | Performance of VolSurf-based PLS-DA models.

Model Number of Descriptors Training Set Internal Validation Set

ACC SEN SPE MCC ACC SEN SPE MCC

VS1 118 0.76 0.75 0.77 0.52 0.77 0.78 0.76 0.53
VS2 9 0.76 0.72 0.78 0.51 0.79 0.76 0.81 0.57
VS3 8 0.76 0.75 0.77 0.52 0.79 0.78 0.80 0.57
VS4 7 0.75 0.76 0.74 0.50 0.79 0.79 0.78 0.57
VS5 6 0.75 0.74 0.75 0.50 0.79 0.79 0.78 0.57
VS6 5 0.75 0.74 0.76 0.50 0.78 0.78 0.78 0.56
VS7 4 0.75 0.74 0.75 0.49 0.77 0.76 0.77 0.53
VS8 3 0.74 0.72 0.76 0.47 0.78 0.76 0.78 0.55
VS9a 2 0.73 0.73 0.74 0.46 0.76 0.74 0.77 0.51
VS10 1 0.71 0.69 0.75 0.43 0.77 0.74 0.80 0.54

aThe best VolSurf-based PLS-DA model based on two descriptors was highlighted in bold.

TABLE 3 | Performance of the PLS-DA models based on different fragment distinctions.

Model Fragment distinctiona HLb Training Set Internal Validation Set

ACC SEN SPE MCC ACC SEN SPE MCC

FD1 A 353 0.81 0.82 0.80 0.63 0.78 0.78 0.78 0.56
FD2 B 353 0.77 0.74 0.79 0.54 0.76 0.76 0.75 0.52
FD3 A/B 353 0.84 0.81 0.87 0.68 0.81 0.81 0.81 0.61
FD4 A/C 257 0.83 0.83 0.83 0.66 0.82 0.83 0.81 0.63
FD5 C/D 353 0.84 0.81 0.86 0.67 0.78 0.82 0.75 0.57
FD6 A/B/C 353 0.84 0.83 0.86 0.69 0.82 0.83 0.81 0.63
FD7 A/B/H 353 0.84 0.82 0.85 0.67 0.78 0.82 0.74 0.56
FD8 A/C/D 307 0.85 0.82 0.87 0.69 0.81 0.80 0.82 0.61
FD9 A/B/C/D 353 0.85 0.83 0.87 0.71 0.82 0.82 0.82 0.63
FD10 A/B/C/H 257 0.83 0.82 0.85 0.67 0.78 0.81 0.75 0.56

aThe fragment distinction includes A (Atom), B (Bond), C (Connection), D (Donor & Acceptor), and H (Hydrogen Atoms).
bHL, holographic length.
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performances. The statistical measures (ACC, SEN, and SPE) of
five models were greater than 0.80 on the training and internal
validation sets. Based on the prediction accuracies and model
complexities, the model FD4 was selected as the best model in the
first step, and that the atom and connection (A/C) was used to
further optimize the PLS-DA models in the next.

By employing different fragment sizes combined with the A/C
distinction, another 10 models (FS1-FS10) were constructed, with
overall accuracies in the 0.79–0.86 range for the training set and
0.79–0.82 range for the internal validation set (Table 4). Among
them, no significant difference in the performance metrics was
observed, indicating that the fragment size had little effect on the
model performances. By comparison, the performance of model
FS5 based on the fragment size of five to eight was slightly better
than other models. Accordingly, FS5 was selected as the best PLS-
DA model, of which the ACC on the training and validation sets
were 0.86 and 0.82, respectively. The best model performed very
well in correctly identifying the inhibitors and non-inhibitors,
with an identical prediction accuracy for both classes. Compared
with the volsurf-based PLS-DA models, it is evident that
hologram-based models displayed superior performance in
discriminating ABCG2 inhibitors from non-inhibitors. When
compared with self-reported model accuracy from previous
studies, the validation set accuracy of our best hologram-based
model is higher, to our knowledge, at most 78% previously.

3.2 External Validation on Unknown Data
In real-world drug discovery, development of in silico models is
usually aimed at identifying active compounds through virtual
high-throughput screening from large chemical libraries.
Therefore, the assessment of the actual behavior of a useable
model against unknown data is indispensable. The most rigorous
validation of model performance is to evaluate their robustness
and predictive power on an external set, which is often lacking in
the previous modeling studies. To address this issue in this wok,
an in-house dataset containing 634 compounds was curated from
recent in vitro experiments, which was used to further validate the
effectiveness of our models. Somewhat surprisingly, both of the
best volsurf- and hologram-based models achieved satisfying
performances on the external set, with the prediction
accuracies of 0.70 and 0.75, respectively (Table 5), confirming
the capability of our models to generalize to unseen data.
Nevertheless, the hologram-based PLS-DA model performed

better in the external validation, implying that it may be more
suitable for the virtual screening campaigns in drug discovery.

3.3 Chemical Properties Associated
Molecular Interactions
The binding of drugs from the extracellular aqueous phase to the
transporter cavity is a dynamic process including membrane
partitioning and transporter binding steps, each of which was
governed by distinctive molecular interactions. As described
earlier, nine significant VolSurf descriptors were selected in
sequence using stepwise linear regression analysis. The
descriptor importance was examined by the correlation
coefficients (R2 or adjusted R2) of the independent variables
with the binary classes. It can be observed that there are no
significant improvements on the correlations along with the
sequential introduction of variables into the regression models
(Table 1). From the loading plot of the nine independent
variables in the first two principal components (Figure 2A), it
can be also observed that BV12-DRY and LogP make leading
contributions to the trained model VS2 (Table 2), consistent with
the outcome of feature selection. The selected best volsurf-based
model with good performance only employed the top two
descriptors, thus being simple and strongly interpretable.
Distributions of the two descriptors between inhibitors and
non-inhibitors are significantly different (Figure 2B),
suggesting that they are relevant for the discrimination of the
two classes.

The water-octanol partition coefficient LogP (p = 8.054 ×
10–29, t test), as a commonly used measure of molecular
hydrophobicity, is a relevant molecular property for
transporter inhibition, which has been claimed in previous
studies (Matsson et al., 2007; Matsson et al., 2009; Nicolle
et al., 2009; Sjöstedt et al., 2017). It is to be expected that the

TABLE 4 | Performance of the PLS-DA models based on different fragment sizes.

Model Atom counts HL Training Set Internal Validation Set

ACC SEN SPE MCC ACC SEN SPE MCC

FS1 1–4 151 0.79 0.78 0.81 0.59 0.79 0.79 0.78 0.57
FS2 2–5 257 0.81 0.80 0.82 0.62 0.81 0.85 0.78 0.63
FS3 3–6 353 0.83 0.83 0.83 0.66 0.80 0.82 0.78 0.60
FS4 4–7 257 0.83 0.83 0.83 0.66 0.82 0.83 0.81 0.63
FS5a 5–8 353 0.86 0.85 0.86 0.71 0.82 0.82 0.82 0.63
FS6 6–9 257 0.86 0.85 0.87 0.71 0.81 0.82 0.81 0.63
FS7 7–10 307 0.86 0.83 0.88 0.72 0.81 0.81 0.81 0.61
FS8 8–11 307 0.85 0.81 0.89 0.70 0.80 0.80 0.81 0.61

aThe best Hologram-based PLS-DA model was highlighted in bold where the fragment size was 5–8, the fragment distinction was A/C, and the hologram length was 353 bins.

TABLE 5 | Performance of the best models on the external validation set.

Best
Models

TP TN FP FN ACC SEN SPE MCC

VolSurf-based 327 116 18 173 0.70 0.65 0.87 0.43
Hologram-based 359 118 16 141 0.75 0.72 0.88 0.50
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inhibitors are more hydrophobic, given the fact that a lipid-water
partitioning step driven mainly by hydrophobic interactions is
required before reaching the transporter binding site (Xu et al.,
2015). However, the distribution of LogP between the two classes
overlaps largely, thus not being able to distinguish inhibitors from
non-inhibitors effectively. This suggested that the LogP was not
highly informative, which in fact was declared as relevant when
combined with other molecular features.

Compared with the LogP, the BV12-DRY is significantly more
predictive (p = 1.566 × 10–69, t test). This descriptor represents the
best hydrophobic volumes generated by the hydrophobic probe
(DRY) at -1.0 kcal/mol. To the best of our knowledge, the
predictive value of the BV12-DRY for ABCG2 inhibitors has
not been discussed previously. Note that the “best volume” here is
not in fact a measure of molecular size. Given the nature of
VolSurf descriptors, it could be understood as the volume or the
surface of the interaction contours presented in the 3D grid map.
In the case of BV12-DRY, the interaction energy derived by the
DRY probe involves not only hydrophobic interactions, but also
electrostatic effects and hydrogen bonds. Thus, this descriptor
can be regarded as an ensemble of the lipophilicity, the hydrogen
bond acceptors and donors, and other electrostatic interactions.
According to the distribution difference of BV12-DRY in the two
classes (Figure 2B), an extremely simple rule derived from this
descriptor can discriminate the majority of inhibitors and non-
inhibitors correctly: compounds with BV12-DRY > −0.1 are very
likely to be inhibitors whereas compounds with BV12-DRY <
−0.1 are prone to be non-inhibitors. The rule-based model
achieved an overall accuracy greater than 0.70 for the training
and two validation sets (Table 6), which is comparable to the
volsurf-based PLS-DAmodels. It means that the BV12-DRY, as a

single feature is highly informative and predictive, which plays a
dominant role in identifying ABCG2 inhibitors. In the two-step
binding process, drug binding to the transporter was driven
essentially by weak electrostatic interactions and hydrogen
bonds (Matsson et al., 2007; Xu et al., 2015). Thus, the
successful binding of an inhibitor to ABCG2 is determined not
only by a proper membrane solubility but also by concordant
electrostatic properties, further strengthening the key role of
BV12-DRY in predicting transporter inhibition.

3.4 Fragmental Contribution to Molecular
Interactions
To explore the molecular fragments contributing to ABCG2
inhibition, each fragment in the hologram was generated in
turn, and the contribution to activity of each atom in the
fragment was taken as the PLS coefficient divided by the
number of atoms. The molecule was then color coded
according to the individual atomic contributions. As shown in
Figure 3, atoms in the aromatic biphenyl and benzoheterocycle
(such as quinoline and chromene rings) have relatively high
contribution, indicating that these fragments are favorable to
ABCG2 inhibition. The abundant π-electron systems in the
scaffolds may be responsible for the binding of inhibitors via
π-π stacking interactions with the aromatic residues in the drug-
binding pocket. The N and O atoms in the heterocycle or
functional groups may form hydrogen bond interactions with
the polar residues. These structural properties could provide
medicinal chemists inspiration for the fragment-based design
of novel lead compounds that might lead to suitable drug
candidates.

3.5 Binding Mode Analysis by Molecular
Docking
To validate the chemical and structural properties derived from
the ligand-based models, structure-based molecular docking was
performed to investigate the binding mode of ABCG2 inhibitors.
In this work, Surflex-Dock method was used to simulate the
binding of 533 inhibitors to the central cavity within the

FIGURE 2 | Analysis of VolSurf descriptors. (A) Loadings of the nine independent variables in the first two principal components. (B) Density distribution of the
descriptors BV12-DRY (p = 1.566 × 10–69) and LogP (p = 8.054 × 10–29) in the two classes. The p values were calculated by using Student’s t-test.

TABLE 6 | Performance of the rule-based model on different data sets.

Data
Sets

TP TN FP FN ACC SEN SPE MCC

training 262 264 117 93 0.71 0.74 0.69 0.43
internal validation set 144 144 46 34 0.78 0.81 0.76 0.56
external validation set 338 111 23 162 0.71 0.68 0.83 0.42
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FIGURE 3 | Mapping of atomic contributions in the fragments of ABCG2 inhibitors with diverse scaffolds.

FIGURE 4 | Molecular interactions with ABCG2. (A) The occurrence frequencies of the binding residues involved in the molecular interactions with the docked
inhibitors. (B) 22 hotspot residues with a high-frequency occurrence (>0.5) intimately related to the binding of inhibitors. (C) Interactions of compound 181 and 383 with
the residues in the binding pocket. H-bonds interactions are represented as green dashed lines.
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transmembrane domains. Before molecular docking, the co-
crystallized inhibitor MZ-29 was firstly re-docked into the
binding site of ABCG2. The top-scored docking pose of MZ-
29 (score = 9.44) was superimposed with the crystal conformation
very well with a RMSD (root-mean-square deviation) of 0.83 Å
(Supplementary Figure S2), which suggested that the protocol of
Surflex-dock can reproduce the native binding mode effectively.

Figure 4 lists the hotspot residues with high occurrence
frequencies (>0.5) involved in the interactions with the docked
inhibitors. The inhibitor-binding pocket is mainly constituted by
a large number of lipophilic residues and a pool of hydrophilic
residues (Figures 4A,B). Herein, two compounds with strong
inhibitory activities at nano-molar level were selected for
exploring the interactions with the highly related residues. As
shown in Figure 4C, the two inhibitors embed well in the
binding pocket by forming strong hydrophobic interactions with
the aliphatic and aromatic residue, including Val401, Leu405,
Val546, Phe432 and Phe439. Additionally, it can be observed that
π-π interactions with Phe439 and H-bond interactions with Thr435
and Ser443 were formed, respectively, which may contribute to the
high binding affinity between inhibitors and the transporter. As
proposed by Xu et al. (Xu et al., 2015), these interactions may play a
critical role in transporter binding, further confirming the
importance of the chemical and structural properties derived for
ABCG2 inhibition. However, it is important to note that although
the docking procedure could provide a glimpse of the binding
profiles of ABCG2 inhibitors, the precise molecular mechanisms
underlying the complicated binding process and specific ligand
interactions need to be further probed by other computational
techniques such as molecular dynamics simulations and
enhanced sampling algorithms, which is beyond the scope of
this work.

3.6 Model Improvement by an Integrative
Approach
While the best hologram-based model performed well in predicting
ABCG2 inhibitors, there was still a number of compounds were
misclassified, particularly for the two validation sets. One possible
explanation is that some specific structural fragments and molecular
properties that is favorable to the interactions with the transporter can

not be fully characterized by molecular holograms. Therefore, we
hypothesized that specific physicochemical properties might be
complementary to the fragmental descriptors, which could further
fine-tune the model performance. To test this hypothesis, the
misclassified compounds (false positives and false negatives) were
revaluated based on the simple rule derived from themost informative
VolSurf descriptor BV12-DRY. Surprisingly, according to the rule
(BV12-DRY > −0.1 for inhibitors and < −0.1 for non-inhibitors), a
large portion ofmisclassified compounds can be correctly predicted as
true positives and true negatives, thus resulting in a significant
improvement of the statistical support by at least 5% for model
prediction on all data sets (Figure 5). We therefore proposed an
integrative modeling approach for differentiating the inhibitors from
non-inhibitors of ABCG2, in which the first step was conducted by
PLS-DA combined with the fragment-based molecular hologram,
followed by a fine-tuned step using the simple rule derived from the
informative VolSurf descriptor. Collectively, the integrative model
with the highest accuracy could be applied in the virtual screening and
molecular design of potent compounds to modulate the efflux of the
transporter.

4 CONCLUSION

The inhibition of ABCG2 can affect the ADMET characteristics of
drugs, which was also considered as a promising strategy to enhance
the efficiency of chemotherapy in cancer treatment. Thus, prediction
of ABCG2 inhibitors is of paramount importance in drug
development. Our work provided a number of simple and
accurate models for predicting ABCG2 inhibition, as well as the
key chemical and structural properties underlying specific molecular
interactions. First, many in silico models were established by PLS-
DAmodeling technology in combinationwithVolSulf descriptors or
molecular hologram based on a publicly available dataset. The best
volsurf- and hologram-based models with good performance are
simple, robust, and interpretable. Then, a straightforward rule-based
model was derived from themost informative VolSurf property. The
developedmodels performedwell on an external set that was curated
from the recent in vitro studies, further confirm the effectiveness of
our models. Finally, we proposed an integrative model with superior
performance for predicting ABCG2 inhibitors by combining a

FIGURE 5 | Comparison of the performance of the integrative model with the single classifiers.
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hologram-based PLS-DA model with the simple descriptor-based
rule, which could provide a powerful cheminformatics tool for the
evaluation of drug-ABCG2 interactions and molecular design of
novel inhibitors.
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