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With the great adjustment of world industrialization and the continuous improvement of
energy consumption requirements, the selective conversion of biomass-based platform
molecules to high-value chemicals and biofuels has become one of the most important
topics of current research. Catalysis is an essential approach to achieve energy-chemical
conversion through the “bond breaking-bond formation” principle, which opens a broad
world for the energy sector. Single-atom catalysts (SACs) are a new frontier in the field of
catalysis in recent years, and exciting achievements have been made in biomass energy
chemistry. This mini-review focuses on catalytic conversion of biomass-based levulinic
acid (LA) to γ-valerolactone (GVL) over SACs. The current challenges and future
development directions of SACs-mediated catalytic upgrading of biomass-based LA to
produce value-added GVL, and the preparation and characterization of SACs are analyzed
and summarized, aiming to provide theoretical guidance for further development of this
emerging field.
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INTRODUCTION

With advances in research and industrial technology, biomass is now increasingly deemed as one of
the most valuable renewable resources that can be converted into a variety of platformmolecules, fine
chemicals, biofuels, and solid biochars (Li et al., 2015; Liu et al., 2015; Li et al., 2017; Li H et al., 2019;
Li H et al., 2020; Meng and Li, 2021; Meng et al., 2022). γ-Valerolactone (GVL) is an important
platform molecule and green solvent, which can be used to produce liquid fuels, polymers,
intermediates for fine chemicals synthesis, and seasonings (Wright and Palkovits, 2012; Zhang,
2016; Ye et al., 2020). Catalytic hydrogenation of biomass-based levulinic acid (LA) is one of the most
effective methods to produce GVL, which has attracted increasing attention in recent years.
Homogeneous catalysts can be uniformly dispersed in the catalytic system, which can effectively
promote LA hydrogenation to produce GVL. However, due to the high boiling point of GVL
(207–208°C), the product/catalyst separated by distillation is not economical, resulting in a
homogeneous system not suitable for the target production of GVL (Zhang, 2016). Therefore,
the large-scale production of GVL almost certainly depends on heterogeneous catalysts, because
heterogeneous catalysts are easier to be separated from nonvolatile GVL (Zhang, 2016; Zhang et al.,
2019).
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Metal sites play an important role in the hydrogenation,
intramolecular (trans) esterification or dehydration of LA to
obtain GVL (Dutta et al., 2019). Therefore, improving the
utilization rate of metal atoms is the key step to reduce the
production cost and obtain high efficiency in the whole catalytic
process. Single-atom catalysts (SACs) are supported catalysts
containing only isolated active centers (Chen et al., 2018; Ji
et al., 2020), in which a strong interaction or considerable
charge transfer between highly dispersed single metal atoms
and solid supports. This unique structure allows single-metal
atoms of the SACs to have a desired electronic structure and carry
specific electrical charges different from those of conventional
metal nanoparticles (Ding et al., 2019; Xue et al., 2022). It seems
one of the most promising materials for rational utilization of
metal resources and atomic economy. In theory, all the involved
metal atoms could behave as homogeneously as homogeneous
catalysts, with an atomic efficiency of 100% (Ding et al., 2019).
SACs have shown excellent catalytic performance, with respect to
activity, selectivity, and stability, in catalytic conversion of various
biomass-derived feedstocks into target value-added chemicals
(De et al., 2022).

Some excellent reviews have depicted the catalytic production
of GVL from biomass-based platform molecule LA in different
perspectives (Wright and Palkovits, 2012; Zhang, 2016; Ye et al.,

2020), while SACs applied in this field have not been
comprehensively discussed till now. This mini-review focuses
on the preparation and characterization of SACs and their
application in the conversion of LA to GVL. The advantages
and disadvantages of SACs, and the catalytic activity of LA over
SACs are introduced emphatically.

CATALYTIC CONVERSION OF LA TO GVL

LA is an important platform molecule, which can be easily and
economically produced from lignocellulose via a simple and high-
yield acid-catalyzed hydrolysis process (Figure 1) (Rackemann
and Doherty, 2011; Ruppert et al., 2012; Khan et al., 2018). The
condensation ability of LA is related to hydrogenation, and the
generation of GVL may be realized through the hydrogenation of
unsaturated carbon-carbon or carbon-oxygen bonds. Therefore,
GVL can be synthesized by hydrogenation of LA through
following two reaction mechanisms. 1) Hydrogenation of
ketone group of LA to produce unstable intermediate 4-
hydroxy-pentanoic acid (HPA), and subsequent dehydration
followed by an intramolecular esterification, resulting in the
ring closure to yield GVL. 2) LA is directly dehydrated to
produce α-angelica lactone and then hydrogenated to produce

FIGURE 1 | The schematic of reductive upgrading of biomass-based LA (levulinic acid) to GVL (γ-valerolactone) over single-atom catalysts.
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GVL (Zhang, 2016; Dutta et al., 2019; Ye et al., 2020). In these two
pathways, the hydrogenation step depends on the metal active
sites of the catalyst, and the dehydration and cyclization steps are
affected by the acidic conditions of the reaction system (Galletti
et al., 2012; Lin et al., 2018; Cai et al., 2019). In this regard,
improving the utilization rate of metal atoms is a key step to
reducing the cost and obtaining high efficiency for the overall
catalytic process.

In recent years, SACs have opened up a vast field of catalysis
because of their advantages of high atomic utilization rate, high
activity, high stability, and high selectivity. Many different active
phases, including noble and non-noble metals, have been tested
to catalyze the conversion of LA to GVL (Yan et al., 2013; Yuan
et al., 2013; Mai et al., 2014). Ruthenium-based catalysts remain
preferred because they are usually the most active and selective
catalysts. Using metal-organic framework (MOF) NH2-MIL-125
as the precursor, Zhang et al. prepared Ru single-atom catalyst
(Ru/TiO2@CN) by loading anatase and rutile mixed-phase TiO2

on nitrogen-doped amorphous carbon through high-temperature
calcination (Zhang et al., 2021). At room temperature, the
conversion of LA and selectivity of GVL could reach 100%
through hydrogenation and dehydration reactions. The
turnover frequency (TOF) of the catalyst was about 35 times
higher than that of the industrial Ru/C catalyst, also with superior
selectivity toward GVL. In addition, the mechanism study
showed that LA is first converted to HPA through the
hydrogenation process, and then HPA is rapidly dehydrated to
GVL. The stability of 0.85 wt% Ru/ZrO2@C catalyst prepared by
wet impregnation method for the conversion of LA to GVL was
significantly improved (Cao et al., 2017). ZrO2@C support, with a
nano t-ZrO2 (3.3 nm) structure embedded in amorphous carbon,
was obtained by thermal decomposition of UiO-66 material (Zr-
MOF). The catalytic performance of Ru/ZrO2@C in LA-to-GVL
conversion was tested under 10 bar H2 at 150°C in an aqueous
solution, and compared with that of commercial 5 wt% Ru/C.
Both catalysts could achieve the full conversion of LA and the
quantitative yield of GVL, while 5 wt% Ru/C exhibited poor
deactivation resistance after the first operation. Inductively
coupled plasma optical emission spectroscopy (ICP), X-ray
photoelectron spectroscopy (XPS), high-resolution
transmission electron microscopy (HR-TEM), aberration-
corrected scanning transmission electron microscopy (AC-
STEM), temperature-programmed reduction (TPR), and
physical adsorption data showed that the rapid deactivation of
Ru/C was mainly due to the leaching of Ru and the loss of surface
area caused by carbon deposition in micropores (Cao et al., 2017).
In contrast, the self-made Ru/ZrO2@C catalyst could be
repeatedly recycled in water and high proton aqueous
solution, with no significant decrease in catalytic performance.
Yang et al. reported a single-atom catalyst (SAC) with a core-shell
structure synthesized by core-shell bistability strategy using
amine-modified Ru1/Fe3O4 as the core and periodic
mesoporous organic silicon (PMO) as the shell (Yang et al.,
2021). The Ru atom (0.76 wt%) was inserted into the oxygen
vacancy of Fe3O4 spheres and stabilized by the amine group of
1,6-hexanediamine. Hollow PMO spheres are hydrophobic,
which provides a strong barrier for the core of internal Ru1/

Fe3O4, while the mesopores of the shell (4.2 nm) together with the
cavity enhance the porosity of the catalyst. The conversion rate of
LA was up to 99% with the GVL selectivity of up to 98.9%, while
the high catalyst stability was still maintained after seven cycles.
Regulating the electronic structure of metal catalysts can improve
the catalyst performance, but it is very challenging work to
regulate the electronic structure of atom-level catalysts.
Fortunately, a RuCo single-atom alloy (SAA) catalyst was
recently reported, in which precisely tailored electron-rich Ru
atoms were confined to Co lattices, and ZIF-67 containing Ru was
prepared by pyrolysis (Shao et al., 2021). The experimental study
and calculation simulation showed that its activity was derived
from the intrinsic active site of RuCo SAA. It was further
illustrated that the electron-rich Ru single atom promoted the
adsorption of C=O/H2 and the dissociation of H2 to H atom,
especially beneficial to hydrogenation of the unsaturated γ-C of
LA, which is the rate-determining step of LA hydrogenation. The
more Ru content, the better the reaction activity of RuCo is for
LA-to-GVL, and the TOF value could reach 3500 h−1, which is
27 times higher than that of commercial 5 wt% Ru/C catalyst.
Han et al. also reported a strategy using notched polyoxomtalate
(N-POM) to immobilize Ru atoms, which could prevent the
aggregation of Ru during pyrolysis and obtain atom-dispersed Ru
catalysts anchored onto uniform subsupporter WOx clusters on
carbon-nitrogen (Ru1@WOx/CN) (Han et al., 2021). The
synthesized Ru1@WOx/CN catalyst had good catalytic activity
for the hydrogenation of LA to GVL under solvent-free
conditions (99% conversion, and 100% selectivity). Properly
regulating the active center of the Ru electronic structure can
promote the formation and dehydration of HPA intermediates to
form GVL. The N-POM strategy is also excellent in preparing a
series of atom-dispersed noble metal atoms, which provides an
opportunity to find SACs. The stability of the catalyst in polar
solvents is also a very important indicator in the catalytic
upgrading of the biomass platform molecules. The activity,
selectivity, and stability of Ru-based catalysts supported on
TiO2, ZrO2, and C in the conversion of GVL from LA at
30 bar H2 and 150°C were investigated (Ftouni et al., 2016).
All the tested catalysts showed good GVL yield in fresh use,
but only Ru/ZrO2 catalyst could maintain high yield in multiple
cycles. Surprisingly, the widely used Ru/TiO2 catalyst showed
rapid deactivation after the first catalytic test. The
characterization structure showed that the partial deactivation
of Ru was attributed to the reduction of Ti support and the
coating of Ru nanoparticles, namely the interaction of harmful
strong metal supports, rather than the sintering or coking of Ru.
In contrast, the Zr support showed no signs of activity reduction
after five cycles and had high morphological and structural
stability. It is worth noting that in the fresh Ru/ZrO2 catalyst,
even if the Ru loading is 1 wt%, Ru can still be completely
dispersed on the fresh catalyst, and some Ru nanoparticles can
be observed after recycling. Further studies on Ru/ZrO2 catalysts
showed that the dioxane was easily replaced by milder solvents,
including GVL itself. Recently, in addition to the SACs
constructed with Ru as the active center, which shows
excellent catalytic performance in the research system of LA-
to-GVL conversion, Ir-based SACs have also come into the vision
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of researchers. Cao et al. first reported an ultra-stable Ir-based
SAC (0.6 wt% Ir@ZrO2@C) (Cao et al., 2019). In polar and
proton reaction media (pH = 3 and pH = 1) under harsh
conditions (T = 155°C, PH2 = 40 bar), 2.7 wt% Ir/C and 0.6 wt
% Ir/ZrO2 nanocatalysts showed significant deactivation in
recycling experiments, mainly due to the leaching of Ir into
acidic reaction media. In contrast, Ir@ZrO2@C SAC catalyst
showed advantages in selectivity and unprecedented stability
toward GVL, which could be recycled continuously seven
times (pH = 3) and six times (pH = 1) in aqueous solution
without deactivation and metal sintering or leaching. It is thus
can be observed that the in-situ synthesis process that limits the
entry of a single atom into the metal-organic framework by space
proves to be an effective method for preparing acid-resistant solid
catalysts.

PREPARATION AND CHARACTERIZATION

The catalytic performance of SACs with a good structure and
coordination environment is greatly improved, which is helpful
for the identification of active sites and the study of catalytic
mechanisms at an atomic level. Although SACs have made proud
achievements in various catalytic fields such as thermal catalysis,
photo-catalysis, electro-catalysis, and photoelectron-catalysis, the
preparation of highly dispersed SACs still presents some
challenges (Ji et al., 2020). Here, the synthesis strategies of
SACs are summarized for a better understanding of the
construction process of SACs to promote the application of
SACs for LA-to-GVL (e.g., impregnation, co-precipitation,
spatial confinement, coordination, and defect strategy)
(Figure 1). As a typical preparation method, the impregnation
and co-precipitation methods are of great significance for the
preparation of SACs by controlling metal loadings and selecting
suitable high surface area supports (Wei et al., 2014; Zhang X
et al., 2018; Ye et al., 2019). For example, Ftouni et al. prepared
two 1 wt% Ru catalysts supported on TiO2 and monoclinic ZrO2

by wet impregnation method (Ftouni et al., 2016). The spatial
confinement strategy is to disperse single atoms in space using
porous materials such as zeolites (Masoumifard et al., 2018; Liu L
et al., 2020), metal-organic frameworks (MOFs) (Jiao and Jiang,
2019), and covalent organic frameworks (COFs) (Yi et al., 2018;
Zhong et al., 2019). N-POM was used to confine Ru atoms to
prepare highly dispersed Ru1@WOx/CN catalysts for producing
GVL (Han et al., 2021). The coordination usually takes the target
single atom as the coordination center, which then coordinates
with the ligand containing lone pair electrons to form highly
dispersed SACs. Ligands commonly used are polymers and
polymer-derived materials with abundant heteroatoms (Pan
et al., 2018; He et al., 2019), MOFs and their derivatives
(Zhang et al., 2016; Yang et al., 2019), carbon-based materials
(Li X et al., 2020), and C3N4 and graphdiyne (Tan et al., 2017).
The defect strategy is to prepare materials with dispersed defect
sites from relatively intact materials, followed by introducing
single atoms into the defect sites to form highly dispersed SACs
(Beniya and Higashi, 2019). These materials usually include
oxides, hydroxides (Dvorak et al., 2016; Sun et al., 2019),

graphene, and other deficiency-rich materials (Fei et al., 2019).
The strategy of direct conversion of metal nanoparticles into
SACs is to create suitable synthesis conditions to break the metal
bond of nanoparticles and form a new bond between the single
metal atom and the anchor chain of the support (Moliner et al.,
2016). The “top-down” strategy is to directly convert metal block
materials and metal oxide powers materials into SACs (Qu et al.,
2018). Single-atom alloy strategy is dependent on the dispersion
of metal single-atom sites into another metal nanomaterial
(Greiner et al., 2018; Li M et al., 2019; Shao et al., 2021).
Chemical etching strategies include direct etching of bulk
metals and nanoparticles (Qiu et al., 2015), and indirect
template-assisted etching into SACs (Han et al., 2017; Sun
et al., 2018). Atomic layer deposition (ALD) technology has a
good ability to control the deposition of single atom or cluster on
the support, so it is one of the powerful methods to accurately
prepare ideal single-atom materials (Sun et al., 2013; Zhang L
et al., 2018). In addition, other preparation strategies that are not
commonly used include photochemistry method (Karkas et al.,
2016), electrochemistry method (Zhang et al., 2017), freezing-
assisted method (Wei et al., 2017), microwave-assisted method
(Bilecka and Niederberger, 2010), ball-milling method (Cui et al.,
2016), ionic-liquid-assisted method (Xi and Sun, 2019), and
so on.

With continuous efforts in recent years, researchers have
developed a variety of effective synthesis strategies, as
discussed above. In connection to this, how to reveal the
isolated reactive centers and overall structural information of
SACs is also a very important link. In this mini-review paper, the
structural characterization of isolated reactive centers in SACs
(especially the Ru-based SACs for LA-to-GVL conversion) was
disclosed by using advanced technologies such as electron
microscopy and spectroscopy (Figure 1) (Xue et al., 2022).
Transmission electron microscopy (TEM) with the atomic
resolution has been developed as an effective method to study
the detailed structural information of isolated reaction centers
and their interactions with supports. The additional energy
dispersive X-ray (EDX) detector of scanning transmission
electron microscopy (STEM) can further provide element
mappings, clarify the atomic dispersion of metal atoms on
supports, and further evaluate the dispersion degree of single
atoms. In addition, aberration-corrected high-angle annular
dark-field scanning transmission electron microscopy (AC-
HAADF-STEM) can easily confirm the existence of isolated
reaction centers on the supports, as long as the metal atoms
exhibit a much higher atomic number than the supporting
elements (Lee et al., 2019; Chen et al., 2020). Although
electron microscope images provide effective information to
identify the structural information of the catalysts, it should be
noted that there are some limitations in its application in
structural characterization. Due to the limited electron
penetration ability of microscopic technology, it is difficult to
observe the isolated metal atoms modified in the bulk phase or
cavities, rather than the surface structure. In addition, the electron
microscope can only image the local structure, and cannot
provide the overall structure information of the SACs (Liu J
et al., 2020). Therefore, some additional spectral methods are
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needed to provide supplementary data and support the existence
of isolated metal sites in SACs. For example, X-ray photoelectron
spectroscopy (XPS) is widely used to reveal the surface valence
structure of SACs. Compared with pure metal, the obvious
change of binding energy may explain the oxidation state of
isolated metal atoms and exclude the existence of nanoparticles
(Han et al., 2021; Shao et al., 2021). In addition, X-ray absorption
spectroscopy (XAS) is one of the most commonly used and
powerful tools to characterize SACs, including X-ray
absorption near-edge structure (XANES) spectroscopy and the
extended X-ray absorption fine structure (EXAFS) (Pan et al.,
2019; Qiao et al., 2022). XANES can provide local electronic state
information of the detected elements, while EXAFS can provide a
high-resolution coordination environment and local geometry
details of isolated metal sites. As site-specific characterization
techniques, Fourier transform infrared spectroscopy (FTIR) and
Raman spectroscopy are also widely used to evaluate the existence
of isolated metal sites (Li et al., 2016; Fang et al., 2018), because
they have obvious displacement relative to clusters or
nanoparticles. The theoretical calculation also is one of the
most important research methods (Han et al., 2021), state
density, wave function |Ψ|2, and modeling can verify each
other with electron microscopy and spectroscopy. Taking
together, the above characterization methods are conducive to
revealing the role of SACs in the LA-to-GVL conversion system,
which provides an effective basis for the visualization of the
system in the future.

CONCLUSION AND PERSPECTIVES

The over-exploitation of fossil resources has caused serious social
and environmental problems, and the high-value conversion of
renewable resources has gradually become a global research
upsurge. This mini-review focuses on the conversion of LA to
GVL over SACs, and also extends to the involved reaction
mechanism (e.g., hydrogenation, cyclization, and dehydration),
synthesis methods (e.g., impregnation, co-precipitation, spatial

confinement, self-assembling, and defect sites), and structural
characterization methods (e.g., electron microscopy, and
spectroscopy) of SACs. Both SACs and traditional
heterogeneous catalysts show high activity and selectivity in
the catalytic conversion of LA to GVL. However, traditional
heterogeneous catalysts tend to lose activity after reaction,
while SACs show excellent stability. At present, the SACs in
this field mainly use Ru species as the active sites. Therefore, the
development of SCAs with cheap transition metals as the active
sites is one of the major tasks for LA-to-GVL, which is conducive
to reducing the catalyst cost and promoting the
commercialization of this field. In addition, the development
of cleaner and more sustainable catalytic systems for LA-to-GVL
is also a hot topic for future research, such as single-atom electro-
and photocatalytic systems. In conclusion, SACs have great
potential in large-scale catalytic production of GVL from LA.
Further development of facile preparation methods of SACs and
eco-friendly catalytic processes, as well as elucidation of the
single-atom active center is challenging but an unprecedented
opportunity to promote the industrialization of SACs for biomass
valorization.
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