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Rapid, convenient, and sensitive detection of Bisphenol A (BPA) in complex environmental
samples without the need for tedious pre-treatment is crucial for assessing potential health
risks. Herein, we present an electrochemical sensing platform using a simple nanochannel-
modified electrode, which enables the direct and sensitive detection of BPA in complex
samples. A vertically ordered mesoporous silica-nanochannel film (VMSF) with high-
density nanochannels is rapidly and stably grown on the surface of a electrochemically
activated glassy carbon electrode (p-GCE) by using the electrochemically assisted self-
assembly (EASA) method. The high antifouling capability of the VMSF/p-GCE sensor is
proven by investigating the electrochemical behavior of BPA in the presence of model
coexisting interferingmolecules including amylum, protein, surfactant, and humic acid. The
VMSF/p-GCE sensor can sensitively detect BPA ranged from 50 to 1.0 μM and
1.0–10.0 μM, with low detection limits (15 nM). Owing to the electrocatalytic
performance and high potential resolution of p-GCE, the sensor exhibits high selectivity
for BPA detection in the presence of common environmental pollutants, including
bisphenol S (BPS), catechol (CC), hydroquinone (HQ), and 4-nitrophenol (4-NP). In
combination with the good antifouling property of the VMSF, direct detection of BPA in
environmental water samples and soil leaching solution (SLS) is also realized without
separation pretreatment. The developed VMSF/p-GCE sensor demonstrated advantages
of simple structure, high sensitivity, good antifouling performance, and great potential in
direct electroanalysis of endocrine-disrupting compounds in complex samples.
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INTRODUCTION

Bisphenol A [2,2′-bis(4-hydroxyphenyl) propane, BPA] is one of
the most widely used chemical raw materials in the world, which
is commonly used as a monomer for the production of polymers
(e.g. polycarbonate, polyphenylene ether resins, unsaturated
polyester resins, etc.) or as an ingredient for the production of
fine chemicals (e.g. plasticizers, flame retardants, antioxidants,
heat stabilizers, rubber antioxidants, pesticides, coatings, etc.).
(Zhang et al., 2021) However, BPA is structurally similar to
endocrine hormones such as estradiol and diethylstilbestrol,
which helps it bind to estrogen receptors as a kind of
endocrine-disrupting compound (EDC). (Takayanagi et al.,
2006) It has been proven that overexposure to BPA can harm
the endocrine system, nervous system, and immune system in
humans and animals and significantly increase the incidence of
many cancers (e.g. ovarian cancer, prostate cancer, and
leukemia). (Li et al., 2017; Zhang et al., 2018; Bilal et al., 2019;
Md Younus et al., 2020) Although many countries have enacted
specific laws and regulations on the prohibition of BPA in baby
bottles and other food-related containers (Authority, 2006), BPA
molecules still widely enter the environment through dust or
sewage during production and transportation owing to the
widespread use of BPA-related products. (Wetherill et al.,
2007; Md Younus et al., 2020) Therefore, rapid, convenient,
and sensitive detection of BPA in environmental samples is
important for assessing BPA exposure and potential health risks.

Until now, methods for quantitative analysis of BPA include
gas chromatography–mass spectrometry (GC-MS) (Correia-Sá
et al., 2018; Wang et al., 2021a), high-performance liquid
chromatography (HPLC) (Lee et al., 2017), fluorescence
spectroscopy (FL) (Wang et al., 2020a), surface-enhanced
Raman spectroscopy (SERS) (Chung et al., 2015; Yang et al.,
2018; Li et al., 2021), and colorimetry (Lee et al., 2019). However,
the detection strategies often suffer from expensive instruments,
tedious pretreatment, and high operational requirements. (Cui
et al., 2021; Deng et al., 2021; Duan et al., 2021; Wan et al., 2021)
On the other hand, the current methods are often only able to
detect simple samples with low matrix effects, such as spring
water and baby bottle extracts (Kumar Naik et al., 2022; Lei et al.,
2022; Rajendran et al., 2022). There are still great challenges in the
direct analysis of BPA in complex samples (e.g. environmental
water, soil leaching solution, and biological samples). Fast and
convenient BPA analysis methods that can realize direct analysis
of complex samples are urgently needed.

Electrochemical sensors could offer a unique combination of
key merits including simple instrument, convenient operation,
and high sensitivity. (Liu et al., 2020; Sabbaghan et al., 2021; Xuan
et al., 2021; Ghalkhani and Sohouli, 2022) The electroactive
phenolic hydroxyl groups in BPA enable its detection by
electrochemical sensing. To improve the detection sensitivity,
researchers have used a variety of materials to modify the working
electrode, including metal or metal oxide nanoparticles (Ashraf
et al., 2020; Wang et al., 2020b; Yang et al., 2022), carbon
materials (Yasri et al., 2015; Alam and Deen, 2020; Zhu et al.,
2020; Ponnada et al., 2022; Wang et al., 2022), ionic liquids
(Wang et al., 2018; Wang et al., 2021b), molecularly imprinted

polymers (Beduk et al., 2020; Zhang et al., 2021), metals and
covalent organic frameworks (Zhang et al., 2018; Pang et al.,
2020), and aptamers (Hadi et al., 2016; Jun et al., 2020). However,
these modified electrodes often require expensive reagents/
materials or complicated synthesis processes. On the other
hand, severe matrix effects in complex samples can passivate
the electrode, leading to reduced stability and accuracy.
Therefore, an electrochemical sensor with simple electrode
structure and antifouling performance is highly desirable to
realize the direct analysis of BPA in complex environmental
samples without the need for tedious pretreatment.

In recent years, the vertically ordered mesoporous silica-
nanochannel film (VMSF) has attracted extensive attention
owing to its unique structure and characteristics. The VMSF
has highly ordered and uniform nanochannels (usually 2–3 nm in
diameter), high porosity (~75,000 pore/μm (Takayanagi et al.,
2006)), and ultrathin nanoscale thickness (commonly
50–200 nm). (Herzog et al., 2013; Nasir et al., 2016; Nasir
et al., 2018; Li et al., 2019a; Ding et al., 2020; Ma et al., 2020;
Yan et al., 2020; Yan et al., 2021a; Yan et al., 2021b; Wang et al.,
2021c; Xiao et al., 2021; Xuan et al., 2021; Zhou et al., 2022) On
the one hand, high-density nanochannels offer good
permeability. On the other hand, the ultrasmall nanopore
structure of the VMSF exhibits remarkable size and charge
selectivity. Thus, the VMSF can effectively exclude large-sized
substances (e.g. particle, microorganism or cell) or
macromolecules (e.g. protein, polysaccharides, and DNA) in
complex matrices, leading to high antifouling ability. In
addition, the enrichment of small molecules with positive
charges by negatively charged nanochannels also significantly
improves the detection sensitivity. Thus, the VMSF-modified
electrodes show great potential in direct and sensitive
detection of redox small molecules in complex samples.

In this work, we demonstrate an electrochemical platform
based on the integration of the VMSF on the surface of
electrochemically activated glassy carbon electrode (p-GCE),
which enables the direct and rapid detection of BPA in
complex environmental samples. The abundant active edge
sites (defects, oxygen-containing functional groups, etc.) of
p-GCE endow it with good electrochemical and electrocatalytic
activities. The VMSF was rapidly and stably grown on p-GCE by
using the electrochemically assisted self-assembly (EASA)
method. High antifouling capability of the VMSF/p-GCE
sensor is proven by investigating the electrochemical behavior
of BPA in the presence of model coexisting interfering molecules
such as proteins, surfactants, and humic acids. As the proof-of-
concept demonstrations, direct, rapid, and sensitive detection of
BPA in environmental water samples and soil leaching solutions
is realized without the usual need of tedious pretreatment.

MATERIALS AND METHODS

Chemicals and Materials
Tetraethoxysilane (TEOS), cetyltrimethylammonium bromide
(CTAB), potassium ferricyanide (K3 [Fe(CN)6]), potassium
ferrocyanide (K4 [Fe(CN)6]), sodium phosphate monobasic
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dihydrate (NaH2PO4.2H2O), sodium dodecyl sulfate (SDS),
amylum, humic acid (HA), sodium phosphate dibasic
dodecahydrate (Na2HPO4.12H2O), and catechol (CC) were
purchased from Aladdin. Bisphenol A (BPA), hydroquinone
(HQ), bisphenol S (BPS), and 4-nitrophenol (4-NP) were
purchased from Macklin. Hexaammineruthenium (III)
chloride (Ru(NH3)6Cl3) and bovine serum albumin (BSA)
were purchased from Sigma Aldrich. Ethanol was obtained
from Hangzhou Shuanglin Chemical reagent. Calcium chloride
(CaCl2), potassium chloride (KCl), sodium chloride (NaCl),
magnesium sulfate (MgSO4), and sodium nitrate (NaNO3)
were purchased from the Hangzhou Gaojing Fine Chemical
Industry. Environmental water samples were obtained from
the lake of Zhejiang Sci-Tech University (Hangzhou, China).
Soil leaching solution (SLS) was obtained by leaching the soil (1 g
from lawn of Zhejiang Sci-Tech University) in 100 ml ultrapure
water. All chemicals and reagents were of analytical grade and
used as received without further purification. Ultrapure water
(18.2 MΩ cm) was used to prepare all aqueous solutions
throughout this work.

Measurements and Instrumentation
Transmission electron microscopy (TEM) images were obtained
at an acceleration voltage of 100 kV on a HT7700 transmission
electron microscope (Hitachi, Japan). Before TEMmeasurement,
the VMSF was gently scraped from the p-GCE surface and
dispersed in ethanol by ultrasonication. Then, VMSF
dispersion was dropped onto the copper grids. All
electrochemical experiments including cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS), and
differential pulse voltammetry (DPV) were conducted on an
Autolab PGSTAT302N electrochemical workstation (Metrohm,
Switzerland). A typical three-electrode system was adopted
including bare or modified GCE as the working electrode, an
Ag/AgCl electrode (saturated KCl) as the reference electrode, and
a platinum wire electrode as the counter electrode. The scan rate
in CV is 50 mV/s, unless particularly indicated. For DPV
measurements, the step, modulation amplitude, modulation
time, and interval time were 0.005 V, 0.025 V, 0.05 s, and 0.2 s,
respectively.

Preparation of p-GCE
The GCE (d = 3 mm) was first polished with 0.3 and 0.05 μm
alumina power. The electrode was then sequentially cleaned by
sonication in ethanol and ultrapure water and dried under
nitrogen flow. Electrochemical activation includes anodic
oxidation at high voltage and cathodic reduction at low
voltage. Briefly, a constant potential (+1.8 V) was applied on
the GCE for 300 s followed with a cyclic voltammetry scan
(−1.3–1.25 V, scan segments: 6) in phosphate-buffered solution
(PBS, 0.1 M, pH 5). Then, the obtained p-GCE was washed with
ultrapure water and dried under nitrogen flow.

Preparation of the VMSF on p-GCE
The VMSF was grown on p-GCE by using electrochemically
assisted self-assembly (EASA) methods as previously reported.
(Walcarius et al., 2007) Typically, NaNO3 (20 ml, 0.1 M, pH =

2.6) and ethanol (20 ml) were first mixed (v:v = 1:1). Then,
CTAB (1.585 g) and TEOS (2.833 g) were subsequently added
under stirring. The aforementioned mixture was further stirred
for 2.5 h to prehydrolyze TEOS to obtain the precursor solution.
After p-GCE was immersed in the precursor solution, growth of
the VMSF was performed by applying a cathodic current
(−52.2 μA) to p-GCE for 10 s. Then, the obtained electrode
was quickly removed from the precursor solution, followed by
thorough rinsing with ultrapure water and dried under a N2

stream. After further aging at 80°C overnight, the modified
electrode containing surfactant micelles (SMs) inside the
nanochannels was obtained and termed as SM@VMSF/
p-GCE. The removal of SMs could be realized by treating
SM@VMSF/p-GCE with a 0.1 M HCl-ethanol solution under
stirring for 5 min. The resulting electrode with open
nanochannels was termed as VMSF/p-GCE.

Electrochemical Detection of BPA
Phosphate buffer solution (PBS) (0.1 M, pH = 6) was applied as
the buffer for the detection of BPA. The electrochemical
responses of different concentration of BPA were recorded
using CV or DPV. For real sample analysis, environmental
water samples were diluted using the buffer by a factor of 10
without other pretreatments, and the soil was dispersed in the
buffer to form a suspension of 1 mg/ml, whose supernatant was
further adopted. Then, BPA detection in complex real samples
was achieved by the VMSF/p-GCE platform.

RESULTS AND DISCUSSION

Facile Equipment of the VMSF on p-GCE
and Characterization
As illustrated in Figure 1, the electrochemically activated GCE
(p-GCE) is applied as the supporting electrode to grow the
vertically ordered mesoporous silica-nanochannel film
(VMSF). Compared with the GCE, p-GCE has been proven to
possess abundant active sites including edge plane sites, defects,
and oxygen-containing functional groups. (Li et al., 2019b) These
sites can not only enhance the adsorption of electroactive organic
molecules (e.g. through electrostatic interaction, hydrogen
bonding, etc) but also promote the electron transfer reaction,
demonstrating attractive electrocatalytic activity. (Shi and Shiu,
2002) In addition, oxygenated groups on the surface of the p-GCE
electrode (e.g. hydroxyl groups) can react with the silanol group
so that the VMSF can stably bind on the electrode surface. The
VMSF was rapidly and stably grown on p-GCE by the
electrochemically assisted self-assembly (EASA) method. The
EASA method is a convenient strategy for the fast preparation
of the VMSF within 10 s. The principle is to apply a negative
voltage on the electrode to promote the reduction of water to
generate hydroxyl ions. Then, the pH gradient generated on the
surface of the electrode promotes the self-assembly and
condensation reactions of siloxanes around surfactant micelles
(SMs). After VMSF growth, SMs block nanochannels (SM@
VMSF/p-GCE). After further removal of SMs, an electrode
with open nanochannels can be obtained (VMSF/p-GCE).
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The CV curves of GCE, p-GCE, and VMSF/p-GCE recorded
in pure PBS (0.1 M, pH = 6) without any electroactive species are
shown in Supplementary Figure S1A (in supporting
information-SI). Supplementary Figure S1B (SI) gives the
relationship between the peak current obtained on GCE vs. the
square root of scan rate. The non-Faradaic double layer

capacitance (Cdl) can act as quantitative indicator of the
surface area that is accessible to the electrolyte ions, which can
indicate the electrochemical active surface area (ECSA) of
electrodes. (Wei et al., 2019) A notably increased capacitive
current is observed on p-GCE compared with that of the GCE
(about ~4 fold increasing), suggesting an enlarged ECSA owing to

FIGURE 1 | Schematic illustration for the preparation of VMSF/p-GCE and the direct detection of BPA in complex environmental samples.

FIGURE 2 | (A) CV curves obtained on GCE, p-GCE, VMSF/p-GCE, and SM@VMSF/p-GCE in PBS (0.01 M, pH = 7.4) containing Ru(NH3)6
3+ (0.5 mM). (B) EIS

plots obtained in KCl (0.1 M) containing Fe(CN)6
3/4− (2.5 mM). Left and right insets are the equivalent circuit and magnified EIS plots, respectively. (C–D) Top-view, (C)

and cross-sectional view (D) of TEM images of the VMSF. The inset is the magnified image.
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the generation of a thick porous layer during the electrochemical
activation process. (Shi and Shiu, 2002) Interestingly, the ECSA of
VMSF/p-GCE only decreases very slightly after the covering of
the VMSF. On the other hand, a pair of redox peaks near ~0 V is
observed on p-GCE and VMSF/p-GCE, which are resulted from
the conversion between surface-bonded quinone and
hydroquinone generated during the electrochemical
polarization pretreatment. (Engstrom and Strasser, 1984)
Furthermore, p-GCE and VMSF/p-GCE demonstrate an
improved electroanalytical reactivity proven by the larger
decomposition currents and reduced decomposition potentials
for both the anodic and cathodic limits. The exact ECSA of the
GCE can be calculated using a reversible probe K3 [Fe(CN)6] by
Randles–Sevcik equation. (Alam and Deen, 2020) The ECSA of
the GCE is calculated to be 0.0584 cm2. For comparison, the
ECSA of p-GCE and VMSF/p-GCE are 0.222 and 0.204 cm2,
respectively. Thus, the electrochemical polarization increases the
active area, and the equipment of the VMSF on p-GCE does not
significantly decrease the active area of the electrode.

The integrity and permeability of the VMSF were investigated
by electrochemical methods. The electrochemical signals of the
standard redox probe (Ru(NH3)6

3+) on different electrodes
including the GCE, p-GCE, VMSF/p-GCE, and SM@VMSF/
p-GCE are shown in Figure 2A. The anodic peak potential
(Epa), cathodic peak potential (Epc), peak-to-peak separation
(ΔE), anodic peak current (Ipa), and cathodic peak current
(Ipc) of all the electrodes are demonstrated in Supplementary
Table S1 (SI). As shown, GCE shows a pair of redox peaks with an
ΔEp of 65.92 mV. For p-GCE, an increase in the peak current (Ipa,
6.813 μA; Ipc, −6.022 μA) and a decrease in the ΔEp (63.58 mV)
are observed, indicating a faster electron transfer and enlarged
ECSA. In the presence of hydrophobic CTAB micelles in the
VMSF, there is no Faraday current response at SM@VMSF/
p-GCE, indicating that the mass transfer of the hydrophilic
probe to the electrode surface is inhibited. The failed electron
transfer between the probe and the electrode proves that the
VMSF grown on p-GCE is intact with no defects. When the SM is
removed and p-GCE is modified with open nanochannels, an
increased ΔEp of VMSF/p-GCE (65.92 mV) is observed
compared with that of p-GCE. However, VMSF/p-GCE
demonstrates an enhanced peak current (Ipa, 10.18 μA; Ipc,
−9.449 μA). This can be attributed to the strong electrostatic
interaction between negatively charged silanols (pKa of ~2) on the
nanochannel surface and positively charged Ru(NH3)6

3+ at high
pH and low ionic strength conditions. (Yan et al., 2020).

Consistent results were obtained from electrochemical
impedance spectroscopy (EIS) in the presence of a standard
anionic probe (Fe(CN)6

3/4−). The Nyquist plots of GCE,
p-GCE, and VMSF/p-GCE were measured under open-circuit
voltage to further study the electrochemical behaviors of different
electrodes (Figure 2B). The insets are the schematic illustration of
the equivalent circuit (left inset) and the enlarged view of curves
in a high-frequency region (right inset). The equivalent circuit
contains the solution resistance (Rs), double layer capacitance
(Cdl), Warburg impedance (Zw), and apparent charge transfer
resistance (Rct). As shown, each electrode exhibits a semicircle in
the high-frequency region representing the electron

transfer–limiting process and a linear portion at the low-
frequency region corresponding to the diffusion-limited
process. As known, the effective diameter of the semicircle in
a high-frequency region is equal to Rct which is responsible for
electron transfer kinetics of redox reactions at the
electrode–electrolyte interface. Supplementary Table S2
displays the Rs and Rct obtained on different electrodes. As
shown, p-GCE shows the lowest Rct (61Ω), suggesting a faster
charge transfer kinetics at the electrode interface after
electrochemical pretreatment (the Rct of GCE is 82Ω). After
p-GCE is covered by SM-blocked nanochannels, a remarkably
increased Rct (407Ω) is observed on SM@VMSF/p-GCE owing to
the inhibited probe diffusion. When the SM is removed, the Rct
(302Ω) of VMSF/p-GCE further decreases owing to the
permeability of the high-density nanochannels of the VMSF.
However, it is still higher than that of p-GCE, which is due to the
electrostatic repulsion between negatively charged VMSF− and
Fe(CN)6

3-/4.
As demonstrated by transmission electron microscopy (TEM)

images, the VMSF possesses homogenously distributed
nanopores with a hexagonally packed structure and uniform
diameter between 2 and 3 nm (Figure 2C). The porosity is
~45%. The cross-sectional TEM image proves the
perpendicular orientation of nanochannels to the substrate
(Figure 2D).

Enhanced Electrochemical Response of
BPA on VMSF/p-GCE
The electrochemical behavior of BPA at the VMSF/p-GCE,
p-GCE and GCE was investigated. As shown in Figure 3A,
BPA shows an irreversible oxidation process at these three
types of electrodes, which is consistent with many previous
reports. (Pang et al., 2020; Freitas et al., 2020; Hu et al., 2016)
In comparison with the GCE, p-GCE exhibits a rather higher
peak current. This is mainly ascribed to the increase of the
electroactive surface and electrocatalytic ability through
electrochemical activation (Figure 3B). (Xuan et al., 2021)
Owing to the interaction between the abundant silanol groups
on the nanochannel surface and phenolic hydroxyl groups on
BPA through hydrogen bond, the oxidation current of BPA
further increases after equipment of the VMSF on p-GCE
(Figure 3B). Due to the enrichment effect from both the
supporting electrode and nanochannels, the VMSF/p-GCE can
realize dual-signal amplification, leading to high sensitivity in
detection.

Optimized Conditions for BPA Detection
To achieve an excellent performance toward the analysis of BPA,
the detection conditions were optimized. As shown in Figure 3C,
the peak current first increases with the increase of pH and
reaches the highest value at pH 6. Then, the peak current
decreases with the increase of pH. The decrease of the peak
current at higher pH values might be attributed to the
electrostatic repulsion of the negatively charged VMSF toward
anionic BPA (pKa1 = 9.6, pKa2 = 10.2). The decline of peak
current in an acid medium might result from the present H+ ion,
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which is one of the products of electro-oxidation of BPA, posing
an inhibiting effect on the oxidation peak current. In addition, Epa
shifts negatively in the investigated pH range (Figure 3D). A
good linear relationship is revealed between Epa and the pH value
(Epa = −0.055 pH + 0.9919, R2 = 0.9980). The number of protons
and electrons involved in the oxidation of BPA is calculated using
the following equation (Eq. 1):

dEpa

dpH
� 2.303

mRT

nF
, (1)

where R is the gas constant (R = 8.314 J mol−1 K−1), T is the
absolute temperature (T = 298 K), F is the Faraday constant (F =
96,485 C mol−1), and m and n are the number of protons and
electrons, respectively. The ratio of m/n is calculated to be 0.93,
indicating that the number of protons and electrons involved in
the oxidation of BPA is same. To further study the mechanism of
the electro-oxidation process of BPA at VMSF/p-GCE, the
electrochemical signal of BPA at different scan rates is
investigated (Figure 3E). A linear relationship between peak
current (I) and scan rate (v) is found (I = 0.0799v + 0.0855,
R2 = 0.9899), indicating that the electro-oxidation of BPA at the
VMSF/p-GCE is adsorption-controlled. The relationship
between peak potential (Epa) and scan rate (v) in a completely
irreversible process can be described according to the following
Laviron equation (Eq. 2):

Epa � Eo + (RT
αnF

) ln RTKs

αnF
+ (RT

αnF
) ln v, (2)

where Eo is the formal redox potential; α is the transfer coefficient,
which is assumed to be 0.5 in a total irreversible electrochemical

reaction; n is the number of electron transfers involved in the
rate-determining step; and ks is the standard rate constant of the
reaction. The other quantities are the same as mentioned earlier.
Accordingly, the relationship between Epa and v can be depicted
as Epa = 0.0261l n v + 0.0546 (R2 = 0.9905, Figure 3F). The value
of n is calculated as 1.97. Therefore, the oxidation of BPA on the
VMSF/p-GCE is a 2H+/2e− transfer process, which can be
described as the following equation (Eq. 3).

Since the oxidation of BPA on VMSF/p-GCE is adsorption-
controlled as mentioned previously, the accumulation time before
detection is further optimized. As shown in Figure 4A, the
oxidation peak current increases when the stirring time is
increased and then reaches a platform at 100 s. Thus, an
accumulation time of 100 s is chosen for further investigation.

Voltammetric Determination of BPA Using
the VMSF/p-GCE
Figure 4B shows the differential pulse voltammetry (DPV) curves
obtained on the VMSF/p-GCE in the presence of different
concentrations of BPA. A good linear correlation was found
between the peak current (I) and the concentration of BPA
(CBPA) from 50 nM to 1.0 μM (I = 1.348CBPA − 0.0425, R2 =
0.9915) and 1.0–10.0 μM (I = 0.7571CBPA + 0.7130, R2 = 0.9938).
The limit of detection (LOD) is calculated to be as low as 15 nM, at a

FIGURE 3 | CV (A) and DPV (B) curves obtained on GCE, p-GCE, and VMSF/p-GCE in PBS (0.1 M, pH = 6) containing BPA (10 μM). The dependence of DPV
anodic peak current (C) and CV anodic peak potential (D) on the pH value. Inset in c is the corresponding DPV curves in BPA (10 μM). (E) CV curves of BPA (10 μM) on
the VMSF/p-GCE with different scan rates (40, 70, 100, 130, 160, 190, and 220 mV/s). The inset is the plot of the scan rate vs. peak current. (F) Dependence of Epa on
the natural logarithm of scan rate.
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signal-to-noise ratio of 3(S/N = 3). The comparison between the
determination of BPA using different electrodes is demonstrated in
Table 1. The LOD is lower than that obtained from graphene oxide-
poly (1-[3-(N-pyrrolyl) propyl]-3-butylimidazolium
bromide)–modified GCE (GO-poly (NPBimBr)/GCE) (Wang
et al., 2018), tyrosinase-graphdiyne-chitosan–modified GCE (Tyr-
GDY-CS/GCE) (Wu et al., 2020), Ag nanoparticle/multiwalled

carbon nanotube–modified GCE (AgNP/MWCNT/GCE) (Goulart
et al., 2018), reduced graphene oxide-Fe3O4/chitosan/
laccase–modified GCE (rGO-Fe3O4/CS/laccase/GCE) (Fernandes
et al., 2020), and nanoporous PtFe/graphene–modified GCE (NP-
PtFe/Gr/GCE) (Tian et al., 2018) but higher than that obtained on
Cu2O-CuO@graphene quantum dot–modified GCE (Cu2O-CuO@
GQD/GCE) (Ashraf et al., 2020), GO-MWCNT-β-

FIGURE 4 | (A) Dependence of the stirring time on the current response of BPA on VMSF/p-GCE. Inset is the corresponding DPV curves. (B)DPV curves of VMSF/
p-GCE obtained in PBS (0.1 M, pH = 6) containing different concentrations of BPA after stirring for 100 s. Inset is the magnified view of the DPV curves in the low-
concentration region. (C) Calibration curve for BPA. (D) The current ratio (I/I0) obtained from VMSF/p-GCE for the detection of BPA (5.0 μM) in the absence (I0) and
presence (I) of 5-fold (BPS and 4-NP) or 50-fold of other added interfering species. The error bars represent the standard deviation (SD) of three measurements.

TABLE 1 | Comparison between electrochemical detection of BPA using a different electrode.

Electrode materials Method Detection range (μM) LOD (nM) Ref

VMSF/p-GCE DPV 0.05–10.0 15 This work
Cu2O-CuO@GQD/GCE CA 0.002–10000 1 29
GO-MWCNT-βCD/SPE LSV 0.05–30 6 32
GO-poly(NPBimBr)/GCE DPV 0.2–10.0 17 36
MIP/PPy@LSG DPV 0.05–5.0 8 38
Tyr-GDY-CS/GCE CA 0.1–3.5 24 61
AgNP/MWCNT/GCE SWV 5.0–152 2,400 62
rGO-Fe3O4/CS/laccase/GCE SWV 0.025–20 47 63
NP-PtFe/Gr/GCE DPV 0.2–96 170 64
NiS/rGO/MPL ASV 0.043–0.26 1.75 65

GCE, glassy carbon electrode; GQDs, graphene quantum dots; GO, graphene oxide; MWCNT, multiwalled carbon nanotube; βCD, β-cyclodextrin; SPE, screen-printed carbon electrode;
NPBimBr, 1-[3-(N-pyrrolyl) propyl]-3-butylimidazolium bromide; MIP, molecularly imprinted polymer; PPy, polypyrole; LSG, laser-scribed graphene; Tyr, tyrosinase; GDY, graphdiyne; CS,
chitosan; AgNP, Ag nanoparticle; rGO, reduced graphene oxide; NP, nanoporous; Gr, graphene; MPL, mechanical pencil lead; DPV, differential pulse voltammetry; LSV, linear sweep
voltammetry; CA, chronoamperometry; SWV, square wave voltammetry; ASV, anodic stripping voltammetry.
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cyclodextrin–modified screen-printed carbon electrode (GO-
MWCNT-βCD/SPE) (Alam and Deen, 2020), molecularly
imprinted polymer/polypyrole-modified laser-scribed graphene
(MIP/PPy@LSG) (Beduk et al., 2020), and NiS/rGO-modified
mechanical pencil lead (NiS/rGO/MPL). (Vu et al., 2019).

Selectivity and Anti-Interference Ability of
VMSF/p-GCE
The detection selectivity is critical for the real application of the
electrochemical sensor. To evaluate the selectivity, the performance
of the developed VMSF/p-GCE sensor to detect BPA in the
presence of common metal ions (K+, Na+, Ca2+, and Mg2+) and
electroactive environmental pollutants (BPS, CC, HQ, and 4-NP) is
investigated. As shown in Figure 4D, these co-existedmolecules do
not interfere with the detection of BPA. The high selectivity is
attributed to the good potential resolution ability of p-GCE. On the
one hand, the co-existed ions cannot be oxidated in the applied
potential range. On the other hand, electroactive organic molecules
have different electrochemical behaviors and different
electrocatalytic oxidation potentials on p-GCE owing to its good
electrocatalytic activity. Thus, the detection of BPA has good
selectivity. In addition, polysaccharides (starch), proteins (BSA),
organic macromolecules (humic acid, HA), and surfactants
(sodium dodecyl sulfate, SDS) that usually exist in complex
environmental samples are selected as model substances to
evaluate the anti-interference ability of the VMSF/p-GCE sensor

in complex matrices. Figure 5 shows the ratio of current responses
(I/I0) to BPA before (I0) and after (I) incubation of p-GCE or the
VMSF/p-GCE with one of the possible interferences for 10 min. As
seen, the current signals of p-GCE significantly decrease by nearly
50% in the presence of the interferences, indicating a severe matrix
effect. Thus, the substances that are frequently present in complex
samples can remarkably passivate the electrode, leading to a serious
change of sensitivity. In contrast, almost no significant current
change is observed for the VMSF/p-GCE, suggesting an excellent
anti-smudge ability. This is attributed to the fact that the
nanochannels of the VMSF can protect the electrodes from
severe contamination in complex matrices through size
repulsion and charge repulsion effects, which endow the VMSF-
modified electrodes with a good antifouling ability. Thus, the
VMSF/p-GCE sensor has great potential for the direct detection
of complex samples. In comparison with other optical or
chromatographic strategies (e.g. analysis), electroanalysis has
advantages of simple instruments, fast detection, and high
selectivity. (Cui et al., 2020; Zhao et al., 2020).

Repeatability, Reproducibility, and Stability
of the VMSF/p-GCE
The repeatability, reproducibility, and stability of the developed
VMSF/p-GCE sensor are also examined (Figures 6A–C). The
repeatability was evaluated by detecting BPA (1.0 μM) five times
using the same electrode. The electrode is easily regenerated by

FIGURE 5 | Normalized oxidation peak current ratio on p-GCE and VMSF/p-GCE toward BPA (1.0 μM). I and I0 represent the currents obtained in the presence
and absence of 50 μg/ml of amylum (A), BSA (B), HA (C), or SDS (D) in PBS (0.1 M, pH = 6). The insets are the corresponding DPV curves obtained on p-GCE and
VMSF/p-GCE in the absence and presence of the fouling species.
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immersing in an HCl–ethanol (0.1M) solution for 5min. A relative
standard deviation (RSD) of 1.4% is found, suggesting satisfactory
repeatability (Figure 6A). To investigate the reproducibility of the
sensor, five electrodes are parallelly fabricated under the same
conditions. A low RSD of 0.7% is revealed for detecting BPA
(1.0 μM), indicating high reproducibility (Figure 6B). The stability
of the developed sensor is investigated by comparing the detection of
BPA (1.0 μM) before and after storage in 4°C for 7 days. As shown in
Figure 6C, the peak current is 95.0% that of the freshly fabricated
electrode, confirming high stability of the fabricated sensor.

Direct Detection of BPA in Environment
Samples
Considering the excellent antifouling ability of the VMSF/p-GCE
sensor, the direct analysis of environmental water and soil
leaching solutions is investigated using a standard addition
method. As shown in Table 2, the detection exhibits
satisfactory recoveries ranged from 98.0–104.5%, with a low
relative standard deviation (RSD≤ 3.9%), indicating high
reliability. As demonstrated in the inset of Figure 6D, the
analyzed soil leaching solution is a suspension. However, the
detected concentration of artificially added BPA (0.99 μM) by the
extrapolation method (I = 0.810C + 0.806, R2 = 0.9978) is quite
similar with the added concentration (1.0 μM). These prove the
reliability of the VMSF/p-GCE for direct BPA analysis in real
complex samples without separation.

CONCLUSION

In summary, we have developed an electrochemical sensing
platform based on the equipment of the VMSF on p-GCE for
direct and sensitive analyses of BPA in complex environmental
samples. The supporting p-GCE offers a high electrode surface

FIGURE 6 | Repeatability (A), reproducibility (B), and stability (C) of VMSF/p-GCE for the detection of BPA (1.0 μM). (D) Linear relationship of the DPV current vs.
the concentration of spiked BPA in SLS. Inset is the digital picture of the detected SLS. The error bars represent the standard deviation (SD) of the three measurements.

TABLE 2 | Detection of BPA in environmental water samples.

Sample Added/μM Found/μM RSD/% (n = 3) Recovery/%

Pond watera 0.50 0.492 3.9 98.0
2.00 2.09 3.7 104.5
5.00 4.95 3.8 99.0

Lake waterb 0.10 0.103 1.8 104.2
3.00 3.14 3.9 103.5
6.00 5.86 1.3 97.9

adiluted with PBS (0.1 M, pH = 6) for 10 times.
bdiluted with PBS (0.1 M, pH = 6) for 10 times.
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area, excellent electrocatalytic performance, and good potential
resolution ability. In addition, the nanochannels of theVMSF act as
nanofilter to endow the modified electrode with an anti-
interference ability. On the other hand, nanochannels can also
enrich analytes through electrostatic or hydrogen bonding to
realize signal amplification. Without separation, rapid and
sensitive detection of BPA in pond or lake water and soil
leaching solutions is realized with high reliability. In
comparison with the developed method for the detection of
BPA, the developed VMSF/p-GCE sensor has simple electrode
structure and excellent sensing performance. In combination with
the further modification of the supporting electrode or the VMSF
nanochannel, the sensor demonstrated here may be extended for
detecting a variety of analytes in complex samples in medical,
biological, food, environmental, and other fields.
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