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A one-pot multicomponent reaction of a variety of benzaldehydes, dimedone, and 1H-1,2,4-
triazol-3-amine for the efficient synthesis of quinazolinone derivatives under green conditions is
reported. It was proved that MIL-101(Cr) could carry out successfully this multicomponent
strategy to afford target products in high yields. The scope and limitation of this catalytic
system concerning the aldehyde substrates were explored. Different aldehydes could be
conveniently delivered to quinazolinones at room temperature with short reaction times in an
atom-economy way. Notably, MIL-101(Cr) was also characterized by different analytic
methods such as FT-IR, SEM, and EDX. The outstanding benefits of this methodology
are the availability of substrates, using green conditions, excellent functional group
compatibility, and reusability of catalysts, therefore providing easy access to a range of
products of interest in organic and medicinal chemistry.

Keywords: short reaction times, green conditions, heterogeneous catalyst, MIL-101(Cr), heterocycles

INTRODUCTION

Nitrogen-containing heterocycles occur in natural products (Yadav et al., 2014), ionic liquids
(Wang et al., 2006), bioactive molecules (Kundu et al., 1999; Wiglenda et al., 2005; Wiglenda and
Gust, 2007; Mashayekh and Shiri, 2019), and dyes (Wang et al., 2013). A concise review of the
most active molecules displays that N-heterocyclic systems are the most dominant scaffolds of
biologically active molecules (Alizadeh et al., 2017a; Alizadeh et al., 2017b; Sharghi et al., 2018;
Alizadeh et al., 2019; Mashayekh and Shiri, 2019; Henary et al., 2020; Shiri, 2020). They are of
much interest as antitumor agents (Al-Soud et al., 2003; Shiri, 2021), antibacterial agents (Dixit
et al., 2005; Shiri and Aboonajmi, 2020), antipsychotic agents (Perregaard et al, 1992),
antiestrogens (Von Angerer et al,, 1987), cyclooxygenases (COX)-1 inhibitors (Sano et al.,
2006), and antifungal agents (Rezaei et al., 2009) and also have wide usage in materials science
(Novak et al., 2009; Anderson and Long, 2010).
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FIGURE 1 | EDX analysis and the FT-IR spectrum of the MIL-101(Cr) nanocatalyst.

Quinazolinone derivatives have been proven to exhibit
interesting medicinal and therapeutical activities, including
antitumor, antihypertensive, antifungal, analgesic and anti-
inflammatory, antibacterial, antihistaminic, anticancer,
antioxidant, and anti-HIV activities (Karan et al., 2021). To the
best of our knowledge, a few reports are available for the preparation
of triazoloquinazolinones by condensation of 3,5-diamino-1,2,4-
triazole, aromatic aldehydes, and dimedone (Lipson et al., 2003;
Heravi et al, 2008; Heravi et al, 2010; Krishnamurthy and
Jagannath, 2013; Puligoundla et al, 2013; Mousavi and
Maghsoodlou, 2015) such as HgP,W1304,018H,0 (Heravi et al.,
2008), microwave (Krishnamurthy and Jagannath, 2013), molecular
iodine (I,) (Puligoundla et al., 2013), refluxing in DMF (Lipson et al.,
2003), and more recently, TiO, nanoparticles supported ionic liquids
(Bakhshali-Dehkordi et al., 2020), Sc(OTf); (Gajaganti et al., 2018)
and DABCO-based ionic liquid supported on Fe;0,@TiO,
nanoparticles (Bakhshali-Dehkordi et al, 2020). Despite the
usefulness of these catalysts, they also have some limitations,
including high toxicity, use of expensive materials, complex
synthetic processes, requirement of expensive and hazardous
catalysts, and sometimes low yields.

Performing the transformation in one-pot multicomponent
has gained much attention in the view point of environmental
friendliness, energy efficiency, and atom economy (Aboonajmi
et al., 2020; Keri et al., 2021; Shiri and Amani, 2021; Shiri et al,,
2021). Nowadays, multicomponent strategies have a superior
position in the organic and pharmacy industries. The concept
of multicomponent refers to combining more than two substrates
in a one-pot reaction, providing more complexity and diversity in
a green way. Indeed, the significance of this subject can be
highlighted by the considerable number of related articles and
review articles (Khangah et al., 2021; Bedard et al., 2022; Liu et al.,
2022). Moreover, the construction of numerous compounds that

are crucial to address the necessities of our societies must be
handled with key terms such as synthetic efficiency and, more
importantly, atom economy by increasing the utilization of the
number of atoms in the substrates that end up in the structure of
the final products (Biesen and Miiller, 2021).

In recent years, tremendous development has been achieved in
the field of MOFs (metal—organic frameworks) architectures as a
novel class of porous materials. The MOFs incorporate the
advantages of sustainable synthesis with heterogeneous
catalysis, which indeed make easier workup procedure, and are
more applicable in industries and academics. Due to global
energy and environmental problems, the finding of unique
catalysts in a simple way with high reusability has become
increasingly crucial in managing the associated challenges. An
increase in the number of articles and review articles on the
subject of MOFs as novel heterogeneous catalysts has
demonstrated a profound interest in investigating these
structures and their applications as a new class of catalysts
(Koolivand et al., 2021; Ma et al., 2021).

In the light of these considerations, based on our previous
research, which focused on the heterocyclic systems under green
conditions (Shiri et al., 2021), we aimed to report our efforts to
carry out the one-pot multicomponent synthesis of structurally
diverse quinazolinone heterocycles using a novel, efficient, and
easily prepared MIL-101(Cr) catalyst in the current study.

EXPERIMENTAL SECTION

Instrumentation, Analyses, and Starting

Materials
Chemical materials and solvents were either synthesized in our
laboratory or purchased from Fluka, Aldrich, and Merck

Frontiers in Chemistry | www.frontiersin.org

July 2022 | Volume 10 | Article 898658


https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Shiri et al.

Diverse Triazoloquinazolines Synthesis Using MIL-101(Cr)

SEM HV: 15.0 KV WD: 9.21 mm
SEM MAG: 25.0 kx Det: SE
View field: 8.30 um  Date(m/dly): 05/17/22

MIRA3 TESCAN|

RMRC FESEM

SEM HV: 15.0 kV WD: 9.53 mm
SEM MAG: 200 kx Det: SE
View field: 1.04 ym Date(m/dly): 05/17/22

MIRA3 TESCAN

|Li}

200 nm

RMRC FESEM

FIGURE 2 | SEM images of the MIL-101(Cr) nanocatalyst.
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Companies. NMR spectra were recorded on a Bruker Avance
DPX-250 (‘H-NMR 250 MHz and "“C-NMR 62.9 MHz)
spectrometer in  pure  deuterated  solvents  with
tetramethylsilane as an internal standard. The purity
determination of the starting materials and monitoring of
reactions were accomplished by TLC on silica gel PolyGram
SILG/UV 254 plates.

Synthetic Route for the MIL-101(Cr) Catalyst
MIL-101(Cr) catalyst was synthesized according to the previously
reported procedure (Niknam et al.,, 2018). First, a mixture of
Cr(NOs3);-9H,0 (5.4 g) and terephthalic acid (1.5 g) was added to
deionized water (45 ml) and hydrofluoric acid (0.6 ml, 5 mol LY
in a Teflon-lined stainless steel autoclave. After sonication for
10 min, the mixture was heated in an oven at 220°C for 9 h. In
continuation, the mixture was cooled down to r. t., and then the
mixture was filtered and washed several times with hot water and

hot DMF. The resulting MIL-101(Cr) catalyst was dried and
purified further with hot filtration in DMF at 120°C for 12 h. The
solid was washed several times with hot DMF and hot ethanol.
Finally, the solid was filtered and dried at 80°C for 6 h. MIL-
101(Cr) catalyst was characterized, as mentioned in the Results
and Discussion section (Niknam et al., 2018).

General Procedure for the One-Pot
Multicomponent Synthesis of Structurally

Diverse Quinazolinone Heterocycles

MIL-101(Cr) (7.0 mg) as the catalyst was added to a mixture of
aldehyde (1.0 mmol), dimedone (1.0 mmol), and 1H-1,2,4-
triazol-3-amine (1.0 mmol) in acetonitrile (2.0 ml) and stirred
at r. t. for an appropriate time. After the completion of the
reaction, the catalyst was separated by centrifugation which was
used for the next run. After evaporation of the solvent, the
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TABLE 1| Optimization of the reaction conditions for the one-pot multicomponent synthesis of quinazolinone 4a from 1H-1,2,4-triazol-3-amine (1), benzaldehyde (2a), and

dimedone (3)* 0 (0]

N~ N-

NH N

¢ L ¥ * Me Y L Me,

N N H2 O Me N N Me

1 2a 3 H
4a

Entry Catalyst loading Solvent Temp. ('C) Time (min) Yield (%) TONP TOF(h™')°
1 7 mg (0.25 mol%) acetonitrile (4 mi) r.t. 30 94 376 752
2 7 mg (0.25 mol%) ethanol (4 ml) r.t. 45 60 240 320
3 7 mg (0.25 mol%) methanol (4 ml) r.t. 45 50 200 266.7
4 7 mg (0.25 mol%) water (4 ml) r.t. 45 45 180 240
5 7 mg (0.25 mol%) water/ethanol (4 ml) r.t. 45 52 208 277.4
6 3.5 mg (0.12 mol%) acetonitrile (4 mi) r.t. 30 (60) 81 (89) 675 (741.7) 1350 (741.7)
7 9 mg (0.32 mol%) acetonitrile (4 ml) r.t. 30 93 290.6 581.2
8 - acetonitrile (4 ml) r.t. 45 Trace - -
9 7 mg (0.25 mol%) acetonitrile (2 ml) r.t. 30 94 376 752
10 7 mg (0.25 mol%) acetonitrile (4 mi) reflux 15 93 372 1488

aThe reactions were carried out with of 1H-1,2,4-triazol-3-amine (1, 1.0 mmol), benzaldehyde (2a, 1.0 mmol), and dimedone (3, 1.0 mmol).

PTON = mmol product/mol% catalyst.
°TOF = TON/reaction time (h™").

product was obtained using recrystallization of the solid residue
in hot ethanol.

RESULTS AND DISCUSSION

Synthesis and Characterization of
MIL-101(Cr)

First, MIL-101(Cr) nanocatalyst was characterized using FT-IR
spectrum displaying index peaks in agreement with the literature
(Figure 1). Figure 1 shows the EDX spectrum of MIL-101(Cr)
nanocatalyst. This spectrum proved the elements of C, O, Cr, F,
and N in the composition (Niknam et al., 2018; Yang and Yan,
2011).

The SEM images of the MIL-101(Cr) nanocatalyst also
exhibited discrete octahedrons containing smooth surfaces
with an average size of 350nm. The SEM images also
displayed octahedron MIL-101(Cr) nanocatalyst, but they were
not uniform (Figure 2). The content of Cr in the synthesized
nanocatalysts was determined by ICP to be about 0.35 mmol g~
of MIL-101(Cr) (Niknam et al., 2018).

Application of MIL-101(Cr) as a Novel
Heterogeneous Catalyst for the One-Pot
Multicomponent Synthesis of Structurally

Diverse Quinazolinone Heterocycles

For our primary exploring experiments, 1H-1,2,4-triazol-3-
amine (1), dimedone (3), and benzaldehyde (2a) were chosen
as the model starting materials to optimize the reaction
conditions. Initially, the effect of several solvents on the
coupling of 1H-1,2,4-triazol-3-amine (1), dimedone (3), and
benzaldehyde (2a) was explored in the presence of MIL-
101(Cr) as a novel heterogeneous catalyst (7mg) at r. t.
(Table 1, entries 1-5). The usage of acetonitrile as solvent

gave the corresponding product 4a in 94% yield (Table 1,
entries 1), whereas other solvents, including methanol, ethanol,
water, and ethanol/water were considerably less effective and
provided lower yields of the product (Table 1, entries 2-5).
Acetonitrile was found to be the most effective solvent,
affording quinazolinone heterocycles 4a with a yield of 94%
(Table 1, entry 1).

In the next step, the alteration of catalyst loading was explored for
the coupling reaction. The highest yield (94%) of the product was
formed when 7mg (0.25mol%) of the catalyst was exploited
(Table 1, entries 1 and 9). By decreasing the catalyst loading to
3.5 mg (0.12 mol%), the product was achieved in 81% yield (Table 1,
entry 6), whereas it was observed that increasing the catalyst loading
had no significant effect on the product yield (Table 1, entry 7).
Moreover, without using MIL-101(Cr), the reaction failed to proceed
even after 45 min (Table 1, entry 8). The reaction time was sharply
decreased to 10 min once the reaction was performed under reflux
conditions (Table 1, entry 10).

Finally, for decreasing the level of environmental pollution, the
volume of used solvent was decreased to 2 ml (Table 1, entry 9). It
was observed that 4a was achieved in 94% yield in the presence of
MIL-101(Cr) (7 mg) in acetonitrile (2ml) at r. t. for 30 min
(Table 1, entry 9).

Next, the scope and limitations of this catalytic system were
explored with respect to aldehyde substrates (2). A wide range of
aldehyde compounds (2) was coupled with 1H-1,2,4-triazol-3-amine
(1) and dimedone (3) under standard reaction conditions to form
excellent yields of desired quinazolinone derivatives (4). The results
of this exploration are illustrated in Table 2. Diverse aldehyde
compounds (2a-m) containing electron-donating or electron-
deficient functional groups were coupled with their partners to
produce high yields of corresponding quinazolinones (4a-m).

It is worth noting that the corresponding products could be
obtained with both electron-releasing and electron-withdrawing
groups on different positions of arenes such as 4-OH, 3-NO,, 4-
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TABLE 2 | Synthesis of a variety of quinazolinones under optimized conditions®®.
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ACoupling of 1H-1,2,4-triazol-3-amine (1, 1.0 mmol), dimedone (2, 1.0 mmol), and benzaldehyde derivatives (3, 1.0 mmol) has been performed under standard conditions for 30 min.

bThe numbers in the parentheses are TON.
°The yield for a 10 mmol scale.

Me;N, 2-Cl, 3,4-diMeO, 2-Me, 4-Me, 4-Cl, 4-MeO, 4-NO, and 4-
F in high yields within a short reaction time (Table 2). The study
displayed that there is no notable difference between these
functional groups except in the case of ortho-substituted
aldehyde substrates, which could be due to steric hindrance.
Naphthaldehyde could also tolerate the reaction conditions to
afford the target product in 81% yield. The reaction for the
synthesis of quinazolinone could be scaled up under the
standard reaction conditions without a significant decrease in
the yield of 4a (Table 2).

Based on literature studies (Bakhshali-Dehkordi et al, 2020),
herein, we assumed a possible mechanism for the one-pot
multicomponent  reaction of 1H-1,24-triazol-3-amine (1),
benzaldehyde (2a), and dimedone (3) in the presence of MIL-
101(Cr) as a novel catalyst (Scheme 1). According to the structure
of MIL-101(Cr) reported in the literature, the active catalytic site of

MIL-101(Cr) is conceivable, as shown in Figure 3 (Niknam et al,
2018). The reaction could proceed via two reasonable mechanisms to
afford the corresponding product (4a) in the presence of MIL-101(Cr)
as a catalyst. According to the proposed route I, the reaction may carry
out through the coupling of 7 and 5a (named Knoevenagel
condensation) to give o,fB-unsaturated carbonyl compounds 8a
with the loss of a water molecule. In the next step, an
intermolecular Mannich-type reaction followed by annulation
transformation may produce the final product 4a. The reaction
may also give the final product 4a via route II. According to this
route, 8a is activated by MIL-101(Cr) as a catalyst for further nucleic
attack of amine substrate (1). Upon realizing two water molecules and
intramolecular annulation, final product 4a is obtained (Scheme 1).

The stability and recovery of catalysts are crucial aspects for
modern societies challenged with economic and environmental
issues. In this regard, screening of the reusability of MIL-101(Cr)
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SCHEME 1 | Mechanism for the coupling reaction between 1H-1,2,4-triazol-3-amine (1), benzaldehyde (2a), and dimedone (3) in the presence of MIL-101(Cr) as a
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FIGURE 3 | Proposed structure for the active site of the MIL-101(Cr)
catalyst.

as a novel catalyst must be performed. Therefore, the reusability
of the catalyst was explored for the model reaction. In order to
reuse MIL-101(Cr) as a novel catalyst, the mixture of reaction was
centrifuged to separate the MIL-101(Cr) catalyst, and then the
MIL-101(Cr) catalyst was washed several times with DCM. After
drying, the MIL-101(Cr) catalyst was utilized for the next run. To
our delight, the MIL-101(Cr) catalyst could be used for eight runs

95
93
91
89
87
85

83

1 2 3 4 5 6 7 8

FIGURE 4 | Investigation of reusability of the MIL-101(Cr) catalyst within
eight runs.

(Figure 4). The major issue in the case of heterogeneous catalysis
is the leaching of active centers during the reaction. We tested the
leaching experiment (heterogeneity test) of this catalyst. The
evaluation of the Cr content in the structure of the catalyst
utilizing ICP analysis revealed that about 6.7% of Cr was
removed from the MIL-101(Cr). The reused catalyst from the
reaction mixture was also characterized by IR analysis, and the
results are shown in Supplementary Scheme S1.

A comparative analysis of catalytic activity results of MIL-
101(Cr) with other catalysts was also performed, and the results
are given in Table 3.
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TABLE 3 | The comparison between this catalytic system and previously reported catalytic systems®.

Entry Catalyst Solvent Temperature ('C) Time (min) Yield (%) Ref.

1 NH2SOzH (50 mol%) CHsCN (5 ml) 61 30 95 Heravi et al. (2010)

2 Nano-SiO, (15 mol%) CHsCN (5 ml) rt. 30 96 Mousavi and Maghsoodlou (2015)

3 HePoW1062— 18H0 (1 mol%) CHsCN (5 ml) 80 15 96 Heravi et al. (2008)

4P silica gel - 120 3 95 Krishnamurthy and Jagannath (2013)
5 iodine (10 mol%) CH3CN (5 ml) reflux 10 81.2 Puligoundla et al. (2013)

6° T@ILs® nanocatalyst (10 mg) EtOH (5 ml) reflux 35 92 Bakhshali-Dehkordi et al. (2020)

7° Fez0,4@TiO.-IL (0.008 g) - 80 45 95 Bakhshali-Dehkordi et al. (2020)

8 MIL-101(Cr) (0.25 mol%) acetonitrile (2 ml) r.t. 30 94 This work

“The data are for performing the reaction using benzaldehyde, 1H-1,2,4-triazol-3-amine, and dimedone as substrates.

PUnder irradiation with microwaves of 150 W at 120°C and pressure of 100 psi.

°The data are for performing the reaction using p-chlorobenzaldehyde, 1H-1,2,4-triazol-3-amine, and dimedone.

9T@ILs, nanocatalyst = TiO, nanoparticles supported ionic liquids.

CONCLUSION

Finally, we have established a comprehensive and feasible MIL-
101(Cr) catalyzed synthesis of structurally diverse quinazolinone
heterocycles, which could be exploited for the subsequent
preparation of biologically significant compounds. This strategy
could produce numerous quinazolinones by employing several
mono- or bis-functionalized benzaldehyde compounds in the
presence of a highly active catalyst using a low amount of
solvent, which also makes our protocol an extremely useful
complement to the current procedures for the quinazolinone
formation. Moreover, all products were obtained in high yields
via recrystallization.
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