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Chicoric acid has been widely used in food, medicine, animal husbandry, and other
commercial products because of its significant pharmacological activities. However, the
shortage of chicoric acid limits its further development and utilization. Currently, Echinacea
purpurea (L.) Moench serves as the primary natural resource of chicoric acid, while other
sources of it are poorly known. Extracting chicoric acid from plants is the most common
approach. Meanwhile, chicoric acid levels vary in different plants as well as in the same
plant from different areas and different medicinal parts, and different extraction methods.
We comprehensively reviewed the information regarding the sources of chicoric acid from
plant extracts, its chemical synthesis, biosynthesis, and bioactive effects.
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1 INTRODUCTION

Current research on chicoric acid focuses primarily on medicinal, chemical, natural agricultural
production, and food and accounts for 50%, 18%, 13%, and 18%, respectively. Chicoric acid belongs to
caffeic acid derivatives and its molecular formula is C22H18O12. Chicoric acid is soluble in ethanol,
methanol, dioxane, acetone, and hot water; slightly soluble in ethyl acetate and ether; and insoluble in
ligroin, benzene, and chloroform (Scarpati and Oriente, 1958). There are two chiral carbon atoms in
this structure, so chicoric acid is divided into levorotatory-chicoric acid (L-chicoric acid),
dextrorotatory-chicoric acid (D-chicoric acid), andmeso-chicoric acid (meso-chicoric acid) (Figure 1).

Chicoric acid is a rare and valuable functional food ingredient with no obvious dose dependence,
no overdose side effects, and no contraindications and drug interactions. Chicoric acid has been
widely used in medicines, nutritional supplements, and health foods due to its promising
pharmacological effects in regulating glucose and lipid metabolism; anti-inflammatory,
antioxidant, and anti-aging properties, and against digestive system diseases (Peng et al., 2019).
Echinacea purpurea (L.) Moench, the main plant material of chicoric acid, has a 400-year history of
use in Europe and America. However, the shortage of chicoric acid limits its further development and
utilization. So, this article focuses on systematically summarizing chicoric acid sources, such as
chemical synthesis and biosynthesis, and further elaborates on resource distribution and content of
chicoric acid in different plants, aiming to find a beneficial pathway of chicoric acid production for
further development and utilization (Figure 2).
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2 NATURAL OCCURRENCE OF CHICORIC
ACID

Plants containing chicoric acid are rich in resources and widely
distributed, so chicoric acid has been utilized as an alternative
medicine or a food supplement for quite some time (Street
et al., 2013). Chicoric acid levels in different plants and
different parts of the same plant often differ significantly.
However, there are few reports on chicoric acid levels and
different plant resource distributions. At present, E. purpurea
is the main crude material for the extraction of chicoric acid,
but the shortage of crude material limits further development
and utilization. In order to solve that problem, it is necessary to
analyze the resource distribution and chicoric acid levels in
different plants.

2.1 Plants the Principal Sources of Chicoric
Acid
At least 25 families, 63 genera and species, in the plant kingdom
contain chicoric acid (Grignon-Dubois and Rezzonico, 2013),
there is no substantial guidance due to the lack of detailed
information on plant resources. For the convenience of
discussion, this article has divided chicoric acid–containing
plants into angiosperms, ferns, and other categories (Table 1)
and discussed the resource distribution, historical changes, and
usage of chicoric acid.

2.1.1 Angiospermae
Chicoric acid is widely distributed in dicotyledons of
Angiospermae, namely, Asteraceae, Lamiaceae, Rosaceae,
Alismataceae, Cucurbitaceae, and others. Many reports have
focused on the study of E. purpurea, Pterocypsela laciniata,
and Cichorium intybus of the Asteraceae family.

2.1.1.1 Asteraceae
There are eight species and several varieties of the Echinacea, among
which E. purpurea, Echinacea angustifolia (DC) Hell., and Echinacea
pallida (Nutt.) are widely used in medicine. E. purpurea is a
perennial herb with a medical history dating back more than
300 years (Shah et al., 2007) and was introduced in China as a
flower in the 1970s. It is currently cultivated on a large scale in China
as a medicinal plant. E. purpurea is widely used in drug materials,
nutritional supplements, and health foods. Chicoric acid is often
used as an indicator component in the quality evaluation ofmaterials
and preparations (Wills and Stuart, 1999; Xu et al., 2006; Sun, 2011;
Chen et al., 2012; Han et al., 2013; Han et al., 2014; Wang et al.,
2016).

There are eight species and one variety species of Pterocypsela,
located primarily in East Asia and Southeast Asia. China is rich in
resources, most of which are distributed in the east. As a common
weed, Pterocypsela has strong fecundity and adaptability to harsh
environments (He, 2012; Ke et al., 2015). P. laciniata is a
perennial herb of Pterocypsela with abundant plant resources
and chicoric acid.

FIGURE 1 | Three optical structures of chicoric acid.

FIGURE 2 | Chemical structure, bioactive effects, and acquisition pathways of chicoric acid.
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Cichorium originated in ancient Rome and Greece and was
distributed in theMediterranean and Southwest Asia. Of the eight
total species, three exist in China. C. intybus, a perennial herb of
Cichorium, was cultivated as a high-grade vegetable in the 19th
century. It can be cooked into lettuce (Carazzone et al., 2013) and
used for health care. Chicoric acid is an important index for the
quality evaluation of C. intybus (Mascherpa et al., 2012; Zhou,
2014), and the amount of chicoric acid differs significantly in
different regions and in different areas of the same plant (Xu,
2008).

Lactuca sativa, an annual or biennial vegetable crop, is widely
cultivated in temperate areas around the globe. An in-depth
analysis did not reveal the origin of L. sativa, but it was first
domesticated near the Caucasus (Wei et al., 2021). A variety of
cultivation types gradually formed after long-term directional
selection and cultivation (Lin, 2018), which were divided into six
cultivation types (Zhang, 2018). The content of chicoric acid
varied significantly in response to different storage environments

(Degl et al., 2008; Oh et al., 2009; Becker et al., 2015; Vidal et al.,
2019).

There are more than 2,000 species of the Taraxacum, widely
distributed from the temperate areas in the northern hemisphere
to the central subtropical regions and South America (Gong et al.,
2001). Dandelion is a perennial herb of Taraxacum, and there are
20 species used as medicinal plants in China. Large-scale artificial
cultivation has continued in China because of its low growing
environment requirements, simple management techniques, and
high planting yield (Chen et al., 2020). Taraxacum mongolicum
and Taraxacum sinicmKitag reportedly contain chicoric acid, but
there are few studies on the topic (Wang et al., 2017; Nie et al.,
2020).

There are 50 species of Sonchus worldwide, located mostly
in Europe, Asia, Africa, and the Mediterranean/Atlantic
islands (Liu, 2016). Sonchus brachyotus, an annual or
perennial herb of Sonchus, sees extensive use in northwest
and southern China. S. oleraceus, distributed in Northeast,

TABLE 1 | Plants that are the principal sources of chicoric acid.

Plant names Family Genus Resource
distribution

Morphological
classification

Plant parts References

Echinacea purpurea
(L.) Moench

Asteraceae Echinacea North America and China Perennial herb Aerial parts and
roots

Shah et al. (2007); Wills and Stuart
(1999); Wang et al. (2016)

Pterocypsela
laciniata (Houtt.) Shih

Asteraceae Pterocypsela East Asia and Southeast
Asia

Perennial herb Leaves He (2012); Ke et al. (2015)

Cichorium intybus L. Asteraceae Cichorium Mediterranean region and
Southwest Asia

Perennial herb Aerial parts and
roots

Carazzone et al. (2013);
Mascherpa et al. (2012); Zhou
(2014); Xu (2008)

Lactuca sativa L. Asteraceae Lactuca Temperate areas Annual or biennial
plant

Lettuce head and
leaves

Wei et al. (2021); Lin (2018); Zhang
(2018); Degl et al. (2008); Vidal
et al. (2019)

Taraxacum
mongolicum Hand.-
Mazz.

Asteraceae Taraxacum Temperate areas Perennial herb Aerial parts and
roots

Nie et al. (2020); Wang et al.
(2017); Chen et al. (2020)

Sonchus
brachyotus DC.

Asteraceae Sonchus Northwest and South of
China

Annual or perennial
herb

Aerial parts and
roots

Liu (2016)

Sonchus
oleraceus L.

Asteraceae Sonchus Northeast, North, Central,
and South China

Annual or biennial
herb

Leaves Ma et al. (2011)

Ixeris chinensis
(Thunb.) Nakai

Asteraceae Ixeris North, South, and East
China

Perennial herb Aerial parts and
roots

Dong et al. (2008)

Hypochaeris
radicata L.

Asteraceae Hypochaeris Europe and China Perennial herb Flowering heads Ye et al. (2007); Zidorn et al. (2005);
Ortiz et al. (2008)

Bidens tripartita L. Asteraceae Bidens China Perennial plant Aerial parts Pozharitskaya et al. (2010)
Rabdosia rubescens
(Hemsl.) Hara

Lamiaceae Rabdosia China Small shrub Leaves Zhao et al. (2013)

Orthosiphon
stamineus Benth.

Lamiaceae Orthosiphon India, Malaysia, China,
Australia, and the Pacific
area

Perennial herb Leaves Ameer et al. (2012); Guo et al.
(2019b)

Echinodorus
grandiflorus

Alismataceae Echinodorus Central America and South
Brazil

Perennial marsh
plant

Leaves Han and Shi (2009); Marques et al.
(2017)

Arachis hypogaea L. Leguminosae Arachis Tropics and Subtropics Annual plant Leaf terminals Krishna et al. (2015); Zhou and
Meng (2017)

Equisetum
arvense L.

Equisetaceae Equisetum Europe, Asia, and North
America

Perennial herb Sprouts and
gametophytes

Veit et al. (1991); Veit et al. (1992);
Xia (2019)

Lygodium japonicum
(Thunb.) Sw.

Lygodiaceae Lygodium Australia and China Perennial climbing
plant

Frond Yang et al. (2021)

Zostera marina L. Potamogetonaceae Zostera Temperate northern
hemisphere

Perennial herb Leaves Min et al. (2019); Pilavtepe et al.
(2012)
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North, Central, and Southern China (Ma et al., 2011), is not
only easy to cultivate but also rich in nutrition. Sonchus asper
(L.) Hill and S. oleraceus also contain chicoric acid, but the
amount remains unclear.

There are 20 species of Ixeris in North, South, and East
China. Ixeris chinensis and Ixeris sonchifolia Hance belong to
Ixeris. The perennial herb I. chinensis has been used as a
traditional Chinese herbal medicine for thousands of years.
I. sonchifolia has been cultivated artificially recently in many
areas. Chicoric acid is often used as one of the quality control
indexes of these plants (Dong et al., 2008; Zhao and Jiang,
2016).

Hypochaeris radicata is a perennial herb, and studies
have indicated that the oldest populations of H. radicata
originated in Europe and expanded via at least
three migratory routes to other countries (Ortiz et al., 2008)
and have been found in Zhejiang and Guizhou of China (Ye et al.,
2007). The species are largely used for both food and medicine in
Italy. One study has shown a positive correlation between the

altitude of the growth environment and the content of chicoric
acid (Zidorn et al., 2005). Bidens tripartita, a perennial plant, is
widely distributed throughout China. Previous studies on B.
tripartita confirmed the presence of chicoric acid in this plant
(Pozharitskaya et al., 2010).

2.1.1.2 Lamiaceae
Rabdosia rubescens, a small shrub ofRabdosia, is native to the valley
of the Yellow River and the Yangtze River, as well as the Jiyuan
TaihangMountain andWangwuMountain in Henan province. The
growing environment is characterized by hillsides and woodlands.
Recently, the artificial planting of R. rubescens in Jiyuan City has
expanded, with yields accounting for 95% of the total Chinese
output. R. rubescens in Jiyuan City is a “national geographic
product.” In China, R. rubescens is consumed as a famous
traditional medicinal herb and tea (Zhao et al., 2013). Although
the plant contains chicoric acid, not much research exists on this.

Ocimum basilicum L., a perennial herb of theOcimum, hasmore
than 150 species around the world. O. basilicum, originated in the

TABLE 2 | Comparison of chicoric acid levels in Echinacea purpurea (L.) Moench.

Extraction methods Medicinal
origin

Medicinal parts Extraction
conditions

Yield of
chicoric acid

(%)

References

Reflux extraction Shaanxi Dried aboveground parts Extraction was performed 3 times with 1.5 h each
time

1.03 Zhong et al.
(2010)

Xinjiang All dried grasses 15 times; 40% ethanol, 3 times, 2 h each time 0.55 Ma et al. (2014)
The extraction temperature was 90°C

Guangdong All dried grasses 8 times; 80% ethanol, 3 times, 1 h each time 1.09 Zhang et al.
(2008)

Hebei Dried flowers 20 times; 20% ethanol, 2 times, 2 h each time,
extraction temperature was 90°C

0.75 Sun et al. (2019)

Shandong Dried flowers 20 times; 60% ethanol, 2 times, 2 h each time,
extraction temperature of 70°C

2.30 Cheng et al.
(2018)

Ultrasonication extraction Anhui All dried grasses 8 times; 55% ethanol was extracted twice, 45 min
each

1.22 Cao et al.
(2010)

Beijing Dried roots, stems, leaves,
flowers, aboveground parts

125 times; methanol–0.5% phosphoric acid (4:1)
solution was extracted by ultrasound for 40 min

0.90 (root) Wang et al.
(2002)0.43 (stem)

1.84 (leaf)
2.15 (flower)

1.05 (overground part)
Shandong Dried roots, stems, leaves,

flowers
125 times; 70% methanol, ultrasound 30 min 1.28 (root) Han et al. (2014)

0.36 (stem)
2.32 (leaf)

2.11 (flower)
Shandong Dried aboveground parts 62.5 times; 70% methanol was extracted by

ultrasonography for 3 times, 10 min each
2.02 Xin et al. (2012)

Guangdong Dried roots, stems, leaves,
flowers, whole grasses

62.5 times; methanol–0.5% phosphoric acid
aqueous solution (4:1) was extracted by
ultrasound for 60 min

1.21 (root) Li et al. (2011)
0.07 (stem)
0.56 (leaf)

0.25 (flower)
0.33 (whole herb)

Ultrasonic microwave co-
extraction method

Tianjin Fresh roots 25 times; 50% ethanol, ultrasound for 90 s without
microwave power; the extraction power was
300 W and the extraction time was 660 s

0.02 Wang et al.
(2015)

Spray extraction Shaanxi All dried grasses Spray 4 times 70% ethanol at 20 kg pressure for
3 min

0.53 Zhao and Yang
(2018)

Supercritical carbon
dioxide extraction
method

Guangdong Dried flowers CO2 was extracted with 40% ethanol entrainment
at a flow rate of 25 kg/hand a pressure of 30 MPa
for 2 h at 60°C

1.06 Lin et al. (2011)
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warm tropical climates of India, Africa, and southern Asia and has
been cultivated worldwide as an aromatic crop and ornamental
plant. Some research reported that levels of chicoric acid varied from
0.09 to 0.16 mg/g in dried samples (Kwee and Niemeyer, 2011).

Orthosiphon stamineus belongs to a perennial Orthosiphon
herb, occurs widely in India, Malaysia, China, Australia, and the
Pacific area. O. stamineus is a valued medicinal plant in
traditional folk medicine (Ameer et al., 2012). Leaves of this
plant find use in tea, and the rest of the dried plant is used for
medicine. Chicoric acid is also the most important bioactive
component of this plant (Guo et al., 2019a).

2.1.1.3 Other Genera
Chicoric acid has been detected in other plants from different
families, namely, Echinodorus grandiflorus, Cucurbita pepo L.
(Iswaldi et al., 2013), Arachis hypogaea, Pulsatilla chinensis (Bge.)
Regel (Zhang et al., 2008), and Pyracantha fortuneana (Maxim.)
Li. However, acid levels in these plants are unknown and require
additional research.

E. grandiflorus, a perennial marsh plant of the Alismataceae,
originates from Central America and southern Brazil (Han and

Shi, 2009) and has medicinal uses (Marques et al., 2017). C. pepo
is a trailing annual herb of the Cucurbitaceae. A. hypogaea, an
annual plant of the Leguminosae, is widely distributed in the
tropics and subtropics. A. hypogaea plays an important role in
the world agricultural economy not only for vegetable oil but also
as a source of proteins, minerals, and vitamins (Krishna et al.,
2015). A. hypogaea is the highest yielding oil crop in China
(Zhou and Meng, 2017).

P. fortuneana is an evergreen shrub or small tree of the
Rosaceae. Because of its strong adaptability, P. fortuneana
thrives with high yields and is widely distributed in Asia and
Europe. Chicoric acid was also detected in the fruit of P.
fortuneana. P. chinensis, belonging to the genus Pulsatilla of
the buttercup family, is also widely distributed in Europe and
Asia. Eleven of the 43 species of this plant have been found in
Liaoning, Hebei, and Henan.

2.1.2 Pteridophyta
Chicoric acid may be a specific chemical component in
Pteridophyta, because chicoric acid has been detected in 23 of
29 species (Hasegawa and Taneyama, 1973). Pteridaceae,

TABLE 3 | Comparison of the content of chicoric acid in different plants.

Herbs Medicinal
origin

Medicinal parts Extraction
methods

Extraction
conditions

Yield of
chicoric
acid
(%)

References

Cichorium intybus L. Xinjiang Dried stem Ultrasonication
extraction

21 times; 50% ethanol, ultrasound at 60°C
for 50 min (180 W)

0.15 Meng et al. (2015);
Meng (2016)

Jiangsu Dried
overground part

Ultrasonication
extraction

12 times; 54% ethanol, ultrasound 30 min
(40 w)

0.15 Xu (2008)

Jiangsu Dried
overground part

Reflux extraction 24 times; 54% ethanol was refluxed at 90°C
for 1 h

0.15 Xu (2008)

Netherlands Dried
overground part

Dried overground
part

Reflux of 60 times 70% methanol at 60°C
for 1 h

0.88 Hua et al. (2011)

Ixeris chinensis (Thunb.)
Nakai

Shanxi Dried
overground part

Reflux extraction 50 times; 70% ethanol heated reflux
extraction 1 h

0.77–1.14 Liu (2016)

Sonchus
brachyotus DC.

Shanxi Dried
overground part

Reflux extraction 50 times; 70% ethanol heated reflux
extraction 1 h

0.34–2.69 Liu (2016)

Pterocypsela laciniata
(Houtt.) Shih

Jiangsu Dried leaves Ultrasonication
extraction

Ultrasonic extraction with 100 times 80%
ethanol solution at 45°C for 70 min

2.61 Liu (2016)

Sonchus asper (L.) Hill Jiangsu Dried leaves Ultrasonication
extraction

Ultrasonic extraction with 100 times 80%
ethanol solution at 45°C for 70 min

1.50 Ke (2015)

FIGURE 3 | Chemical synthesis pathway 1 of chicoric acid.
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Dryopteridaceae, Equisetaceae, and other Pteridophyta (Cao
et al., 2013) have been cultivated for health care.

Equisetum arvense, a perennial herb of Equisetaceae, is
native to Europe, Asia, and North America and widely
distributed in Heilongjiang (Xia, 2019). Meso-chicoric acid
was isolated from the sprouts (fertile) and gametophytes of E.
arvense (Veit et al., 1991; Veit et al., 1992), but little reports about
the content.

Pteris cretica L. and Onychium japonicum (Thumb.) Kze.
belong to Pteridaceae. P. cretica is a perennial evergreen herb.
O. japonicum occurs primarily in Taiwan, Japan, Korea, and other
Asian countries and is used to treat enteritis, jaundice, flu, chronic
gastritis, and fever. Dryopteris erythrosora (D.C. Eaton) Kuntze is
a species of Dryopteridaceae native to China and Japan and
distributed throughout East Asia. Chicoric acid was detected in
the frond of these plants.

FIGURE 4 | Chemical synthesis pathway 2 of chicoric acid.

FIGURE 5 | Chemical synthesis pathway 3 of chicoric acid.
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Lygodium japonicum, a perennial climbing plant of
Lygodiaceae, mainly distributed in Australia and the
southwestern area of China (Yang et al., 2021). The entire L.
japonicum plant is used to treat various inflammatory diseases.
Pteridium aquilinum (L.) Kuhn is a serious invasive weed of
upland and marginal lands in many parts of the world (Stewart
et al., 2008); however, chicoric acid has been detected in it.

2.1.3 Other Categories
The ocean is a potential source of various raw materials for food
and drugs. Compared with terrestrial plants, marine plants with
large biomass have obvious advantages as a source of chemical

raw materials. Cymodocea nodosa, Syringodium fifiliforme Kütz,
and Posidonia oceanica (L.) Delile also contain chicoric acid.

P. oceanica occurs primarily in the Mediterranean Sea. Phenolic
compounds are the major metabolites and chicoric acid accounts for
80–89% of the total phenolics. Due to the significant content of
chicoric acid, more and more investigations on this plant have taken
place (Haznedaroglu and Zeybek, 2007). However, this species is
endangered because of anthropogenic effects. C. nodosa is one of the
most important macrophytes in the Mediterranean Sea and eastern
Atlantic coasts. Some studies have shown that the content of chicoric
acid varies in different parts of the plant (Grignon-Dubois and
Rezzonico, 2013).

FIGURE 6 | Chemical synthesis pathway 4 of chicoric acid.

FIGURE 7 | Chemical synthesis pathway 5 of chicoric acid.

Frontiers in Chemistry | www.frontiersin.org June 2022 | Volume 10 | Article 8886737

Yang et al. Source and Efficacy of Chicoric Acid

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zostera marina, the most widespread seagrass species of
Potamogetonaceae throughout the temperate northern
hemisphere (Min et al., 2019), is the largest seagrass meadow in
the Bohai Sea and Yellow Sea areas in China. Although chicoric acid
has been detected in the leaves of Z. marina, the data are incomplete
(Pilavtepe et al., 2012). S. fifiliforme is distributed across the
Caribbean Sea and the Gulf of Mexico as seagrass, and it has
been reported that S. fifiliforme contains chicoric acid, but no
exact statistics are available (Nuissier et al., 2010).

2.2 Methods of Chicoric Acid Extractions
and Its Contents in Plants
The amount of chicoric acid is closely related to the plant
source, medicinal parts, harvest period, processing, and
extraction methods. So far, a systematic study on chicoric
acid levels has not been found. Although chicoric acid comes
from a variety of plants, the selection of safe and economical
plant sources requires further research. By analyzing the
relationship between factors and the content of chicoric
acid, the distribution of chicoric acid in the plant can be
preliminarily predicted, which provides a basis for further
development of chicoric acid.

2.2.1 Content of Chicoric Acid in Echinacea purpurea
E. purpurea is the raw material for chicoric acid extraction in most
studies. Several factors impact chicoric acid levels (Table 2). For 2-
year old E. purpurea, the content of chicoric acid is higher in flowers
than in other parts during flowering (Wang et al., 2002). The content
of chicoric acid in the stems, leaves, and flowers were 9.7%, 44.7%,
and 23.6%, respectively (Li et al., 2011). The chicoric acid levels
maximized during flowering and provided the best harvest period
for E. purpurea (Innocenti et al., 2005).

2.2.2 Chicoric Acid Levels in Other Plant Resources
Related references have reported that the content of chicoric
acid in P. laciniata is 26.1 mg/g, 2.2 times higher than in E.
purpurea (Ke, 2015). Chicoric acid levels varied with different

plant areas and medicinal parts in C. intybus, but chicoric acid
levels above ground from Jiangsu were higher (Innocenti et al.,
2005). The content of chicoric acid in I. chinensis and S.
brachyotus varied greatly, the reason for which may be
related to medicinal parts and picking time (Liu, 2016),
drying process and preparation method (Sun, 2011), and
extraction conditions and other factors (Xin et al., 2012). A
summary of these studies appears in Table 3.

3 CHEMICAL SYNTHESIS OF CHICORIC
ACID

E. purpurea is often used as a crude material for chicoric acid
production, but a large-scale preparation of high purity chicoric
acid has not been reported, which limits its further development
and utilization. This requires a synthetic method as an alternative
to complement natural plant extraction. In this article, synthetic
methods to produce chicoric acid are summarized and the
characteristics of each method are compared to provide new
synthetic routes.

3.1 Chicoric Acid Synthesis Using (E)-3-(2-
Oxo-3a,7a-Dihydrobenzo[d][1,3]Dioxol-5-
yl)Acryloyl Chloride and (2R,3S)-2,3-
Dihydroxysuccinic Acid
In 1958, chicoric acid was first extracted from C. intybus and its
different configurations were chemically synthesized. L-chicoric
acid was synthesized via caffeoyl chloride and D-tartaric acid and
deprotection of acetic acid (Figure 3). D-chicoric acid, L-chicoric
acid, and meso-chicoric acid were synthesized by reactions with
L-tartaric acid, D-tartaric acid, and meso-tartaric acid,
respectively. These syntheses were simple, but the purity of
chicoric acid was too low. In addition, the use of the unstable
caffeoyl chloride led to low yields of chicoric acid (Scarpati and
Oriente, 1958).

FIGURE 8 | Chemical synthesis pathway 6 of chicoric acid.
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3.2 Chicoric Acid Synthesis Using Di-Tert-
Butyl (2R,3S)-2,3-Dihydroxysuccinate and
(E)-4-(3-Chloro-3-Oxoprop-1-En-1-yl)-1,2-
Phenylene Diacetate
Based on previous research, the optimized process simplified
production and occurred under mild reaction conditions
(Kulangiappar et al., 2014). First, tert-butyl tartrate was
obtained by protecting the carboxyl group of tartaric acid
with a tert-butyl group followed by protecting the phenolic
hydroxyl of caffeic acid with an acetyl group to produce
diacetyl caffeic acid. Then, compound 2 reacted with
compound 3, and finally the protective group of previous
reaction was removed to obtain L-chicoric acid (Figure 4).
The reaction conditions of this method are mild, but L-tert-
butyl tartrate is difficult to synthesize. Many by-products and
low yields limit large-scale production.

3.3 Chicoric Acid Synthesis Using
Dibenzhydryl (2R,3R)-2,3-
Dihydroxysuccinate and (Z)-4-(3-Chloro-3-
Oxoprop-1-En-1-yl)-1,2-Phenylene
Dimethyl Bis(Carbonate)
King et al. (1999) reported a method for synthesizing chicoric
acid with different configurations by protecting tartaric acid
with diphenylmethyl. The synthesis of chicoric acid was
mainly carried out in two directions (Figure 5).
Diphenylmethane protected the carboxyl group of L-tartaric
acid, and the phenolic hydroxyl group of caffeic acid was
protected by ClCOOMe to obtain 3,4-cyclocarbonate of
caffeoyl chloride. The two protected components reacted,
and the protecting groups were removed to obtain
L-chicoric acid. Too many steps lead to an overall yield of
33.3%. In addition, the carboxyl-protected crude material of

FIGURE 9 | Biosynthetic pathway of chicoric acid.
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TABLE 4 | In vitro effects of chicoric acid in the treatment of various disorders.

Disorders Models Dose
(μM)

Duration
(h)

Effects Suggested mechanisms References

Diabetes HUVECs 100 24 ↓ cell apoptosis (+) the AMPK signaling pathway; ↓ Iκ-Bα;
↓ NF-κB; ↓ iNOS; ↓ IL-1β; ↓ p-eNOS

Ma et al. (2021)
↓ p65 NF-κB nuclear translocation
↓ oxidative/nitrative stresses

PC-12 cells 10
and 20

24 ↓ misfolding; ↓ fibrillation of hIAPP; ↓
aggregation

↓ Cytotoxicity; ↑ biocompatibility Luo et al. (2020)

Lipid
metabolism

HepG2 human
hepatoma

100
and 200

24 ↓ lipid accumulation (−) SREBP-1/FAS signaling pathways; (+)
PPARa/UCP2 signaling pathways

Mohammadi et al.
(2020)

HepG2 human
hepatoma

10
and 20

24 ↓ lipid accumulation; ↓ oxidative stress; ↓
inflammation

↑ AMPK; ↑ Nrf2; ↓ NF-κB Ding et al. (2020)

Inflammation PBMCs (T2DM
patients)

50 6 ↓ inflammation ↓ IL-6; ↑ SIRT1; ↑ pAMPK Sadeghabadi et al.
(2019)

SH-SY5Y cells 80 12 (−) inflammatory factor release; ↑
mitochondrial function and energy
metabolism

↑ PGC-1α; ↑ SIRT1; ↑ pAMPK Liu et al. (2019)

Gastric
function

Human gastric
cancer cell

20 48 (−) apoptosis in gastric cancer cells; ↓ cell
viability

↑ p70S6 kinase; ↑AMPK; ↑PERK; ↑ATF4 Sun X S et al.
(2019)

↑, increase; ↓, decrease; (+), active; (−), inhibit; N/A, not available; HUVECs, human umbilical vein endothelial cells; NF-κB, nuclear factor-kappa B; Iκ-Bα, inhibitor kappa B alpha; iNOS,
inducible nitric oxide synthase; IL-1β, interleukin-1 beta; hIAPP, human islet amyloid polypeptide; AMPK, AMP-activated protein kinase; Nrf2, nuclear factor–erythroid 2 related factor 2;
PBMCs, peripheral blood mononuclear cells; T2DM, type 2 diabetes mellitus; IL6, interleukin 6; PGC-1α, peroxisome proliferator–activated receptor-γ coactivator-1α; SIRT1, silent
information regulator type 1; pAMPK, phospho-AMP–activated protein kinase; PERK, protein kinase RNA-like ER kinase; ATF4, activating transcription factors 4.

TABLE 5 | In vivo effects of chicoric acid in the treatment of various disorders.

Disorders Species (sex) Models Dose
(mg/kg/d)

Duration
(days)

Effects Suggested mechanisms References

Brain
function

C57BL/6 mice (M) Parkinson’s disease
(MPTP)

40, p.o. 12 ↑ immunological response ↑ BDNF; ↑ DA; ↑ 5-HT Wang et al.
(2022)

Chicken embryo
(N/A)

Neurotoxicity (TH) 100 µg/
60 g (air cell
injection)

19 ↑ Antioxidant; ↑ anti-
inflammatory; ↑
genoprotective; ↑
antiapoptotic; ↓NO; ↓MPO

↓ TNF-α; ↓ IL-1β; ↓ CASP3; ↓
BCL-2; ↓ NF-κB1

Farag et al.
(2021)

Liver
function

C57BL/6 mice (M) Acute liver injury (LPS
+ d-GalN)

50, p.o. 1 ↓ Hepatic injury; ↓
inflammation

(+) Nrf2 pathway; ↓ MAPKs; ↓
NF-κB; ↓ ALT; ↓ AST; ↑ AMPK

Li et al. (2020)

Wistar rats (M) Liver injury
(methotrexate)

25 and
50, p.o.

19 ↓ Hepatic injury; ↓
inflammation; ↓ oxidative
stress

(+) Nrf2/HO-1 signaling and
PPARγ; ↑Nrf2; ↑HO-1; ↑NQO-
1; ↑ PPARγ; ↑ BCL-2; ↓ Bax; ↓
cytochrome c; ↓ caspase-3

Hussein et al.
(2020)

C57BL/6 mice (M) Nonalcoholic fatty liver
(high-fat diet)

15 or
30, p.o.

63 ↓ lipid accumulation; ↓
oxidative stress; ↓
inflammation

↑ SOD; ↓ ROS; ↑ AMPK; ↑ Nrf2;
↓ NF-κB

Ding et al.
(2020)

Aging Caenorhabditis
elegans (N/A)

Lifespan extension
(chicoric acid)

25 and
50, p.o.

12 ↑ Oxidative stress
resistance; ↓ ROS; ↓
pumping rate; ↓locomotive
activity

In part through regulation AAK-
2 and SKN-1

Peng et al.
(2019)

Kidney
function

Wistar rats (M) Acute kidney injury
(methotrexate)

25 and
50, i.p.

15 (−) apoptosis; ↑ antioxidant
defenses

↓ NF-κB; ↓ p65; ↓ NLRP3; ↓
caspase-1; ↓ IL-1β; ↓ caspase-
3; ↑ BCL-2

Abd EI-Twab
et al. (2019)

Lung
function

BALB/c mice (M) Acute lung injury
(lipopolysaccharide)

20 or
40, i.p.

12 ↓ protein leakage; ↓ lung
wet/dry ratio; ↑ antioxidant
defenses

↓ MAPK; ↑ SOD; ↑ HO-1; ↑
Nrf2;↓ MPO

Ding et al.
(2019)

M, male; F, female; ↑, increase; ↓, decrease; (+), active; (−), inhibit; p.o., per os (oral administration); i.p., intraperitoneal injection; N/A, not available; BDNF, brain-derived neurotrophic
factor; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; DA, dopamine; 5-HT, 5-hydroxyindoleacetic acid; TH, thiacloprid; TNF-α, tumor necrosis factor-alpha; NO, nitric oxide;
MPO, myeloperoxidase; CASP3, apoptosis-related cysteine peptidase; BCL-2, B-cell CLL/lymphoma 2; LPS, lipopolysaccharide; d-GalN, d-galactosamine; MAPKs, mitogen-activated
protein kinases; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AMPK, AMP-activated protein kinase; HO-1, heme oxygenase-1; PPARγ, proliferator-activated receptor
gamma; SOD, serum superoxide dismutase; ROS, reactive oxygen species; ROS, reactive oxygen species; AAK-2, a homolog of adenosine monophosphate (AMP)–activated protein
kinase; SKN-1, a homolog of nuclear factor–erythroid 2 related factor 2; MPO, inflammatory cell infiltration, myeloperoxidase.
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tartaric acid diphenyl diazomethane was unstable to the point
of explosion during synthesis, which seriously curtails
industrial adaptation.

3.4 Chicoric Acid Synthesis Using Dibenzyl
(2R,3R)-2,3-Dihydroxysuccinate and (E)-3-
(3,4-Bis(Benzyloxy)Phenyl)Acrylic Acid
To address problems caused by expensive tartaric acid
derivatives and poor reproducibility, the synthesis of
chicoric acid was further optimized. Both carboxyl groups
of tartaric acid and the phenolic hydroxyl group of caffeic
acid were protected by benzylation, followed by
esterification and reduction to obtain L-chicoric acid
(Figure 6). This synthetic route used heavy metal salts,
which increased the production cost and led to heavy
metal residues. In addition, the by-products affected drug
quality (Lamidey et al., 2002).

3.5 Chicoric Acid Synthesis Using (E)-3-(3,4-
Diacetoxyphenyl)Acrylic Acid and (2R,3R)-
2,3-Dihydroxysuccinic Acid
Chicoric acid synthesis was improved based on a previous work to
simplify the route and improve the purity (Zhou, 2014). The
phenolic hydroxyl of caffeic acid was protected by an acetyl group
and reacted with L-tartaric acid to obtain (2R,3R)-2,3-bis(((E)-3-
(3,4-diacetoxyphenyl)acryloyl)oxy)succinic acid. LiOH hydrolysis
removed the protecting group; the metal ions and chicoric acid
formed a stable complex and were hydrolyzed to obtain relatively
pure chicoric acid (Figure 7). Although the purity of the product
was 99.7%, it did not maximize the yield or reduce the cost.

3.6 Chicoric Acid Synthesis Using (E)-
Hypochlorous (E)-3-(2-Oxidobenzo[d][1,3,2]
Aioxathiol-5-yl)Acrylic Anhydride and
(2R,3R)-2,3-Dihydroxysuccinic Acid
To solve the problem of high cost and low yield, the synthesis of
chicoric acid was optimized, and its crystal shape studied (Tian
et al., 2021). The product of caffeic acid and sulfoxide chloride
reacted with L-tartaric acid to yield L-gesnerate sulfonate. After
removing the protecting group in an alkaline solution,
L-chicoric acid was obtained (Hunan Normal University,
Changsha, 2021; Figure 8). After further crystallization, the
yield and purity of chicoric acid were 80.5% and 98.5%,
respectively. Although the purity and yield of the product
increased, the process was still cumbersome.

The structure of chicoric acid was obtained by
intermolecular esterification of tartaric acid and two
molecules of caffeic acid. Because both tartaric acid and
caffeic acid contained hydroxyl and carboxyl groups, side
reactions readily occurred. Therefore, the most common
synthetic pathway utilized protective groups to
protect phenolic hydroxyl groups of caffeic acid and
carboxyl groups of tartaric acid before esterification. The
difference lies in the selection of raw materials and the

different reagents to protect phenolic hydroxyl groups of
tartaric acid. These protecting groups include tert-butyl,
benzyl, or carboxyl benzyl to protect tartaric acid, while
the caffeic acid phenol hydroxyl was protected by acetyl,
benzyl ethyl, oxygen acyl, or metal ions. Despite the myriad
synthetic methods, none brought higher quality chicoric acid
in high purity, yield, and economic and environmental
protection.

4 BIOSYNTHESIS OF CHICORIC ACID

Chicoric acid is a phenolic acid and generally forms via the
shikimic acid-phenylpropanoid pathway (Kuhnl et al., 1987;
Petersen et al., 2009). Understanding what factors regulate the
distribution of chicoric acid in plants may help
regulate chicoric acid accumulation by altering certain
conditions. Although there are many studies on the
biosynthetic pathway of chicoric acid, its mechanism
remains unclear.

Recently, a study filled this gap by reporting the
biosynthetic pathway of chicoric acid in Echinacea (Fu
et al., 2021). The biosynthesis of chicoric acid occurs in
three main stages. Firstly, phenylpropanoid reacts to form
caffeoyl CoA via the enzyme EpHCT. Secondly, EpHTT and
EpHQT were responsible for the biosynthesis of caftaric acid
and chlorogenic acid in the cytosol, respectively. Finally,
caftaric acid and chlorogenic acid were transferred from the
cytosol into vacuole, and chicoric acid was synthesized via
EpCAS (Figure 9). The biosynthetic pathway of chicoric acid
production has been reprogrammed in tobacco, but its
applicability in other species needs additional study.

5 BIOACTIVE EFFECTS

Chicoric acid has a long history of clinical use and can
effectively treat a variety of diseases. Because of this,
numerous studies that have focused on chicoric acid have
been conducted on the biological activities of both in vitro
and in vivo models. Chicoric acid has long attracted attention
as a medication and nutraceutical to improve health based on
its anti-inflammation (Liu, 2016; Liu et al., 2017a; Liu et al.,
2017b; Tsai et al., 2017; Liu et al., 2019; Li et al., 2020), glucose
and lipid homeostasis (Kim et al., 2017; Lipchock et al., 2017),
neuroprotection effects (Bekinschtein et al., 2008; Kour and
Bani, 2011a), anti-aging effects (De Winter, 2015; Peng et al.,
2019), and antioxidant and immune-stimulating properties
(Kour and Bani, 2011b; Schlernitzauer et al., 2013; Chen et al.,
2017; Wang et al., 2017; Jia et al., 2018; Ma et al., 2018). In
addition, its antivirus properties, such as immunodeficiency
viruses (Healy et al., 2009; Crosby et al., 2010; Nobela et al.,
2018), herpes simplex viruses (Langland et al., 2018), and
respiratory syncytial virus (Zhang et al., 2021) are
particularly significant. Tables 4 and 5 summarize these
studies.
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6 CONCLUSION AND PERSPECTIVES

Although there are many chemical synthetic methods, the
environmentally friendly and economic synthesis method
for bulk preparation of chicoric acid with high purity and
high yield needs optimization. Chicoric acid is unstable and
the solubility of chicoric acid varies greatly in different
solvents. Therefore, the stability and solubility of chicoric
acid can be improved by a structural modification to
preserve the activity of chicoric acid to meet the needs of
different dosages. The biosynthesis of chicoric acid in E.
purpurea is still at the preliminary research stage, and the
mechanism also requires additional study to clarify. The
enrichment of chicoric acid in different plants, parts, and
stages can be further explained via an in-depth study of its
biosynthesis to regulate and improve the content of chicoric
acid by modern biotechnology. Even though there are an
increasing number of studies reporting bioactivities of
chicoric acid, there are still limitations in arriving at a
concrete conclusion due to differences in models, doses, and
treatment durations used. Thus, research on chicoric acid
requires additional study, and in-depth studies on the
pharmacodynamic mechanism are needed to guide clinical
medication.

L-chicoric acid was isolated from E. purpurea and P.
chinensis (Zhang et al., 2008), D-chicoric acid from C.
intybus, and meso-chicoric acid from E. arvense (Veit et al.,
1991; Veit et al., 1992), but the optical isomers of chicoric acid
from different plants have not been systematically
summarized and their pharmacological activities of
different optical isomers need to be further studied. C.
intybus, L. sativa, E. purpurea, and other herbs belong to
medicinal and food homologous plants. The amount of
chicoric acid in P. laciniata was significantly higher than in
E. purpurea. Some marine resources with large biomasses
require more study and utilization. New medicinal

resources of chicoric acid should be expanded using
resource survey, biological relationships, pharmacological
activity, and similarity of the growing environment. It is
necessary to systematically study the related factors
affecting chicoric acid levels, look for dominant species,
and formulate a good scientific agriculture practice based
on the biosynthesis and accumulation mechanism of
chicoric acid. At the same time, a combination of modern
technology and new methods such as tissue culture and
biotechnology should help optimize the synthesis of
chicoric acid.
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