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Electrocatalysis plays a key role in clean energy innovation. In order to design more
efficient, durable and selective electrocatalysts, a thorough understanding of the
unique link between 3D structures and properties is essential yet challenging.
Advanced 3D electron tomography offers an effective approach to reveal 3D
structures by transmission electron microscopy. This mini-review summarizes
recent progress on revealing 3D structures of electrocatalysts using 3D electron
tomography. 3D electron tomography at nanoscale and atomic scale are
discussed, respectively, where morphology, composition, porous structure, surface
crystallography and atomic distribution can be revealed and correlated to the
performance of electrocatalysts. (Quasi) in-situ 3D electron tomography is further
discussed with particular focus on its impact on electrocatalysts’ durability
investigation and post-treatment. Finally, perspectives on future developments of
3D electron tomography for eletrocatalysis is discussed.

Keywords: 3D electron tomography, transmission electron microscopy, electrocatalysis, nanostructures, 3D
structures

INTRODUCTION

Clean energy innovation is vital to achieving a sustainable and resilient future energy system of
carbon neutralization. Electrocatalysts applied for fuel cells, water electrolyzers, and metal-air
batteries, etc., offer noteworthy improvements to future energy conversion and storage
technologies (Gupta, 2019; Wang, 2019; Fan et al., 2021; Tang, 2022). Thus, the
development of efficient electrocatalysts for electrocatalysis, such as hydrogen evolution
reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and
CO2 reduction reaction, etc. has attracted much intention and investigation (Tan et al.,
2018; Huang et al., 2019; Zhu, 2022).

Ongoing research on catalyst development has spent much effort on synthesizing and tuning
three-dimensional (3D) nanostructures due to their excellent performance. For example,
nanoparticles with concave facets, nanoframeworks with open structures, self-support porous
materials derived from metal organic framework (MOF) or zeolitic imidazolate framework
(ZIF), have outperformed many peer catalysts (Chen et al., 2014; Chong et al., 2018; Shen et al.,
2018; Zhang et al., 2018; Cui et al., 2020; Zhang, 2020; Li et al., 2021a; Wu et al., 2021; Zhao et al.,
2021). However, the characterization of nanocatalysts with complexity at all three dimensions in
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nanoscale or even atomic scale remains challenging yet crucial to
understand the unique link between property and structure
(Spivey et al., 2014; Devivaraprasad et al., 2019; Hu et al.,
2019; Li et al., 2021b; Pal et al., 2021; Suter, 2021). X-ray
computed tomography (XCT) and atom probe tomography
(APT) have been applied to study some of the electrocatalysts
in 3D (Alrwashdeh et al., 2017; He et al., 2020; Xiang et al., 2022).
Nevertheless, XCT is relatively low in spatial resolution, whereas
APT is less capable of resolving crystal structures. Transmission
electron microscopy (TEM) is the most straightforward and
widely-used characterization technique for materials, with
spatial resolution spanning from sub-micron to atomic scale.
3D tomography performed in TEM is thus considered as an ideal
approach to directly study the 3D structure of nanocatalysts.

Conventionally, TEM images are two-dimensional (2D)
projections of 3D nano-structures, where the complexity of the
unique 3D structure is partially lost. 3D electron tomography
overcomes this limit by reconstructing a series of images acquired
at different angles, as illustrated in Figure 1. Briefly speaking,
high angle annular dark field scanning transmission electron
microscopy (HAADF-STEM) images (occasionally bright-field
TEM images) were taken every 1–2° across a tilt range of ±70°

(Midgley and Dunin-Borkowski, 2009). Composition mapping
by electron energy loss spectroscopy (EELS) and energy
dispersive X-ray spectroscopy (EDX) can also be acquired for
electron tomography (Haberfehlner et al., 2014; Slater et al.,
2016). In such scenario, tilt increment is sometimes increased
to reduce electron dose and reconstruction quality is
compromised (Midgley and Dunin-Borkowski, 2009; Hungría
et al., 2019). The acquired tilt series are then reconstructed using
different algorithms, such as classic back projection or weighted

back projection, iterative procedure, and more advanced
compressive sensing, atomic electron tomography (AET) or
deep-learning assisted algorithms (Midgley and Dunin-
Borkowski, 2009; Zečević et al., 2013; Bals et al., 2014; Miao
et al., 2016; Ding et al., 2019; Hovden and Muller, 2020; Wang,
2020). The reconstructed volume is then visualized, segmented or
quantified for detailed structural investigation.

3D electron tomography has then been rapidly developed in
the past decade due to the booming research in functional (nano)
materials (Leary et al., 2012a; Bals et al., 2014; Ersen et al., 2015;
Hovden and Muller, 2020). 3D electron tomography helps reveal
the nanostructures in 3D, and thus contributes to activity and
degradation study for electrocatalysis (Hungría et al., 2019;
Hovden and Muller, 2020). Despite much progress has been
achieved in studying catalysts and related nanomaterials by using
3D electron tomography (Zečević et al., 2013; Thomas, 2017;
Zhang et al., 2017; Hungría et al., 2019), a dedicated review of
electrocatalysts’ investigation by 3D electron tomography is
lacking. Therefore, in this mini-review, we summarize recent
applications of electron tomography towards the developments of
electrocatalysts. Electrocatalysts’ morphology, composition,
porous structure, surface crystallography are revealed with
unprecedented details in 3D at nanoscale and atomic scale,
where their correlations to electrocatalytic activity are
discussed. Coupled with in-situ TEM and identical-location
TEM, structural evolution during catalysts’ post-treatment or
accelerated stress testing (AST) can be monitored in 3D, giving
insights to the optimization of electrocatalysts with improved
activity and durability. Finally, recent developments in 3D
electron tomography and its potential applications to benefit
electrocatalysts’ research are discussed.

FIGURE 1 | Illustration of 3D electron tomography for electrocatalysts’ characterization. WE, RE, CE are shorts for working electrode, refence electrode and
counter electrode, respectively. Illustration of in-situ tomography was photographed from a DENSSolution in-situ heating holder. Illustrations of electron tomography and
identical location TEM tomography were reprinted with permission from (Yu et al., 2012; Bals et al., 2014). Copyright 2014, WILEY-VCH. Copyright 2012, American
Chemical Society.
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FIGURE 2 | (A–C) 3D reconstructions and representative cross-sectional z-slices of volumes of 40 wt% Pt catalysts on (A) HSAC, (B) Vulcan, and (C) LSAC
supports after ASTs of MEAs. Reprinted with permission from (Sneed et al., 2017). Copyright 2017, American Chemical Society. (D–F) Closeup of representative
tomography cross sections for three different carbon blacks, showing the microporous structure in solid carbon (Ko et al., 2021). (G–I) surface render (G), transparent
surface render (H), and surface cut in half (I) showing internal pore structure of electron tomography results for a Pt-Co spongy particle. (Sneed et al., 2018) (J,K)
Chemically sensitive tomography of particles before (J) and after (K) full oxidation. Reprinted with permission from (Xia et al., 2018). Copyright 2018, American Chemical
Society. (L) The 3D surface morphology of the Au@Pd nanocatalyst with concave facets. (M) The segmentation of the surface oriented along (010) of the Au@Pd
concave nanocube. (N) Roughness map of the C3 facet in (M). Reprinted with permission from (Xia et al., 2016). Copyright 2016, WILEY-VCH. (O–Q) atomic-resolution
reconstruction of an Au nanorod. Reprinted with permission from (Bals et al., 2014). Copyright 2014, WILEY-VCH. (R–U) 3D atomic models (Pt in blue and Fe in red) of
particle with a total annealing time of 9 min (R,T) and 16 min (S,U), respectively, determined by AET (scalebar: 1 nm). Reprinted with permission from (Miao et al., 2020).
Copyright 2020, Cambridge University Press. (V) 3D reconstruction of nanocatalyst particles before (yellow) and after (red) electrochemical aging. Reprinted with
permission from (Yu et al., 2012). Copyright 2012, American Chemical Society (W–X) 3D tomographic reconstruction, corresponding orthoslices, and porous structure
of ZIF annealed at (W) 750°C for 1 h and (X) 900°C for 1 h, respectively, (Wang et al., 2021b).
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3D ELECTRON TOMOGRAPHY FOR
ELECTROCATALYSTS AT NANOSCALE

Distribution of Catalysts
The spatial distribution of catalysts on support materials is critical
to the electrocatalytic activity. 3D electron tomography is the
most straightforward approach to demonstrate the distribution in
three dimensions.

Carbon nanostructures are widely used as support materials
for electrocatalysts, attracting most attention for 3D
characterization (Banham et al., 2011; Banham et al., 2015; Ko
et al., 2021). Particularly, Sneed et al. used 3D electron
tomography to study the distribution of Pt on high surface
area carbon (HSAC), low surface area carbon (LSAC) and
commercially available Vulcan XC-72 supports (Sneed et al.,
2017) (Figures 2A–C). Due to differences in pore structure
and surface hydrophilicity, the ORR polarization curves
showed the corresponding electrochemically active surface area
(ECSA) as Pt/HSAC (69.3 m2/g) > Pt/Vulcan XC-72 (55.1 m2/g)
> Pt/LSAC (46.9 m2/g) at same Pt loading. Very recently, Ohma
et al. compared Pt loading on graphene meso-sponge (GMS) and
commercially available Ketjen black (KB) (Ohma et al., 2021).
The ORR activity of Pt/GMS was found to be 1.2 times higher
than Pt/KB. 3D electron tomography further revealed that Pt/
GMS was rich in pores to load smaller Pt particles, and hence had
enhanced activity.

Other support materials have been investigated as well.
Kaneko et al. showed the distribution of Pt on phthalocyanine,
and found that oxygen reduction activity increased with
increasing Pt dispersion (Kaneko et al., 2009). Sahin et al.
revealed the distribution of Cu nanoparticles on FDU-15 used
for CO2 reduction, and showed that nanoparticles found on the
external surface of the FDU-15 were more affected by the
Kirkendall effect during the oxidation (Sahin, 2018). Geerts
et al. used 3D electron tomography to reveal core-shell
structure of alumina supports, confirming an average
distribution of ultra-small Pt nanoparticles (Geerts et al.,
2021). Mariusz et al. studied how the 3D structures of Pt-
loaded TiO2 nanotube arrays affected the formic acid electro-
oxidation activity (Andrzejczuk et al., 2019). It was found by 3D
electron tomography that larger nanotubes with higher porosity
led to better dispersion of Pt, which was further correlated to
excellent electrocatalytic performance.

Porous Structure of Carbon Support
Carbon supports have been shown to be important in
determining the ORR activity, and 3D electron tomography
has been used to demonstrate the porous structure of various
carbon support, including carbon nanotubes, microporous
carbon and mesoporous carbon (Pei et al., 2010; Banham
et al., 2011; Banham et al., 2012; Banham et al., 2015;
Leppanen, 2021). Due to the low contrast of carbon in
HAADF-STEM, some of the 3D electron tomography were
performed using BFTEM.

The group of V. Birss studied the porous carbon structure
using 3D electron tomography by BFTEM. They first studied the
mesoporous colloid-imprinted carbon (CIC), and revealed the

ordered porous structure with the pore size of 20–50 nm (Pei
et al., 2010). Pt-loaded mesoporous CIC with smaller pore size of
<15 nm and wall thickness of ~3 nmwas further studied using 3D
electron tomography (Banham et al., 2011; Banham et al., 2012).
They compared the structure and ORR performance with
commercially available Vulcan carbon which is microporous,
and demonstrated that the mesoporous carbon outperformed
microporous carbon due to its capability of holding more
particles inside/outside carbon support. More interestingly,
they systematically investigated the 3D porous structure of a
series of mesoporous CIC, and reported a correlation of ORR
activity with wall thickness opposed to pore diameter (Banham
et al., 2015).

More recently, Ko et al. investigated the role of porous
structure in the performance of PtCo catalysts supported on
“accessible” carbon (Yarlagadda et al., 2018) and conventional KB
carbon (Ko et al., 2021) (Figures 2D–F). In addition to the 3D
morphology of carbon structures, the pore size and dispersed Pt
nanoparticle size were measured statistically. By comparing their
ORR performance, it was proposed that mesoporous structure
with 1–2 nmmicropores and thin carbon shell was ideal, resulting
in a shorter diffusion pathlength through tortuous micropores to
the carbon shell and thus lower local oxygen transport resistance.

Morphology of Loaded Nanostructures
Nanostructures’s 3D morphology, in both terms of the particle
size and shape, can be better studied by 3D electron tomography.
A number of electrocatalysts with different morphology have
been investigated, including nanoporous and nanodendrites
(Mourdikoudis et al., 2013; Geboes et al., 2016; Mourdikoudis
et al., 2019; Pappert et al., 2019; Yu et al., 2019), nano platelets
(Kong et al., 2013; Toth et al., 2016; González-Jiménez et al.,
2018), nanoframes and nanocages (Becknell et al., 2017; Zhang
et al., 2019a; Gong, 2021a), nanowires (Bu et al., 2016; Liu et al.,
2020), and the most widely studied nanoparticles (Liu et al., 2012;
Lu et al., 2014; Mourdikoudis et al., 2015; Londono-Calderon
et al., 2017; Kang et al., 2018; Gong, 2021b; Frank et al., 2021;
Leteba et al., 2021).

An interesting example was given by Kang et al., who
presented programmed superstructures of AuPt nanoparticles
on carbon nanotubes which showed enhanced ORR activity
(Kang et al., 2018). By using 3D electron tomography, not
only the octahedron shaped nanoparticles were revealed, but
also the 3D assembly of nanoparticles to form a suprahelical
structure of six-helix bundles along the CNT axis was
demonstrated.

Concave nanoparticles have been extensively studied due to
the presence of high-index facets, which can be revealed by 3D
electron tomography. For example, Becknell et al. developed a Pt-
Co rhombic dodecahedral nanoframe with superior ORR activity,
which was about 10 and 6 times higher than that of commercial
Pt/C in specific activity and mass activity, respectively, (Becknell
et al., 2017). The 3D study showed that the structure resembled a
highly concave particles that nearly only skeleton remained,
providing high surface area. Recently, Leteba et al. reported
that rhombic dodecahedral Pt-Ni nanoparticles after
oleylamine aging showed enhanced ORR activity (Leteba et al.,
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2021). By comparing the 3D morphology of Pt-Ni nanoparticles
before and after aging, concave facets with exceptionally high
surface area were revealed. It was proposed that Ni leaching from
surface facets produced concavity and composition of Pt2Ni1.

Similarly, comparison of 3D structures before and after
electrochemical cycling proves to be helpful for catalysts’
durability study (Geboes et al., 2016; Cullen et al., 2015; Sneed
et al., 2018; Ustarroz et al., 2017). For example, 3D electron
tomography of Pt-Co electrocatalysts before and after AST (30 k
cycles at 0.6–1.0 V) was performed by Sneed et al. (Sneed et al.,
2018). It was found that relatively large-sized Pt-Co nanoparticles
(>10 nm) that exhibited porous “spongy” morphology and
initially had a higher Co content, were transformed into
hollowed-out shells as driven by Co leaching (Figures 2G–I).
Ustarroz et al. studied 3D structures of porous Pt nanoparticles
before and after electrochemical cycling (Ustarroz et al., 2017).
The nanostructures were found to becomemore compact, and the
number of open pores decreased significantly.

Composition Identification in 3D Structure
Conventional 3D electron tomography is performed using
HAADF-STEM to avoid diffraction contrast. The Z-contrast
HAADF-STEM can also help distinguish different
compositions with large Z difference. However, for structures
with similar Z numbers, HAADF-STEM is less capable and thus
STEM-EDX or STEM-EELS is preferred to acquire 3D tilt series.

Han et al. studied the oxidation of Ni-Co bimetallic
nanoparticles using advanced electron microscopy (Han et al.,
2016). Since Ni and Co has similar Z, they can hardly be
distinguished by HAADF-STEM. Therefore, Ni-Co alloyed
nanoparticles were investigated by EELS-tomography. Both the
porous structure and the elemental distribution in 3D were
demonstrated, and segregation of Ni and Co after oxidation
was clearly revealed (Figures 2J,K). Furthermore, the
oxidation of Ni-Fe nanoparticles was investigated using EDX-
tomography, and segregation of Ni and Fe was confirmed (Xia
et al., 2018). Zhang et al. studied core-shell prussian blue analogs
with Fe/Co heterogeneity and nanocage morphology for OER
(Zhang et al., 2019a). By using EDX-tomography, open cage
architecture with a Fe-rich shell and Co-rich core was revealed in
3D. The unique compositional and structural properties gave a
high special surface area (576.2 m2/g) and a low overpotential
(271 mV at 10 mA/cm2).

Recently, Gong et al. reported PdFe@Pt core-shell
nanoparticle with enhanced ORR (Gong, 2021b). By using
EDX tomography, they found that PdFe was uniformly
dispersed in the core whereas a thin layer of Pt was covered
on the surface. The same research group further studied PtCu
nanoframe as ORR catalysts (Gong, 2021a). A transition from
disordered PtCu to ordered intermetallic PtCu resulted in
enhancement for durability, and the 3D EDX tomography
revealed the nanoframe structure with even distribution of
both elements in 3D.

Exposed Surface Crystallography
It is well acknowledged that the exposed facets of nanocrystals can
tune the catalytic activity due to different coordination of surface

atoms. For instance, Pt (111) is more active than Pt (100) in 0.1 M
HClO4 as for oxygen reduction reaction (Marković, 1994).
Electron tomography is an effective approach to reveal
catalysts’ surface facets and index exposed planes in 3D.

Take CeO2 for example, which is a commonly used
electrocatalyst for electrocatalysis. CeO2 nanocrystals usually
exhibit facetted morphology and are well crystallized. By
reconstructing its 3D structure and correlating a few
projections with corresponding HRTEM or diffraction, the
orientations of nanocrystals can be resolved
crystallographically. Thus, exposed facets of CeO2 could be
understood in 3D (Kaneko et al., 2007; Tan et al., 2011). More
interestingly, by using EELS -tomography, the distribution of
Ce3+/Ce4+ could be reconstructed and imposed on resolved facets
in 3D (Goris et al., 2014; Zhang et al., 2019b). Such manner of
microstructure investigation can greatly improve the
understanding of catalysts’ behavior.

2D platelets and 1D nanowires have been investigated as well
(Bu et al., 2016; González-Jiménez et al., 2018; Sun et al., 2019).
Sun et al. unveiled the 3D complexity of the edges of a semi-2D
NiO sheets, and identified the intersecting edges between {100}
and {111} nanofacets (Sun et al., 2019). Bu et al. rebuilt the 3D
structure of hierarchical Pt-Co nanowires, which contained not
only conventional {110} facets, but also high density of {310}
facets (Bu et al., 2016). The {310} facets together with other high
index facets at the surface steps or kinks were suggested as the key
to the exceptional ORR activity of Pt-Co nanowires.

In addition, high-index facets could be quantified and directly
related to the catalytic activity, as demonstrated on concave Au@
Pd nanocubes by Xia et al. (Xia et al., 2016). By reconstructing the
3D structure of concave nanocube, the surface was further
segmented to different facets and indexed (Figures 2L–N). By
measuring the areas of exposed facets, the distribution of surface
atoms was quantified according to their coordinate numbers.
Such concave facets had 32% of the surface atoms with coordinate
numbers of lower than 8, which was correlated to the catalysts’
excellent performance for ethanol oxidation.

3D ELECTRON TOMOGRAPHY FOR
ELECTROCATALYSTS AT ATOMIC SCALE

Since the atomic configuration at surface layers account
significantly for electrocatalysis as active sites, recent
developments of 3D electron tomography at atomic scale have
provided unprecedented advantages in understanding the
structure-property relationship at atomic scale.

Goris et al. studied Au nanorods using 3D electron
tomography (Goris et al., 2012). By obtaining limited numbers
of projections at a few zone axes and reconstruction based on
compressive sensing, 3D structure at atomic scale and strain
distribution in 3D were revealed (Figures 2O–Q). They further
extended the method to Au nanoparticles, and successfully
revealed the surface steps/kinks and measured lattice strain in
3D (Goris et al., 2015). More recently, Wang et al. investigated
hierarchical nanoporous gold which was rich in low-coordinated
sites (Wang et al., 2021a). 3D reconstruction succeeded in
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mapping out the coordinate environment of the nanoporous Au
(particularly its surface) at single-atom level, which was
correlated to its enhanced performance for CO oxidation.

Meanwhile, Miao et al. developed a reconstruction method
called “atomic electron tomography (AET)” for 3D electron
tomography without prior knowledge (Chen et al., 2013; Miao
et al., 2016). This method was applied to a Pt-Fe nanoparticle to
rebuild the 3D arrangement of atoms by Zhou et al. (Zhou et al.,
2019; Miao et al., 2020). As a typical bimetallic nanocatalyst, Pt-
Fe was studied at the early stage of nucleation, where the 3D
reconstruction at atomic resolution revealed that the core of Pt-Fe
particle was Pt-rich and remained unchanged, whereas a fraction
of the surface and subsurface atoms were arranged to form L10
phase during annealing (Figures 2R–U). Similarly, Pelz et al.
applied AET to study the 3D atomistic structure of a multiply
twinned Pd (Pelz et al., 2022). Recently, Lee et al. determined a
full 3D atomic structure of a dumbbell-shaped Pt nanoparticle
using deep learning assisted AET (Lee, 2022). A 3D strain tensor
mapping was obtained based on 3D reconstruction, where strong
tensile strain at the protruded region of the nanodumbbell was
confirmed and correlated to an improved oxygen reduction
reactivity on {100} facets.

IN-SITU AND QUASI-IN-SITU 3D
ELECTRON TOMOGRAPHY FOR
ELECTROCATALYSTS’ INVESTIGATION
In-situ TEM is being rapidly developed in recent years. When
equipped with proper holders or using dedicated environmental
TEM, the microstructures’ evolution can be studied at multiple
stimuli such as temperature, electric field, light, and/or in liquid/
gas environment instead of vacuum. In the field of
electrocatalysts’ investigation, the applications of quasi-in-situ
electron tomography and in-situ electron tomography are
discussed separately in this section.

Quasi-In-Situ (Identical Location) 3D
Electron Tomography for Degradation
Study
By fixing a finder grid (e.g., gold finder grid) loaded with desired
catalysts at the electrode, one can study the same catalysts before
and after electrocatalysis (Hartl et al., 2011; Meier, 2012; Nikkuni
et al., 2013). Developed about a decade ago, this method is called
“identical location (IL)-TEM” and is particularly useful in the
investigation of catalysts’ degradation mechanism (Mayrhofer
et al., 2008; Arán-Ais et al., 2015; Bergmann and Roldan Cuenya,
2019). Together with electron tomography, the structural
evolution during electrocatalysis can be demonstrated in 3D.

Meier et al. performed IL-tomography on the classic Pt/C
catalysts under simulated start-stop conditions, where 3D
structures’ changes were revealed, and degradation pathways
were proposed (Meier et al., 2012). Yu et al. extended the
approach to Pt-Co nanocatalysts during electrochemical aging
(Yu et al., 2012). As illustrated in Figure 2V, growth of Pt shell
thickness and coalescence of nanoparticles were revealed and

directly correlated to loss of ECSA and activity for ORR. Pt/Ru
nanocatalysts were studied using IL-tomography by Hengge et al.
(Hengge et al., 2017). In addition to agglomeration and Ostwald
ripening during electrocatalysis, dissolution of Ru and dealloying
were revealed to account for the degradation.

In-Situ 3D Electron Tomography
In-situ 3D electron tomography has been mainly focused on the
post-treatment of electrocatalysts, such as annealing which can be
simulated using in-situ heating in vacuum or in gas environment.

Vanrompay et al. investigated the thermal stability of Au
nanostars during in-situ heating up to 400°C (Vanrompay
et al., 2018). Local volume reductions, increments and
curvature changes during annealing were unveiled in 3D.
Gong et al. studied the annealing on PtCu nanoframes using
in-situ EDX-tomography (Gong, 2021a). It was found that the
transformation from disordered A1 structure to L11 intermetallic
structure maintained the average distribution of composition,
whereas further heating led to the collapse of nanoframes and
thus deteriorated ORR performance.

Recently, the pyrolysis of ZIF-67 to derive efficient ORR
catalysts was investigated using in-situ electron tomography
(Wang et al., 2021b). By simulating the annealing using in-situ
heating up to 900°C, the microstructural evolution was monitored
in 3D. They found that 750°C-annealed ZIF showed a refined
hierarchical porous structure with smaller pore size and
precipitated Co nanoparticles (Figures 2W–X). By correlation
to ex-situ electrochemical measurements, a half-wave potential of
0.85 V was achieved at this pyrolysis temperature, higher than
ZIF-67 annealed at other temperatures.

CONCLUSION AND PERSPECTIVES

In summary, we briefly review recent applications of 3D electron
tomography for characterizing 3D microstructures of
electrocatalysts. Finally, recent developments of 3D electron
tomography and their potential applications in electrocatalysts’
characterization are discussed as below.

(1) Acquisition of tilt series. One main drawback of 3D electron
tomography is long acquisition time of tilt series and
therefore large electron dose. Therefore, fast tilt series was
proposed and expected to be helpful for in-situ tomography
(Vanrompay et al., 2018).

(2) STEM-EDX data processing. Although STEM-EDX has been
applied to electrocatalysts as discussed in section 2.4, the
STEM-EDX tilt series need special attention, particularly for
quantification (Zanaga et al., 2016a; Slater et al., 2016).
Alternative approaches have been developed, such as ζ-
factor measurements, detectors’ shadow minimization,
deep-learning-based denoising, and quantitative HAADF-
STEM etc. (Zanaga et al., 2016a; Zanaga et al., 2016b;
Skorikov et al., 2019; Skorikov et al., 2021).

(3) Interpretation of reconstruction. More attention needs to be
paid to the interpretation of reconstruction data. Semi-
quantitative methods to segment large agglomeration of
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particles with different size. shape and orientation were
proposed (Grothausmann et al., 2011; Leary et al., 2012b).
Such approaches could benefit the quantitative evaluation of
catalysts in a statistical manner.

(4) Alternative methods where tilt series are not allowed. Using
time series of projections, evolution of molecules could be
revealed 4D (Ke et al., 2013). Cryo-STEM tomography has
been performed to connect fuel cell catalyst nanostructure
accessibility (Padgett et al., 2018). Electron tomography can
be combined with depth-sectioning to achieve high-
resolution and wide-field 3D reconstructions (Hovden
et al., 2014). More recently, single 2D HAADF-STEM
images of catalyst nanoparticles were demonstrated to be
reconstructed in 3D by combining atom-counting approach
with local minima search algorithms or molecular dynamics
relaxing (van den Bos, 2018; Arslan Irmak et al., 2021; Liu
et al., 2021; Albrecht et al., 2021). These approaches are
expected to open up new possibilities to in-situ 3D
characterizations such as gas-cell or liquid cell (Hodnik
et al., 2016; Bergmann and Roldan Cuenya, 2019; Liu
et al., 2021).

Coupled with the fast developments in microscopes and
reconstruction/segmentation methods, 3D electron
tomography is expected to have more impact on
understanding the unique link between electrocatalysts’
structure and activity, and further paves the way to designing
more efficient, selective and durable catalysts.
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